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Abstract—Human skin detection in images is a widely studied
topic of Computer Vision for which it is commonly accepted that
analysis of pixel color or local patches may suffice. However,
we found that the lack of contextual information may hinder
the performance of local approaches. In this paper, we present
a comprehensive evaluation of holistic and local Convolutional
Neural Network (CNN) approaches on in-domain and cross-
domain experiments and compare them with state-of-the-art
pixel-based approaches. We also propose combining inductive
transfer learning and unsupervised domain adaptation methods
evaluated on different domains under several amounts of labelled
data availability. We show a clear superiority of CNN over
pixel-based approaches even without labeled training samples
on the target domain and provide experimental support for the
superiority of holistic over local approaches for human skin
detection.

I. INTRODUCTION

Human skin detection is the task of identifying which pixels
of an image correspond to skin. The segmentation of skin
regions in images has several applications: video surveillance,
people tracking, human-computer interaction, face detection
and recognition and gesture detection, among many others [/1]],
[2].

Before the boom of Convolutional Neural Networks
(CNNs), most approaches were based on skin-color separation
or texture features, as in [3] and [4]. Despite all the advances
that deep fully convolutional neural networks have brought for
image segmentation, some common criticism is still made to
argue that pixel-based approaches are more suitable for skin
detection. Namely: the need for large training datasets [5];
the specificity or lack of generalization of neural nets; and
prediction time [6].

In this paper, to address the first criticism (on the need for
large training datasets), we propose a new Domain Adaptation
strategy that combines Transfer Learning and Pseudo-Labeling
[7] in a cross-domain scenario that works under several levels
of target domain label availability. We evaluate the proposed
strategy under several cross-domain situations on four well-
known skin datasets. We also address the other criticisms with
a series of comprehensive in-domain and cross-domain experi-
ments. Our experiments show the effectiveness of the proposed
strategy and confirm the superiority of FCN approaches over
local approaches for skin segmentation. We can improve the
F; score on skin segmentation using little or no labelled data
from the target domain with the proposed strategy.

Our main contributions are:

1) the proposal of a new Domain Adaptation strategy that

combines Pseudo-Labeling and Transfer Learning for
cross-domain training;

2) a comparison of holistic versus local approaches on in-
domain and cross-domain experiments applied to skin
segmentation with an extensive set of experiments;

3) a comparison of CNN-based approaches with state-of-
the-art pixel-based ones; and

4) experimental assessment of the generalization power of
different human skin datasets (domains).

II. BACKGROUND
A. Fully Convolutional Networks (FCN)

In opposition to patch-based classification [§|], where each
pixel is classified using a patch of the original image that
surrounds it, the FCN-based approach for image segmentation
introduced by [9] considers the context of the whole image.
The FCNs are Convolutional Neural Networks (CNN) in
which all trainable layers are convolutional. These networks
can perform segmentation taking the whole image as an input
signal and generate full image segmentation results in one
forward step of the network, without requiring to break the
image into patches. Because of that, FCNs are faster than the
patch-based approaches, and overcame the state-of-the-art on
PASCAL VOC, NYUDvV2, and SIFT Flow datasets, by using
Inductive Transfer Learning from ImageNet.

Following the success of FCNs, [10] proposed the U-Net
architecture, that consists of an encoder-decoder structure
initially used in biomedical 2D image segmentation. In U-
Net, the encoder path is a typical CNN, where each down-
sampling step doubles the number of feature channels. What
makes this architecture unique is the decoder path, where each
up-sampling step concatenates the output of the previous step
with the output of the down-sampling with the same image
dimensions. With this strategy, the U-Net is able to model
contextual information, increasing robustness level of detail.

B. Transfer Learning and Domain Adaptation

Following the notation of [11f], a domain D is composed
of a d-dimensional feature space X C R? with a marginal
probability distribution P(X). A task 7 is defined by a label
space ) with conditional probability distribution P(Y|X). In
a conventional supervised machine learning problem, given a
sample set X = {x1,--+,X,} € X and the corresponding
labels Y = {y1,--:,yn} € Y, P(Y|X) can be learned
from feature-label pairs in the domain. Suppose we have
a source domain D° = {X° P(X?®)} with a task 7° =
{Y*,P(Y*|X*®)} and a target domain D! = {X* P(X")}
with a task 7t = {Y* P(Y'X")}. If the two domains
correspond (D = D?!) and the two tasks are the same



(7T°% = T, we can use conventional supervised Machine
Learning techniques. Otherwise, adaptation and/or transfer
methods are required.

If the source and target domains are represented in the same
feature space (X* = X!), but with different probability dis-
tributions (P(X®) # P(X?)) due to domain shift or selection
bias, the transfer learning problem is called homogeneous. If
(X% # XY, the problem is heterogeneous TL [[11]], [12].

Domain Adaptation. Domain Adaptation is the problem
where tasks are the same, but data representations are different
or their marginal distributions are different (homogeneous).
Mathematically, 7% = 7 and V* = )?, but P(X®) # P(X?).
Most of the literature on domain adaptation for visual appli-
cations is dedicated to image classification [[12f]. To extend
the domain adaptation concepts to the image segmentation
problem, we treat the Skin Segmentation as a pixel-wise
classification problem.

Inductive Transfer Learning. When source and target
domains are different (D* # D*), models trained on D* may
not perform well while predicting on D! and if tasks are
different (7% # T*), models trained on D* may not be directly
applicable on D?. Nevertheless, when D® maintains some kind
of relation to D? it is possible to use some information from
{D*, 7%} to train a model and learn P(Y*|X") through a
processes that is called Transfer Learning (TL) [11].

According [12]], the Transfer Learning approach is called
inductive if the target task is not exactly the same as the
source task, but the tasks are in some aspects related to each
other. For instance, consider an image classification task on
ImageNet [|13]] as source task and a Cats vs Dogs classification
problem as a target task. If a model is trained on a dataset
that is as broad as ImageNet, one can assume that most
classification tasks performed on photographies downloaded
from the web are subdomains of ImageNet which includes
the Cats vs Dogs problem (i.e. Dcatsxdogs  Plmagelet)
even though the tasks are different ()™™ageNet — R1000 zpq
catsxdogs — R2) This is the case of a technique to speed up
convergence in Deep CNNs that became popularised as Fine
Tuning for vision applications.

In deep artificial neural networks, fine tuning is done by
taking a pre-trained model, modifying its final layer so that
its output dimensionality matches )* and further training this
model with labelled samples in D*. In this work, we compare
our proposed domain adaptation approach to inductive transfer
learning applied to the skin segmentation problem.

Unsupervised Domain Adaptation. Domain adaptation
methods are called unsupervised (also known as transductive
TL) when labeled data is available only on source domain
samples.

Several approaches have been proposed for unsupervised
DA, most of them were designed for shallow learning methods
[14]]. The methods that exploit labeled samples from the source
domain follow a similar assumption to that of Semi-Supervised
Learning methods, with the difference that test samples come
from a new domain. This is the case of [15]] and [16]]. Both
methods start with a standard supervised learning method

trained on the source domain in order to classify samples
from the target domain. The classification results are taken as
pseudo-(soft)labels and used to iteratively improve the learning
method in a way that it works better on the target domain.

When labeled samples are not available at all, it is possible
to perform unsupervised transfer learning using methods that
perform feature space transformation. Their goal is to align
source and target domain samples to minimise the discrepancy
between their probability density functions [17]]. Style transfer
techniques such as that of [[18]] achieve a similar effect, but
their training process is much more complex.

Semi-supervised learning. Semi-supervised learning meth-
ods deal with the problem in which not all training sam-
ples have labels [[19]], [20]. Most of these methods use a
density model in order to propagate labels from the labeled
samples to unlabeled training samples. This step is usually
combined with a standard supervised learning step in order
to strengthen the classifiers, c.f. [21]], [22]. There are several
semi-supervised learning approaches for deep neural networks.
Methods include training networks using a combined loss of
an auto-encoder and a classifier [23]], discriminative restricted
Boltzmann machines [24]] and semi-supervised embeddings
[25]. [[7] proposed a simple yet effective approach, known
as Pseudo-Labelling, where the network is trained in a semi-
supervised way, with labeled and unlabeled data in conjunc-
tion. During the training phase, for the unlabeled data, the class
with the highest probability (pseudo-label) is taken as it was
a true label. To account for the unbalance between true and
pseudo labels, the loss function uses a balancing coefficient
to adjust the weight of the unlabeled data on each mini-batch.
As a result, pseudo-label works as an entropy regularization
strategy. These methods assume that training and test samples
belong to the same domain, or at least that they are very
similar (D® =~ D?). The original Pseudo-Labelling method
only considers in-domain setups. As we are dealing with
homogeneous DA, in this work we extend Pseudo-Labeling to
cross-domain and evaluate this extension under several target
label availability constrains, from semi-supervised learning to
fully unsupervised .

C. Related Works on Skin Detection

[[6] achieved state-of-the-art results in skin segmentation
using correlation rules between the YCb and YCr subspaces
to identify skin pixels on images. A variation of that method
was proposed by [26], who claimed to have achieved a new
state-of-the-art plateau on rule-based skin segmentation based
on neighborhood operations. [27] compared different color-
based and CNN based skin detection approaches on several
public datasets and proposed an ensemble method.

In contrast to Domain Adaptation for image classification,
it is difficult to find literature focused on domain adaptation
methods for image segmentation [[12]], especially for the skin
detection problem. [28] use agreement of two detectors based
on skin color thresholding, applied to selected images from
several manually labeled public datasets for human activity
recognition, but do not explore their use in cross-domain
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Fig. 1. Inductive Transfer Learning by “fine tuning” parameters of a model
to a new domain. Model “A” parameters are trained on the source dataset.
Model “B” parameters are initialized from Model “A” parameters. Model “B”
is then “fine tuned” to the new domain.

setups. [29] also use two independent detectors, with their
parameters selected by maximising agreement on correct de-
tections and false positives to dynamically change a classifier
on new data automatically without any user annotation.

In this work we compare two CNN approaches (one patch-
based and one fully convolutional) with above mentioned state-
of-the-art pixel-based methods for in-domain skin detection.
We also compare the two CNN approaches to each other in
cross-domain setups, even in the absence of target-domain
labeled data. Unfortunately, previous state-of-the-art pixel-
based skin segmentation papers do not present results on cross-
domain setups.

III. METHODS

In order to exploit domain adaptation techniques to address
training data avaiability problem for skin segmentation, we
evaluate conventional transductive transfer learning using fine
tuning, our cross-domain extension applied to the Pseudo-
Labeling approach of [7] and our proposed combined approach
that uses both inductive transfer learning and unsupervised or
semi-supervised DA. All source code developed to perform the
training and the evaluations, along side the resulting models
weights are available from http://cic.unb.br/~teodecampos/.

For inductive transfer learning with deep networks, we use
the learnt parameters from the source domain as starting point
for optimisation of the parameters of the network on the
target domain. The optimisation first focuses on the modified
output layer, which is intimately linked with the classification
task. Other layers are initially frozen, working as a feature
extraction method. Next, all parameters are unfrozen and
optimisation carries on until convergence. Figure |1| illustrates
this process.

In this work, we propose a method that relates the pseudo-
label approach of [[7], but instead of using the same model and
domain for final prediction and pseudo-label generation, we
use a model trained in a different domain to generate pseudo
labels for the target domain. These pseudo-labels are then used
to fine-tune the original model or to train another model from
scratch in a semi-supervised manner. We call this technique
cross-domain pseudo-labelling as illustrated in Figure[2| This
approach allows us to train the final model with very few
labeled data of the target domain. In the worst case scenario,
the model can be trained with no true label at all, in a fully
unsupervised fashion. This still takes advantage of Entropy
Regularization of the pseudo-label technique.
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Fig. 2. Semi-supervised and unsupervised Domain Adaptation by cross-
domain pseudo-labelling. Model “A” is trained on the source dataset and it
is used to predict labels on the target dataset. Then, the target dataset and
previously predicted labels are used to train Model “B”. When no labels are
available on the target dataset, the process is fully unsupervised.
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Fig. 3. Combined transfer learning and domain adaptation approach. Model
“A” is trained on the source dataset and it is used to predict labels on the
target dataset. Then, target dataset and previously predicted labels are used to
train Model “B” which is fine tuned on the target dataset before be used to
generate a new set of more accurate pseudo-labels.

Our last approach consists in combining fine tune and
pseudo labeling approaches in order to improve final model
performance. Figure [3| illustrates this procedure. We use
weights obtained from a cross-domain pseudo-label model
(Model “B”) to fine tune a model that will be used to generate
a more accurate set of pseudo-labels. These new pseudo-labels
are then used in one in-domain pseudo-label training round to
get the final model (“Model C”). The intuition behind this
approach is that using a more accurate set of labels jointly
with weights of a better model should lead to better results.
Because of the fine tuning step, which requires at east some
labels from the target dataset, this approach is semi-supervised.

We evaluated two approaches for skin segmentation, a local
(patch-based) convolutional classification method and a holis-
tic (FCN) segmentation method. The patch-based approach
uses the raw values of a small region of the image to classify
each pixel position based on its neighbourhood. Inspired by the
architecture described by [8|], we use a 3 convolutional layer
network with max pooling between convolutions, but we add
ReLU activation function in the inner layers, to reduce the
vanishing gradient effect. As input, we use a patch of 35 x 35
pixels and 3 channels, to allow the network to capture the
surroundings of the pixel. This patch size is similar to that
used by [8] (32 x 32), but we chose an odd number to focus
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Fig. 4. Our variation of the U-Net architecture for holistic image segmenta-
tion.

the prediction in the center of the patch. The output of the
network consists of two fully connected layers and a sigmoid
final activation for binary classification. For this approach, the
images are not resized. To reduce the cost of training while
maintaining data diversity, data subsampling is used so that
only 512 patches are randomly selected from each image.
For prediction, all patches are extracted in a sliding window
fashion, making one prediction per pixel.

Due to its simplicity and performance [27]], we choose to use
the U-Net as the holistic segmentation method to be evaluated
in this paper. Our model follows the general design proposed
by [10]], but we use a 7-level structure with addition of batch
normalization between the convolutional layers, as shown in
figure f] We also use an input frame of 768 x 768 pixels
and 3 channels to fit most images, and same size output.
Smaller images are framed in the center of the input and larger
ones are resized in a way that its larger dimension fits the
input frame. For evaluation purposes, predictions are done over
the images restored to their original sizes. In both local and
holistic models, the image pixels are normalized to 0 to 1 and
the sigmoid activation function applied to the output. In both
models we also used data augmentation, randomly varying
pixels values in the HSV colour space. For the U-Net model
we also used random shift and flip. To favor sharpness of
predicted bonderies, for the loss function, we used a modified
(and differentiable) Sgrensen—Dice coefficient [30]. For each
given class label, let p € [0,1] be the vector of predicted
probabilities for each pixel (where Z is the number pixels in
each image), ¢ € {0, 1} be the binary vector that indicates,
for each pixel, if that class has been detected, based on p, and
g be the ground truth binary vector that indicates the presence
of that label on each pixel. The derived loss function from the
Sgrensen—Dice coefficient is given by equation (IJ), where s is
the smoothness parameter that was set to s = 107>,

s+2p-g
s + [Pl + 1]
IV. EXPERIMENTS AND RESULTS

DiceLoss(p,§) =1 — (1)

The main goal of our experiments is to evaluate the
performance of homogeneous transductive fine-tuning, cross-

TABLE I
SAME DOMAIN RESULTS ON THE SFA DATASET (IN %).

Model Acc ToU Prec Recall Fi
Faria (2018) [26] - - 92.88 39.58 55.51
SegNet (2020) [27] - - - - 88.90
U-Net (2020) [27] - - - - 84.80
DeepLab (2020) [27] - - - - 93.90
Our patch-based 91.14 | 82.17 | 89.71 91.00 90.35
Our U-Net 97.94 | 92.80 | 96.65 95.89 96.27

TABLE II

SAME DOMAIN RESULTS ON THE COMPAQ DATASET (IN %).

Model Acc ToU Prec Recall Fq
Branc.(2017) [6] - - 43.54 | 80.46 | 56.50
SegNet (2020) [27]] - - - - 73.70
U-Net (2020) [27] - - - - 68.60
DeepLab (2020) [27] - - - - 81.70
Our patch-based 90.18 | 46.00 | 58.92 73.59 65.45
Our U-Net 92.62 | 5447 | 68.49 71.64 70.03

domain pseudo-labelling, and a combined approach in several
domains and under different availability of labeled data on
the target domain. In our experiments, we used four well-
known datasets dedicated to skin segmentation: Compaq [31]
— a very traditional skin dataset with 4,670 images of several
levels of quality; SFA [32] — a set of 1,118 face images
obtained from two distinct datasets, some of them with white
background; Pratheepan [33] — 78 family and face photos,
randomly downloaded using Google; and VPU [28] — 290
images extracted from video surveillance cameras. As most of
the datasets do not provide a standard image-based train/test
split, we adopted the same test split reported by the authors
of SFA [32], which uses 15% of the images for testing and
the remaining for training on all these datasets.

A. In-domain evaluations

Here we compare our CNN-based local (patch-based) and
holistic (U-Net) models in same-domain training situations to
previous color-based local models [6], [26], [28] and CNN-
based holistic solutions [27]. We evaluate using: Accuracy
(Acc), Intersection Over Union (IoU), Precision, Recall and
F1 Score, in order to compare to previous works. Results are
shown on tables|| and[[V] given the availability of result
data in original publications. Our patch-based CNN suparssed
all previous color-based models and our holist U-Net achieved
state-of-the-art scores compared to others recent CNN models
for the datasets in study. This confirms the superiority of the
deep learning models over color-based ones and the superiority
of holistic over local approaches. The results also show that
the datasets have different levels of difficulty, being VPU the
most challenging and SFA the least challenging, considering
the most used F1 criteria.

B. Cross-domain baseline results

The cross-domain capabilities of our models and generaliza-
tion power of domains are shown on table |V| which presents
source only mean F; scores results without any transfer or



TABLE III
SAME DOMAIN RESULTS ON THE PRATHEEPAN DATASET (IN %).
Model Acc ToU Prec Recall F1
Branc.(2017) [6] - - 55.13 81.99 65.92
Faria (2018) [26] - - 66.81 66.83 66.82
SegNet (2020) [27] - - - - 80.20
U-Net (2020) [27] - - - - 71.3
DeepLab (2020) [27]] - - - - 87.50
Our patch-based 87.12 | 55.57 | 59.83 | 82.49 | 69.36
Our U-Net 91.75 | 60.43 | 7291 74.51 73.70
TABLE IV
SAME DOMAIN RESULTS ON THE VPU DATASET (IN %).
Model Acc ToU Prec Recall Fy
SMig.(2013) - - 45.60 | 73.90 56.40
SegNet (2020) [27]] - - - - 32.80
U-Net (2020) [27] - - - - 33.2
DeepLab (2020) [27]] - - - - 62.80
Our patch-based 93.48 | 14.14 | 46.34 | 42.82 | 44.51
Our U-Net 99.04 | 45.29 | 57.86 | 71.33 63.90

adaptation to target dataset. As we can see, source dataset
Compaq in conjunction with the U-Net Model presented the
best generalization power on targets SFA and Pratheepan.
Source dataset Pratheepan also in conjunction with the U-Net
Model did better on targets Compaq and VPU. These source-
only setups surpassed the respective color-based approaches
shown on previous tables, except for the VPU dataset.

Note that the patch-based model surpassed U-Net when
using source domains with low generalization power like SFA
and VPU. For example, using VPU as source domain and SFA
as target, patch-based reached mean F; score of 82.63%, while
U-Net only got 14.83%. Using SFA as source and Compagq as
target, patch-based also surpassed U-Net (54.80% vs. 18.92%).
These results are expected, since SFA and VPU are datasets
of very specific domains with little variation in the type of
scenes between their images (SFA images are close-ups on
faces and VPU images are typical viwes from conference
rooms or surveillance cameras). On the other hand, Compaq
and Pratheepan include images with a wide range of layouts.
Therefore, SFA and VPU only offer relevant information at a
patch level for skin detection, their contexts are very specific,
which hinders their generalisation ability. If the goal is to
design a robust skin detector and avoid negative transfer, our
results show that it is better to use Compaq or Prateepan as
source samples.

C. Domain Adaptation Results

Following the recommendation in the previous section, we
performed domain adaptation experiments using Compaq and
Pratheepan as source datasets. Given the superiority of CNN-
based holist approaches, for now on, we focus on our U-
Net model. Table presents the F; scores obtained by the
methods and settings we evaluated. For each source—target
pair, we indicate in bold face which result was better than
the target-only method. We evaluated the effect of the amount
labeled target samples given and present results ranging from
no labels (0%), i.e. an unsupervised domain adaptation setting,

TABLE V
CROSS-DOMAIN MEAN F1 SCORES (%) OBTAINED WITHOUT TRANSFER
NOR ADAPTATION.

Model Source Target Domain
Domain SFA Compaq | Prathee. | VPU
SFA - 18.92 44.98 11.52
U-net Compaq | 86.14 - 75.30 23.67
Prathee. | 80.66 63.49 - 36.68
VPU 14.83 44.71 48.02 -
SFA - 54.80 62.92 21.60
Compaq | 71.28 - 72.59 19.94
Patch Prathee. 80.04 62.68 - 13.74
VPU 82.63 51.48 58.34 -
Image GT Source-Only  Pseudo Combined
f—score: 0.92 [f—score: 0.93 [f—score: 0.94
f—score: 0.71 [f—score: 0.92 [f—score: 0.93
t

Fig. 5. Domain adaptation from Compaq to SFA using no real labels from
target. From left to right: target test image, ground truth and results with
source only, domain adaptation based on cross-domain pseudo-labels and the
combined domain adaptation + transfer learning approach.

to all labels (100%) given in the target training set, i.e., an
inductive transfer set up. Target only results are provided for
comparison purposes, i.e, within domain experiments with the
number of training labels ranging from 5 to 100%. The target
only results are expected to be an upper bound in performance
when 100% of the training labels are used because there is no
domain change, but they may suffer from the reduced training
set size in comparison to the domain adaptation settings.
Compaq has confirmed our expectations of being the most
generalizable source dataset, not only for being the most
numerous in terms of sample images but also due to their
diversity in appearance. The use of Compaq as source lead
to very good results on SFA and Pratheepan as targets. These
results are illustrated in figures [5] and [f] respectively, which
show the effects of using different domain adaptation methods

Source-0Only Pseudo Combined
f—score: 0.23 |f—score: 0.27 [f—score: 0.29
,‘ui\!‘ﬂfﬂ‘ . N
N 3| PR | gy
€‘¢\‘7. ."t/.'« ..Hﬁ.
" . i - [} -
f—score: 0.80 [f—score: 0.82 [f—score: 0.82

ik

Fig. 6. Domain adaptation from Compaq to Pratheepan using no real labels
from target (same setting as Figure [3).
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TABLE VI

U-NET MEAN F1 SCORES UNDER DIFFERENT SCENARIOS AND DOMAIN ADAPTATION APPROACHES.

Source Target Approach 0% Tar{%e;z Trdmi%%%]“dbelsgo;fge 100%
SFA - 93.49 | 9450 | 95.72 | 96.27
Target Compaq Tarect onl - 66.84 | 67.78 | 69.37 | 70.03
only Pratheepan set only - 46.36 | 59.86 | 69.04 | 73.70
VPU - 41.27 | 5344 | 63.18 | 63.90
Source only 86.14 - - - -
SFA Fine-tuning only - 92.89 | 94.04 | 95.86 | 95.98
Cross-domain pseudo-label only | 88.80 | 88.90 | 89.69 | 93.22 -
Combined approach 89.24 | 90.05 | 90.36 | 94.57 -
Source only 75.30 - - - -
Compaq Pratheepan Fine-tuning only - 72.52 | 74.69 | 76.47 | 77.16
Cross-domain pseudo-label only | 75.58 | 75.52 | 77.18 | 80.08 -
Combined approach 76.80 | 75.67 | 77.84 | 79.87 -
Source only 23.67 - - - -
VPU Fine-tuning only - 51.51 | 46.50 | 67.47 | 69.62
Cross-domain pseudo-label only | 02.67 | 02.86 | 02.68 | 02.77 -
Combined approach 02.66 | 02.68 | 02.67 | 02.66 -
Source only 80.66 - - - -
SFA Fine-tuning only - 93.68 | 94.70 | 95.69 | 95.99
Cross-domain pseudo-label only | 82.50 | 83.36 | 83.63 | 90.60 -
Combined approach 82.96 | 84.12 | 84.47 | 9293 -
Source only 63.49 - - - -
Pratheepan Compagq Fine-tuning only - 64.88 | 66.10 | 68.97 | 70.52
Cross-domain pseudo-label only | 39.50 | 41.26 | 44.69 | 62.39 -
Combined approach 3472 | 36.22 | 39.05 | 57.06 -
Source only 36.68 - - - -
VPU Fine-tuning only - 51.61 | 60.19 | 68.15 | 69.44
Cross-domain pseudo-label only | 02.66 | 02.66 | 02.67 | 02.77 -
Combined approach 02.65 | 02.66 | 02.67 | 02.74 -
with no labels from target dataset. Note that when using 5% 10% 56%
Compaq as source and Pratheepan as target, the gain of the f—score: 0.31 |f—score: 0.54  |f—score: 0.77
domain adaptation approaches is very expressive when com- . . \
pared to target only training. Domain adaptation methods got : \
better results using any amount of labels on the target training
set, being the combined approach the best option in most f—score: 0.72 [f—score: 0.83 [f—score: 0.85
cases. Using 50% of training data our cross-domain pseudo-
. .. [ 4 ’ ¢ ‘
label approach was better than regular supervised training S N A TN A SN
with 100% of training data. Besides that, all the results of ° s ‘s v s

domain adaptation methods with no labels were better than the
state-of-the-art results of color-based approaches presented in

Section [V-Al

When VPU is the target dataset, Pratheepan outperformed
Compagq as source dataset. However, the pseudo-labels caused
negative transfer, leading to very bad results when domain
adaptation was used. The results with fine-tuning were better
than regular supervised training with all evaluated amounts
of training labels. In this scenario, the reference color-based
approach by [28]] was beaten starting from 10% of training
label usage. Results with 5, 10 and 50% are shown for two
sample images in Figure

Still with Pratheepan as source dataset, but with Compaq as
target, the “source only” result was reasonable and surpassed
the color-based approach. However, we observed that domain
adaptation methods did not remarkably improve the results
from regular supervised training. Figure [8| shows the results
of fine-tuning from Pratheepan to Compag.

Fig. 7. Adaptation from Pratheepan to VPU with fine-tuning TL. From left
to right: target test image, ground truth and resutls with 5, 10 and 50% of
labels on the target training set.

D. Discussion

Although most approaches for skin detection in the past
have assumed that skin regions are nearly textureless [1f], [3],
[6], [34]], [35]], our results give the unintuitive conclusion that
texture and context play an important role. A holistic segmen-
tation approach like fully convolutional networks, taking the
whole image as input, in conjunction with adequate domain
adaptation methods, has more generalization power than local
approaches like color and patch-based. The improvement level
and best domain adaptation approach varies depending on how
close target and source domains are and on the diversity of the
samples in the source dataset. The closer the domains and
the higher the source variety, the higher the improvement.
For example, a very positive transfer from Compaq— SFA
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Fig. 8. Adaptation from Pratheepan to Compaq with fine-tuning using
different amounts of labels on the target training set (following the same
setting as Figure [7).

was observed because Compaq is more diverse and includes
samples whose appearance is somewhat similar to those of
SFA. This is intuitive, as these approaches depend on the
quality of the pseudo-labels. When the transition between
domains goes from specific to diverse datasets, the pseudo-
labels are expected to be of low quality, thus, not contributing
to the target model training. On these situations, fine-tuning
has showed to be more effective, although with the drawback
of requiring at least some few labeled images for training.

Domain Adaptation methods have also showed improve-
ments when compared to regular supervised training in cases
where the target has few images, like Pratheepan and VPU.
The level of improvement depends on the amount of labeled
target training data and on the similarity of source and target
domains. The higher the amount, the lower the improvement,
and the higher the similarity, the higher the improvement.
Figure 9] shows a comparison of regular supervised training
versus the combined approach in the Compaq—Pratheepan
scenario with 5, 10 and 50% of the target training samples with
labels. This scenario is good for the pseudo-label approach,
since Compaq has more diversity than Pratheepan. Note the
superiority of combined approach in all levels of target labels
availability.

Figure [I0] on the other hand, shows the comparison of
regular supervised training versus the fine-tune approach in the
Pratheepan — VPU scenario. As Pratheepan does not cover
scenes that occur on VPU, the fine-tune approach perform
better than cross-domain pseudo-labels in this scenario.

Another important aspect to be addressed is the criticism
for the applicability of CNN approaches to real-time appli-
cations. The criticism is probably valid for patch-based CNN
approaches, but it does not hold for our FCN holistic approach.
The average prediction time of our patch-based CNN, using a
simple Nvidia GTX-1080Ti, with a frame size of 768 x 768
pixels, is 7 seconds per image which is indeed not suitable for
real-time applications. However, our U-Net prediction time is
80 ms per frame for the same setup, i.e., 12.5 images are
processed per second (without parallel processing). [6] has
reported prediction time of about 10ms per frame with frame
size of 300 x 400 pixels (8x faster on images that are 5x
smaller), which is indeed a bit faster, at a penalty of producing

f—score: 0.90

Frscore: 0.92

|

f—score: 0.93 [f—score: 0.94

f—score: 0.63

P

f—score: 0.74

",

f—score: 0.71

I

f—score: 0.64

",

f—score: 0.82

I
¥

Fig. 9. Comparison of source only vs. domain adaptation combined approach
in the Compaq—Pratheepan scenario with different proportions of labeled
target training samples. For each target test image, the first row is regular
supervised training and the second is the combined domain adaptation
approach.

worse results.
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Fig. 10. Comparison of source only vs. fine-tune in the Pratheepan — VPU
scenario with different proportions of labeled target training samples. For each
target test image, the first row is regular supervised training and the second
is the fine-tuning approach.

V. CONCLUSIONS

In this work we refuted some common criticisms regarding
the use of Deep Convolutional Networks for skin segmen-
tation. We compared two CNN approaches (patch-based and
holistic) to the state-of-the-art pixel-based solutions for skin
detection in in-domain situations. As our main contribution,
we proposed novel approaches for semi-supervised and unsu-
pervised domain adaptation applied to skin segmentation using
CNNs and evaluated it with a extensive set of experiments.

Our evaluation of in-domain skin detection approaches on
different domains/datasets showed the expected and incon-
testable superiority of CNN based approaches over color based
ones. Our U-Net model obtained F; scores which were on
average 30% better than the state-of-the-art recent published
color based results. In more homogeneous and clean datasets,



like SFA, our F; score was 73% better. Even in more difficult
and heterogeneous datasets, like Prathepaan and VPU, our U-
Net CNN was more than 10% better. We experimentally came
to the conclusion that a holistic approach like U-net, besides
being much faster, gives better results than a patch-based local
approach. We also concluded that the common critique of
lack of generalization of CNNs does not hold true against our
experimental data. With no labeled data on the target domain,
our domain adaptation method’s F; score is an improvement of
60% over color-based results for homogeneous target datasets
like SFA and 13% in heterogeneous datasets like Pratheepan.
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