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Abstract—Processing of face images is used in many areas, for
example: commercial applications such as video-games; facial
biometrics; facial expression recognition, etc. Face detection is a
crucial step for any system that processes face images. Therefore,
if there is bias or unfairness in this first step, all the processing
steps that follow may be compromised. Errors in automatic face
detection may be harmful to people as, for instance, in situations
where a decision may limit or restrict their freedom to come and
go. Therefore, it is crucial to investigate the existence of these
errors caused due to bias or unfairness. In this paper, an analysis
of five well-known top accuracy face detectors is performed to
investigate the presence of bias and unfairness in their results.
Some of the metrics used to identify the existence of bias
and unfairness involved the verification of demographic parity,
verification of existence of false positives and/or false negatives,
rate of positive prediction, and verification of equalized odds.
Data from about 365 different individuals were randomly selected
from the Facebook Casual Conversations Dataset, resulting in
approximately 5,500 videos, providing 550,000 frames used for
face detection in the performed experiments. The obtained results
show that all five face detectors presented a high risk of not
detecting faces from the female gender and from people between
46 and 85 years old. Furthermore, the skin tone groups related
with dark skin are the groups pointed out with highest risk
of faces not being detected for four of the five evaluated face
detectors. This paper points out the necessity of the research
community to engage in breaking the perpetuation of injustice
that may be present in datasets or machine learning models.

I. INTRODUCTION

Face detection algorithms are a classical problem in com-
puter vision. Some possible reasons for the high interest in face
detection are: before the execution of any processing involving
face biometrics, the face must be detected; faces own a regular
pattern among all human beings; and facial expressions are the
most important human aspect for expressing emotions.

The first researches aiming to solve the face detection prob-
lem were published in the decade of 1970 [1]. In that period,
the techniques were based on heuristics and anthropomorphic
measures. Clearly, those heuristic techniques were not capable
of adequately dealing with all the variations a face image
can be subjected to. Despite these relevant problems to be
investigated, the research interest in face detection remained
stagnant until the beginning of decade of 1990.

In the history of computer vision, there were many impor-
tant contributions to solve the face detection problem, such
as: PCA (Principal Component Analysis) applied as features to
train face classifiers [2], artificial neural networks trained with
raw pixel gray values [3], and integral features used to train
weak-classifiers combined by Adaboost [4]. The approach

proposed by Viola and Jones [4] used an Adaboost algorithm
with Haar-like features extracted via integral image to train a
cascade of face classifiers. The use of integral images allowed
the face detection to be fifteen times faster, in average, when
compared to other competing approaches at the time, and the
false positive rate was bellow 10−6.

After the success of the ImageNet Large Scale Visual
Recognition Challenge [5], the community attention turned to
the Deep Convolutional Neural Networks (DCNN). Face de-
tection research has made significant progress in the last years
due to the use of DCNN [6]. One important contribution of
DCNN approaches is the possibility of training the algorithm
to extract the specific features for the classification problem at
hand. Therefore, it is possible to have a face detector trained
end-to-end without the necessity of hand-crafted features.
Contemporary face detectors, such as PyramidBox [7], benefit
from DCNN characteristics and have better performance than
the Viola and Jones’ approach [4].

Machine learning algorithms are being employed as solution
for many problems, from commonplace situations such as
movie recommendation and product recommendation in shop-
ping websites to situations where there is some type of risk to
human life or to financial status of companies. For instance,
the IBM Watson 1 promises to help health professionals to
obtain fast answers for patient care. These intelligent systems
operate learning from data and producing decisions as output,
which can vary from relatively trivial to highly significant for
patient health and for company economy [8]. As these systems
are based on human data and they are becoming ubiquitous in
different applications for human activity, safety and fairness
concerns are arising. For, as human beings, algorithms are also
prone to biases which can turn their decisions unfair.

According to Nelson [9], bias is a reflex of: the data chosen
by programmers, approaches of combination and data wran-
gling, practices of model creation, methods of application and
interpretation of results. According to Suresh and Guttag [10],
the following types of bias are among the most important
described in literature:
(i) Historical bias occurs when real-world pre-existing bias

and socio-technical questions are infiltrated in the process
of data generation;

(ii) Representation bias occurs when the data selection for
model training misses important real-world elements. Due

1Available at https://www.ibm.com/cloud/ai, last access: June 25, 2021



to representation bias, the development sample underrep-
resents and, consequently, fails in the generalization to
production samples;

(iii) Measurement bias occurs during choice, collection, la-
belling and feature extraction for prediction problems.
The set of features and labels may leave out important
factors or insert noise which depends of the input and it
affects the performance;

(iv) Aggregation bias occurs during model construction,
when distinct populations are inadequately combined;

(v) Evaluation bias occurs during iteration and model eval-
uation, when test population or population of external
reference do not equally represent the many parts of
production population. Evaluation bias also occurs when
the performance metrics are not appropriate to the context
in which the model will be applied;

(vi) Learning bias occurs when modeling choices amplify
performance disparities in data with underrepresented
attributes;

(vii) Deployment bias occurs after the deployment of the
model when the system is inadequately used or inter-
preted.

In the context of decision making, fairness may be de-
fined as the absence of prejudice or partiality in relation
to a subject or group based on their inherent or acquired
characteristics [11]. Thus, an algorithm may be considered
unfair when the decisions are directed to a specific group of
people. To better understand how fairness-related failures are
incorporated to algorithms, Mehribi et al. [11] listed the main
types of discrimination as:

(i) Direct discrimination occurs when protected attributes
of subjects explicitly imply in unfavorable results to them;

(ii) Indirect discrimination occurs when people appear to
be treated based on apparently neutral and non-protected
attributes, but groups or protected subjects may still be
treated unfairly as a result of the implicit effects of their
protected attributes;

(iii) Systemic discrimination occurs when politics, customs
or behaviors that are part of the culture or structure of
an organization perpetuate the prejudice against certain
population subgroups;

(iv) Statistical discrimination occurs when the decision
makers use obvious (e.g. average statistics of a group) and
recognizable features of a subject as a proxy to hidden
features or to features more difficult to determine, which
could be more relevant to the aimed result;

(v) Explainable discrimination occurs when the differences
in the treatment and results among different groups may
be justified and explained by means of some attributes;

(vi) Unexplainable discrimination occurs when the preju-
dice against a group is unjustified and, therefore, consid-
ered illegal.

Although face detectors based on CNN have been exten-
sively studied, major visual variations of faces, such as occlu-
sions, pose and extreme illumination, are still challenging to
real world applications [12]. Furthermore, some researchers as

well as research agencies report that face detection systems are
prone to work differently for distinct demographic groups [13].

As CNN’s typically depend on large scale datasets, this may
be a bad stimulus to the yielding of biased and unfair systems,
because to adequately annotate large amounts of data is time
consuming and expensive. Unbalanced datasets, in which
there are historically underrepresented demographic groups,
are often used in the training stage of models, which perpetuate
the unfairness by inducing lower precision classification to the
underrepresented demographic groups. This systemic discrimi-
nation also occurs in labeling and annotation of datasets, where
the categories of race, ethnicity and gender are dynamic and
reflect cultural norms and subjective categorizations that may
lead to forms of scientific racism and prejudice [13].

Given that face detection applications have a direct effect
on people lives and may be highly harmful if not correctly
designed, it is important to evaluate and consider the fairness
of systems which use face detection [11].

In this paper, it was performed an analysis of the bias and
unfairness that may be present in the data sample selected for
training and/or in the evaluated face detectors. Some of the
metrics used to identify the existence of bias and unfairness
involved the verification of demographic parity, verification of
existence of false positive and/or false negative, rate of positive
prediction, and verification of equalized odds. Those metrics
are detailed in Section II.

II. METRICS TO MEASURE BIAS AND UNFAIRNESS

Recently, the interest on face detection applications in-
creased. Wójcik et al. [14] say that among the most important
reasons for that interest is the concern about public security
using applications such as: digital identity verification, facial
analysis, modeling techniques for multimedia data and digital
entertainment.

In the context of classification systems, in which the face
detection is inserted, the analysis of discriminatory results may
be performed by using metrics that evaluate the existence of
prejudice in such systems. The distributional group metrics
and error-based group metrics are the most applied for the
analysis of discriminatory results [15]. Table I describes the
most used metrics for bias and unfairness analysis. In addition
to the metrics presented in Table I, Mehrabi et al. [11] and
Saravanakumar [16] address other three, that are used for
fairness analysis: (i) demographic parity, (ii) equal opportunity,
and (iii) equalized odds.

The demographic parity or statistic parity proposes that the
proportion of each protected class segment receives positive
result in equal rates, avoiding the tendency of the model to
uneven prediction for a given label for any sensible group [11]
[16]. Mathematically, demographic parity requires a predictor
Ŷ satisfying demographic parity independently of the pro-
tected class, A, as in Equation 1.

P (Ŷ |A = 0) = P (Ŷ |A = 1) (1)

The equal opportunity proposes that each group should
obtain positive results in equal rates. The equal opportunity



TABLE I
METRICS FOR DETECTION OF BIAS AND UNFAIRNESS. ADAPTED FROM SALEIRO ET AL. [15]

Metrics Formula Description
False Discovery Rate FDRg = FPg/PPg = Pr(Y = 0|Ŷ = 1, A = ai) fraction of false positives in a group in the prediction of positives

of the group.
False Omission Rate FORg = FNg/PPg = Pr(Y = 1− Ŷ = 0, A = ai) fraction of false negatives of a group in the negatives predicted

from the group.
False Positive Rate FPRg = FPg/LNg = Pr(Ŷ = 1− Y = 0, A = ai) fraction of the false positives of a group in the labeled negatives

of the group.
False Negative Rate FNRg = FNg/LPg = Pr(Ŷ = 0− Y = 1, A = ai) fraction of the false negatives of a group in the labeled positives

of the group.
Predicted Positive PPg number of entities in a group in which the decision is positive,

Ŷ =1.
Total Predictive Positive K =

∑A=an
A=a1

PPg(ai)
total number of entities predicted as positive among the groups
defined by A.

Predicted Negative PNg number of entities within a group for which the decision is
negative, Ŷ = 0.

Predicted Prevalence PPrevg = PPg/ |g| = Pr(Ŷ = 1−A = ai) fraction of entities within a group that were predicted to be
positive.

Predicted Positive Rate PPRg = PPg/K = Pr(a = ai|Ŷ = 1) fraction of entities predicted as positive that belongs to a certain
group.

requires the positive result to be independent of the protected
class, A, conditioned to real positive Y , as in Equation 2.

P (Ŷ = 1|A = 0, Y = 1) = P (Ŷ = 1|A = 1, Y = 1) (2)

The equalized odds proposes that the model should correctly
identify the positive result in equal rates among the groups
(it is similar with equity of opportunity metric), but also it
should classify in equal proportion the false positives among
the groups. The equalized odds require the positive result to
be independent of the protected class, A, conditioned to a real
number Y , as in Equation 3.

P (Ŷ = 1|A = 0, Y = y) = P (Ŷ = 1|A = 1, Y = y),

y ∈ {0, 1}
(3)

After performing experiments, this research concluded that
the false negative, positive prediction and demographic parity
were the metrics with the most significant results for a detailed
analysis that is presented in Section IV.

III. MATERIALS AND METHODS

This section presents the software libraries used in this
research (III-A), the datasets and its handling (III-B), together
with the proposed methodology for analysing bias and fairness
in the context of face detection (III-C). Figure 1 contains the
flowchart of the proposed methodology, which comprises: data
extraction and preparation, face detection using the selected
approaches, estimation of face detection statistics, and analysis
of bias and equity based on the detector’s results.

A. Software libraries for the analysis of bias and fairness
Initially, three libraries were selected, namely: Aequitas 2,

AI Fairness 360 3 and Audit AI 4. These are all open source

2http://aequitas.dssg.io/, last access: Juny 24, 2021
3https://aif360.mybluemix.net/, last access: Juny 24, 2021
4https://github.com/pymetrics/audit-ai, last access: Juny 24, 2021
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Fig. 1. Flowchart of the proposed methodology.

tools designed to analyze labelled training data and machine
learning model predictions.

Fairness 360 is a toolkit, developed by IBM Research,
to examine, report and mitigate discrimination and bias in
machine learning models across the entire AI application
lifecycle [17].

Audit-AI is a Python library built on top of pandas5 and

5https://pandas.pydata.org/



sklearn6 tools, which implements impartiality-aware machine
learning algorithms. Developed by the team of data scientists
of the Pymetrics7 company, the tool is designed to measure and
mitigate the effects of discriminatory patterns on training data
and predictions made by machine learning algorithms trained
for the purposes of socially sensitive decision processes.

Aequitas is an AI systems auditing tool, which investigates
biased actions or results based on false or distorted inferences
about demographic groups [15]. Aequitas operates on a com-
mand line interface, which makes use of a specific Python
library, being able to load system data to be audited and
configure metrics for protected attribute groups. The tool then
generates bias reports according to what was configured by
the user [15].

Thus, it is possible to assess the performance of machine
learning models using various bias and fairness metrics, which
can assess the (i) risks of biased actions or interventions that
are not representatively allocated of the population and/or (ii)
biased outputs from actions or interventions that result from
the fact that the system is wrong about certain groups of
people [15].

To conduct the experiments in this study, it was observed
that the Fairness 360 and Audit AI tools are focused on miti-
gating prejudices and injustices, based on the implementation
of a model for that purpose, which is not the focus of this
study. The Aequitas library, on the other hand, has resources
aimed at auditing and performing a detailed data analysis.
Therefore, the Aequitas tool was selected because it meets
the objectives of the proposed study.

In Aequitas, disparities are calculated as a proportion of a
metric for an interest group, compared to a reference group
(which in this study is the majority group) [15]. Thus, for
example, the disparity in the false negative rate (FNR) for
females (interest group) in relation to males (majority group)
given by the quotient between FNRfemale and FNRmale.

Differences in calculated metrics are explained based on the
calculated disparity. The results are statistically significant at
the 5% level (default level applied by the tool). It should be
noted that the reference group always has a disparity equal to
1 (one). In this way, the other groups are displayed with at
least 0.1 and no more than 10 times the size of the reference
group.

B. Dataset
To conduct this study, the Casual Conversations dataset [18]

from Facebook AI, was used. This dataset was originally de-
signed to help researchers evaluate computer vision and audio
applications. It contains videos captured from a diverse set
of individuals, with varying age, gender, apparent skin tones
and ambient lighting conditions . The dataset is comprised
of over 45,000 videos (involving 3,011 participants), which
feature paid individuals who have agreed to participate in the
project and have explicitly provided age and gender labels.
The apparent skin tone and lighting attributes were labeled by
a group of human evaluators. Skin tone was assessed in the

6https://scikit-learn.org/
7https://www.pymetrics.ai/

Fitzpatrick scale [19], which is based on the skin’s reaction to
ultraviolet light. The scale ranges from Type I (light skin that
never tans, but always burns), to Type VI (very dark skin that
always tans, but never burns). In this research, we adopted the
same age ranges present in the dataset, which roughly leads a
balanced distribution: age (46-85: 29.8%, 31-45: 32.5%, 18-
30: 35.6%, N/A: 2.1%); gender (Female: 54.5%, Male: 43.4%,
N/A: 2.1%).

Data from about 365 different individuals were randomly
selected, resulting in approximately 5,500 videos (12%) to
compose the data sample used in our evaluations. From
each video, an average of 100 frames was extracted. The
frame extraction was systematically performed: one frame was
extracted for each 20 frames in the sequence until 100 frames
were extracted for each video. However, some videos had an
insufficient duration, which prevented the extraction of the full
set of 100 frames. For those videos, the number of extracted
frames was limited to the multiples of 20 frames found in the
sequence. The final set of extracted frames was composed of
550,000 frames.

C. Face Detectors

Among the various facial detectors proposed in the literature
and that have their implementation publicly available, five
were used in this study. The main selection criterion was the
time spent for inference. The training stage of the detectors
was not considered in our experiments, thus pre-trained models
were used.

One of the detectors used in this paper was the DSFD
facial detector proposed by Jian Li et al. [12]. It is based on
the Single Shot MultiBox Detector (SSD), by Wei Liu et al
[6]. The face detector architecture contains a Feature Enhance
Module (FEM) to strengthen the original feature maps and
thus extend the single-shot detector to the double-shot detector.
In addition, the concept of Progressive Anchor Loss (PAL)
is introduced to improve the learning process by taking into
account two different sets of anchors. Finally, an Improved
Anchor Matching (IAM), integrating a new anchor assignment
strategy with data augmentation, is introduced to provide a
better initialization for the regressor. Extensive experiments
on popular benchmarks, such as WIDER FACE [20] and
FDDB [21], demonstrate the superiority of DSFD over existing
state-of-the-art face detectors.

The RetinaFace face detector [22] is presented as a robust
single-stage facial detector that performs pixel-wise face local-
isation on various scales by means of a set of feature pyramids
with independent context modules. The detector takes advan-
tage of joint extra-supervised and self-supervised multi-task
learning. In the WIDER FACE hardware test suite, RetinaFace
outperforms the best Average Accuracy (AP) results by 1.1%
(reaching AP equal to 91.4%).

The RetinaFace [22] model was originally implemented
with the ResNet152 architecture framework and was based
on MXNet architecture. However, the experiments conducted
in this work used a reimplementation of RetinaFace with the
TensorFlow framework, built on top of the ResNet50 architec-
ture. Although the original and modified models have different



structures, the implementation with TensorFlow presents a
similar performance when compared with the one based on
MXNet, achieving only 1% less precision than the original
implementation in the validation stage with the WIDERFACE
database [20] in the easy and medium subsets, and 2% in
the difficult. This implementation was chosen because it had
simplest configuration and usage for the inference task and
presented faster execution time.

Xu Tang et al. [7] proposed a new context-assisted single-
shot face detector called PyramidBox. Their work improves
the use of contextual information in the following three as-
pects. First, a new context anchor is designed to supervise the
learning of high-level contextual features by a semi-supervised
method called Pyramid Anchors. Next, the Low-level Feature
Pyramid Network is proposed to properly combine high-level
context semantic elements and low-level facial elements, thus
allowing the PyramidBox to predict faces at different scales
in a single scene. Furthermore, a context-sensitive structure is
presented to increase the capacity of the prediction network
and, thus, to improve the accuracy of the final predictions.
Finally, the data anchor sampling method is used to extend
the training samples at different scales, which increases the
diversity of training data for smaller faces. Among the various
publicly available implementations, the latest stable version of
the original implementation maintained with the PaddlePaddle
framework8 was used.

Another detector used in our study was the Light and Fast
Face Detector (LFD) based on the work proposed by He et
al. [23], being presented only as an evolution of the Light and
Fast Face Detector for Edge Devices (LFFD) detector. LFD is
implemented with the PyTorch framework and has code-level
modifications that improve inference time and latency. LFD
is free of anchors and belongs to the single stage category
of face detectors. During development, the importance of
the receptive field (RF) and effective receptive field(ERF)
in the face detection task was reviewed, since the RF’s of
neurons in a given layer are regularly distributed in the input
image and these RFs are naturally implicit anchors. Combining
these RF anchors and appropriate RF strides, the proposed
method can detect a wide range of continuous facial scales,
with 100% coverage, in theory. Insightful understanding of
the relationships between ERF and face scales motivated an
efficient framework for single-stage detection. The architecture
is structured into eight common detection branches and layers,
which improves algorithm efficiency.

We also investigated the MTCNN face detector proposed
by Kaipeng Zhang et al. [24], which has a deep cascading
multitasking structure and exploits the inherent correlation
between face detection and alignment in an unrestricted envi-
ronment that is challenging due to various poses, illuminations
and occlusions. The model adopts a cascade structure with
three stages of carefully designed deep convolutional neural
networks that predict the location of the face and reference
point in an approximate way. In addition, in the learning
process, a new online sample mining strategy that can automat-

8https://github.com/PaddlePaddle/Paddle

ically improve performance without manual sample selection
was also proposed. All detectors adopted in this study were
validated by their respective authors with the validation set of
the WIDER FACE dataset [20], widely used and considered
as a reference for face detection applications.

We used the following information obtained from the output
of the aforementioned detectors: bounding box coordinates
of faces found in an image as well as the confidence score.
Knowing that all extracted images had at least one face, in
order to facilitate data handling in the analysis of bias and
injustice with the Aequitas library, a post-processing step took
place, as explained next. Whenever the bounding boxes of
multiple face detections within a single frame presented an
intersection of 50% or less, we assumed as a true positive
only the bounding box with highest detection confidence score.
The remaining bounding boxes (presenting smaller confidence
scores) were counted as false positives. In the case of no face
being detected in a frame, the true positive and false positive
counts were set as zero for that image. Finally, in the case of
a single face being detected in a frame (or multiple detections
with an intersection higher than 50%), the true positive counter
for that image was set to one and the false positive counter
was set to zero.

All detectors adopted in this study were validated by their
respective authors with the validation set of the WIDER FACE
dataset [20], widely used and considered as a reference for face
detection applications.

IV. ANALYSIS AND DISCUSSION OF RESULTS

This section presents the main results obtained from the
experiments performed, which involved the use of bias and
fairness analysis metrics. Among the metrics presented in the
section II, group distribution metrics and error-based group
metrics were addressed, in addition to demographic parity
(statistics). As mentioned in the previous section, five face
detectors were evaluated: Retina Face, DSFD, LFD, Pyramid-
box e MTCNN. The objective of evaluating those detectors is
to verify if they present some type of bias or unfairness. Three
categories of attributes were analysed in the dataset: gender,
age and skin tone.

First, face detection rate was evaluated for the categories of
mentioned attributes. For age, data were classified in three
groups: Group 1 (subjects between 18 and 30 years old),
Group 2 (subjects between 31 and 45 years old), and Group
3 (subjects between 46 and 85 years old). For skin tone, as it
was described in Subsection III-B, the Fitzpatrick scale was
applied.

From the results presented by the face detectors, it is
possible to verify that the five face detectors presented a
highest risk of not detecting faces from the female gender
and from the age category number 3 (which corresponds to
people between 46 and 85 years old).

For skin tone, apparently, the LFD, DSFD and RetinaFace
detectors had the skin tone group 4 as that with highest risk
of not have detected faces (score = 0). The Pyramidbox face
detector had the skin tone group 2 as that with highest risk,
although the group 4 also had a high risk rate. The MTCNN



face detector had the group 6 with the highest risk of not
detecting faces, followed by group 2.

Among the analysed attributes, one may observe that the
apparent skin tone presented the highest divergence of face
detection results. It must be emphasized that, although there
is divergence, the skin tone groups number 4 and 6, related
with dark skin in the Fitzpatrick scale, are the groups pointed
out with highest risk of faces not being detected for 4 of the
5 evaluated face detectors.

A. Levels of Disparity

The software library Aequitas allows to evaluate trends in
all subgroups of the datasets by means of a confusion matrix
for each subgroup. The confusion matrix provides important
metrics to evaluate the performance of a classification algo-
rithm, such as: false positive rate, group prevalence, and false
omission rate.

The graphics in Figure 2 show the group absolute met-
rics for the False Negative Rate (FNR) computed with each
attribute, for each face detector. The color is based on the
magnitude of the absolute metric (computed using the number
of samples in the attribute group). Darker color indicates
higher rate. After a preliminary analysis, only the metrics
that presented significant differences (those which presented
disparity levels higher or lower than the reference group) were
selected for detailed discussion in this paper.

It may also be observed in Figure 2 that for attribute ”age
cat” the RetinaFace, Pyramidbox and DSFD detectors had the
age group 1 (subjects between 18 and 30 years old) as the
more prone to incorrect detection (when the detector is not
capable of detecting faces). In this case, the false negative
rate (FNR) was 0.21, 0.20 and 0.15 respectively. The LFD
and MTCNN face detectors had the age group 3 as the most
prone to not detect faces, with false negative rates of 0.22 and
0.28, respectively.

For the gender attribute, Pyramidbox, DSFD and LFD
detectors did not present differences in false negative rates.
For those classifiers, both genders male and female have the
same probability of being incorrectly classified (face not de-
tected). On the other hand, Retina Face and MTCNN presented
results that indicates that the male gender has highest risk of
incorrect detection, with false negative rates of 0.19 and 0.31,
respectively.

The highest divergence among the detector results was for
skin tone. For Retina Face and DSFD, the skin tone type 5
was the pronest to be incorrectly classified (face not detected),
with false negative rates of 0.21 and 0.15, respectively. The
Pyramidbox had the skin tone type 2 as the pronest to be
incorrectly classified. The MTCNN had the skin tones type 6
and type 2 as the pronest, with results of false negative rate
of 0.34 and 0.33, respectively. The LFD had the skin tone
type 1 as the pronest to misclassification, with false negative
rate of 0.24. Thus, one may observe that 3 out of 5 detectors
presented results with high probability of incorrect detection
for dark skin tones (types 5 and 6).

For the Positive Predictive Rate, for all detectors, the
attributes age, skin tone and gender obtained similar results. In

all cases, the age group 3 (subjects between 46 and 85 years
old) are positively predicted more frequently than the other two
age groups (PPR: 0.41), the skin tone 4 (PPR: 0.22) and the
female gender (PPR: 0.52) had the highest positive predictive
rates. The single observed difference was the MTCNN detector
that obtained a PPR higher than the other detectors for the
female gender (PPR: 0.56).

B. Levels of Equity

The level of equity was computed to measure the fairness
of the face detector results for each model. Fairness was
computed for a reference group (majority group), which will
have a disparity of 1.0. As well as in the bias analysis, a
previous analysis of the fairness (parity) results was performed
and two metrics were selected for a more detailed analysis:
False Negative Rate and Positive Predictive Rate. The graphics
in Figures 3, 4 and 5 show the absolute group metric of the
Positive Predictive Rate disparity. The colors are based on the
fairness determination for each attribute group (green = ’True’,
red = ’False’).

In Figures 3, 4 and 5, one can see that, for all face detectors,
the female gender, age group 3 and skin tone 4 received fair
detections. However, those are the reference groups, and this
shows that the models are not fair in terms of statistical parity
with anyone of the other groups. It should be noted that the
MTCNN detector results differ only in skin tone results, in
this case, the MTCNN was considered not fair for skin tones
5 and 1.

The results for absolute parity of the FNR metric are
presented in Figure 6. The green color indicates that the
DSFD and LFD detectors were considered fair for all attribute
groups analyzed. The RetinaFace detector was not considered
fair in relation to statistical parity only for age group 1.
For skin tone results, the groups 2 and 5 were considered
unfair for Pyramidbox detector and the groups 1, 3 and 4
were considered unfair for MTCNN detector. The results
for the male gender obtained by the MTCNN detector were
considered unfair. Considering the analyzed metrics, one can
infer that the detectors presented some type of unfairness in
their results related with at least one group of attributes. The
most common attributes that presented unfair results were skin
tone and age.

V. CONCLUSION

Considering the fact that face detection is the first step for
any facial image processing, if this step is contaminated with
bias or unfairness all the following steps will be affected. The
analyses performed on face detection results presented in this
paper sheds some light on the issues of bias and unfairness
in facial biometrics. This paper contributes a methodology to
objectively assess those issues in a context that can be easily
extended to other pattern recognition problems.

Five face detectors were analyzed considering three types
of sensitive attributes: age, skin tone and gender. In all cases,
for all detectors, at least one category of attribute received
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Fig. 2. False Negative Rate (FNR) and Positive Predictive Rate (PPR)
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Fig. 3. Predicte Positive Rate (PPR) - Retina Face, Pyramidbox and DSFD.

a treatment, in terms of face detection, considered unfair or
biased. This should raise concerns in the facial biometrics
community at least to evaluate their models to verify the
existence of bias and unfairness before freely distribution or
commercial usage. The effort to eliminate bias and unfairness
from machine learning models should be accepted by all
researchers as a way of cutting the perpetuating process of
discrimination and injustice.

A direction for future work would be the development of
methods for bias and unfairness mitigation in face detection

0.0 0.2 0.4 0.6 0.8 1.0
Absolute Metric Magnitude

gender

skin_type

age_cat

Female (Num: 295,094), 0.52
Male (Num: 229,101), 0.40

1 (Num: 77,851), 0.13
2 (Num: 94,901), 0.16
3 (Num: 99,722), 0.17

4 (Num: 126,033), 0.22
5 (Num: 83,889), 0.15
6 (Num: 84,674), 0.15

1 (Num: 149,258), 0.26
2 (Num: 184,415), 0.33

3 (Num: 233,397), 0.41

Fig. 4. Positive Predictive Rate (PPR) - LFD.

models. One direct method should be the curating of datasets.
However, the model retraining may be expensive, and the
researcher should create methods for mitigating bias and
unfairness as a post-processing, without the necessity of model
retraining. One possibility for that may be inspired by the
application of Causal Inference for bias selection [25].
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