
ConformalLayers: A non-linear sequential neural
network with associative layers

Eduardo Vera Sousa, Leandro A. F. Fernandes, Cristina Nader Vasconcelos
Instituto de Computação, Universidade Federal Fluminense (UFF)

Niterói, Rio de Janeiro, Brazil – ZIP 24210–346
Email: {eduardovera, laffernandes, crisnv}@ic.uff.br

Abstract—Convolutional Neural Networks (CNNs) have been
widely applied. But as the CNNs grow, the number of arithmetic
operations and memory footprint also increase. Furthermore,
typical non-linear activation functions do not allow associativity
of the operations encoded by consecutive layers, preventing
the simplification of intermediate steps by combining them.
We present a new activation function that allows associativity
between sequential layers of CNNs. Even though our activation
function is non-linear, it can be represented by a sequence of
linear operations in the conformal model for Euclidean geometry.
In this domain, operations like, but not limited to, convolution,
average pooling, and dropout remain linear. We take advantage of
associativity to combine all the “conformal layers” and make the
cost of inference constant regardless of the depth of the network.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are a type of neural
network that have become popular in many areas with remark-
able accuracy, including Computer Vision. As the network
gets, however, higher is the number of operations to perform,
and more memory is required for both training and inference.

To make inference, a cheaper operation has become an
active topic of research. The primary strategies for accomplish-
ing this are compressing the networks [1]–[6], or exploring
data organization to fit hardware specificities [7]–[10]. But
the former strategy leads to modifications to the original
architecture. The latter depends on the hardware.

An interesting strategy for simplifying sequential layers
of the CNNs would be the combination of adjacent layers
by associativity. This idea would not change the network’s
architecture and, in the limit, all layers would be combined
into a single operator to be applied to the input data. In this
paper, the term associativity refer to the mathematical property
of a binary operation ◦ on a set S to satisfy the associative law:

(x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ S. (1)

The idea of exploring operations’ associativity to reduce
computational costs has been widely explored in other areas,
like computer graphics, for example. Unfortunately, compos-
ing layers considering existing artificial neural networks is
only applicable to sequences of associative operations like
convolutions and averages, since typical activation functions
turn the layers of sequential networks non-associative.

This work presents a non-linear and differentiable activation
function called ReSPro, which stands for Spherical Reflection,

Scaling, and Projection. By representing the input data and any
map of features produced by the network as points encoded
as vectors in the conformal model for Euclidean geometry,
ReSPro turns into a sequence of linear transformations in the
conformal domain. By adding only one more coefficient to
the input data, some linear transformations behave like non-
linear, and become suitable as activation function in CNNs.
ReSPro and typical operations like convolution, average pool-
ing, dropout, flattening, padding, dilation, and stride can be
encoded as rank-2 or rank-3 tensors whose product satisfies the
associative law (1). We call ConformalLayers the conformal
embedding of sequential layers of CNNs comprised of those
operations. By associativity, one sparse matrix and one sparse
rank-3 tensor computed after training are enough to encode a
sequential CNN made up of any number of conformal layers,
making the cost of inference remains constant.

The reduced number of operations required for operating the
matrix and the rank-3 tensor resulting from the Conformal-
Layers with the input data makes our approach well-suited
for processing a large number of images, even in devices
with limited storage and computational capabilities. To fully
explore the advantages of ReSPro and the ConformalLayers,
we built a library on top of PyTorch. Such a framework allows
the associativity between the sequential layers of CNNs and
covers both training and inference processes.

Fig. 1 depicts the differences of inference time of the tradi-
tional implementation of a non-associative CNN (D3ModNet)
and a similar network implemented using ConformalLayers
(D3ModNetCL). The non-associative approach is limited to
process 14K images simultaneously on an NVIDIA GTX 1050
Ti (orange line with circles). The ConformalLayers, on the
other hand, was able to process 89K images simultaneously
on the same hardware (blue line with circles). The orange
crosses beyond the limitations of D3ModNet extrapolates its
memory and execution times capabilities just for comparison.

Our main contributions can be summarized as:
• A new non-linear and differentiable activation function;
• The first approach for sequential layers of CNNs where

the linear and non-linear layers are associative;
• The analysis of the accuracy of conventional CNNs

against similar CNNs with ConformalLayers; and
• The analysis of the computational performance of con-

ventional CNNs against similar CNNs with Conformal-
Layers considering the number of layers and batch size.



II. RELATED WORK

We group the related works into activation functions, neural
network compression, and computationally-efficient CNNs.

Activation Functions: The sigmoid and hyperbolic tan-
gent are S-shaped activation functions [11]. While the sigmoid
may lead to time convergence issues, the hyperbolic tangent
mitigates this problem. ReLU [12] provides three main ad-
vantages over the hyperbolic tangent: eliminate the problem of
vanishing gradient (common in S-shaped functions), add some
sparsity to the data, and is computationally simple, although
it can map many inputs to zero, preventing the network from
learning. GeLU [13] is a non-monotonic non-linear activation
function that weights the input by the standard Gaussian
cumulative distribution function. Although it is slightly costly,
it can provide similar or better results than ReLU. Swish [14]
is another non-monotonic activation function that outperforms
ReLU-like functions, but with higher computational cost.

To the best of our knowledge, all non-linear activation func-
tions described in the literature are non-associative with linear
operations typically used in CNNs. Therefore, they prevent the
combination of sequential layers through associativity.

Neural Network Compression: Denton et al. [1] post-
process the trained neural networks to iteratively compress
each layer and then fixing the accuracy, which presented a 2×
speedup at the cost of 1% of accuracy.

Hubara et al. [2] presented a network model using binariza-
tion, allowing binary operations instead of products during the
inference by the cost of a small percent of accuracy [3].

The lottery ticket hypothesis was postulated by Frankle and
Carbin [4]. They state that training a neural network with
random weights will most likely provide good results. Still,
probably there is a sub-network that is trainable with lower
cost and fewer parameters, while providing similar results.
Zhou et al. [5] used masking criteria to assess which weights
should be pruned in this approach.

By partitioning the set of convolutional filters and using
these sets as inputs for an auxiliary neural network, Omidvar et
al. [6] generated reusable filters, reducing the number of
network parameters. Tetko [15] presented an ensemble of
neural networks and k-NN which uses the distance between
the predicted data and the ground truth to improve the predic-
tion by adjusting the bias on the networks. Both approaches
are called “associative” but its important to emphasize that
associativity in this paper is related to the property in (1).

The neural network compression techniques discussed here
seek to find different networks from those proposed initially
or assume less precise data types. We state that it is possible
to improve computational performance by combining layers
of the network without changing its architecture, as long as
an activation function that allows associativity is adopted.

Computationally-Efficient CNNs: YOLO [16] and
SqueezeDet [17] are popular real-time CNNs for object
detection and classification. While the former is for general
purpose, the latter is tailored to autonomous driving.

Fig. 1: Inference times for the D3ModNetCL, a CNN whose
feature extraction is implemented with ConformalLayers, and
the D3ModNet, its counterpart with non-associative layers.

Alwani et al. [7] leveraged caching aspects in hardware
accelerators by observing that each point of a hidden layer
depends on a specific region of the input.

MobileNets [8] and EfficientNets [9] are approaches that
change the size of a model to fit a resource budget. While
the first rely on model depth and image resolution to handle
devices with limited capacity, the latter proposes a compound
parameter to scale the neural network. In [10], a RNN-based
pooling layer is presented to perform data down-sampling as
a solution to RAM and energy problems in edge devices.

III. CONFORMALLAYERS

In this section, we deep dive into the formulation and imple-
mentation of the ReSPro function and the ConformalLayers.

A. ReSPro

Without loss of generality, we consider that the input
and output data of the function are finite points in a
multidimensional Cartesian space. Each coordinate of these
points corresponds to a coefficient of the data. For example,
a feature map with 10× 10 pixels and 3 channels is a
point x = (x1, x2, · · · , xd) with d = 10× 10× 3 = 300 co-
ordinates, which after being transformed by ReSPro maps to
y = (y1, y2, · · · , yd). The x-to-y mapping involves one non-
linear and two linear transformations applied to x. Fig. 2
illustrates the step-by-step mapping performed by ReSPro. For
sake of simplicity, we assume d = 1 in this example.

Let z and x be two points lying on the ed axis (Fig. 2a), dis-
tant, respectively, α and δ units from the origin, for 0 ≤ δ ≤ α.
In Fig. 2b, we deliberately added the extra dimension ed+1 to
the Cartesian space and placed the hypersphere S (a circle, in
this example) with radius α and center c = (0, α). In this new
space, z = (zd, zd+1) = (−α, 0) and x = (xd, xd+1) = (δ, 0).
The addition of the dimension ed+1 to the Cartesian coordinate
system is key for defining the non-linear transformation in
ReSPro as the spherical reflection of points on S. In Fig. 2b,
the spherical reflection maps z and x to, respectively, z′ and x′.

Spherical reflection causes points outside the hyperspherical
mirror to produce images inside the mirror. The distance of
the imaged point to the center of the hypersphere decreases
non-linearly as the distance of the original point to the center
increases. Notice in Fig. 2b that the distance between points
z′ and c is smaller than the distance between x′ and c since z



is more distant from c than x. At the limit, points at infinity
map to c, while points on the hypersphere remain unchanged.
By construction, we do not have to care about the reflection of
points inside the hyperspherical mirror because S is tangent
to the space spanned by {e1, e2, · · · , ed}, and all input points
lie in this space (i.e., the coordinate for ed+1 is zero).

Two linear transformations are applied after spherical reflec-
tion. The first is isotropic scaling by a factor of 2/α, illustrated
in Fig. 2c, which maps z′ and x′ to z′′ and x′′, respectively.
The second transformation is the orthogonal projection to the
original d-dimensional Cartesian space. As can be seen in
Fig. 2d, z′′ projects to (−1, 0) while x′′ projects to y = (yd, 0).
The reasoning for performing scaling followed by projection
is to map points that are α units away from the origin of the
Cartesian space (e.g., z) to points 1 unit away from the origin.
The projection also makes the coordinate associated with the
extra dimension ed+1 equal to zero, which can be removed
from the resulting point since it is constant.

Formally, ReSPro is a mapping

f : x→ y, subject to ‖x‖2 ∈ [0, α] and ‖y‖2 ∈ [0, 1] , (2)

where x, y ∈ Rd are, respectively, the input and output data
represented as points, and ‖p‖2 denotes the L2-norm of p.

Fig. 3 depicts the output of ReSPro for points x = (x1, x2)
in R2 with α = 3. Notice that the disc shape is due to the
region where the function is defined, i.e., ‖x‖2 ∈ [0, α].

ReSPro is non-linear, differentiable, invertible, and associa-
tive to linear function typically used in CNNs. The verification
of the first three properties is straightforward. We demonstrate
the last property in Section III-C. In addition, ReSPro is a
global activation function. In practical terms, it means that,
differently from other activation functions which perform per
element transformation, ReSPro activates all the elements
simultaneously. This is equivalent to have element-wise ac-
tivation followed by the normalization to ensure ‖y‖2 ∈ [0, 1].

B. Tensor Representation of ReSPro

We use the geometric algebra of the conformal model for
Euclidean geometry [18] to perform spherical reflection as
orthogonal transformation (hence, a linear transformation) and
combine it to isotropic scaling and orthogonal projection.
The representational space of the conformal model has two
extra dimensions and a degenerate metric [18]. The (d+ 1)-
dimensional Cartesian space used in Section III-A is em-
bedded in a (d+ 3)-dimensional space with basis vectors
{e1, e2, · · · , ed+1, eo, e∞}. The extra dimensions eo and e∞
are geometrically interpretable as the point at the origin and the
point at infinity, respectively. In the conformal model, a finite
point with coordinates p = (p1, p2, · · · , pd, pd+1) is encoded
by the (d+ 3)-dimensional vector:

P = γ

(
p1, p2, · · · , pd, pd+1, 1,−

1

2

d+1∑
i=1

(pi)
2

)ᵀ

, (3)

where ᵀ denotes matrix transposition and the scalar γ 6= 0 does
not change the practical interpretation of P as the point p.

(a) Data is encoded as points in a d-dimensional Cartesian space.
Here, d = 1 and the input data are points z and x.

(b) Spherical reflection on the sphere S with center c and radius α
produces z′ and x′. The dimension ed+1 was added to the Cartesian
space to make S tangent to the original Rd space.

(c) Using isotropic scaling, points z′ and x′ are mapped to z′′ and x′′.

(d) The final projection maps z′′ and x′′ to the original Rd space.

Fig. 2: Mapping performed by the ReSPro function.

The algebraic manipulation that takes the ReSPro function
from its formulation in geometric algebra to tensor algebra is
quite involved. Due to space restrictions, it is presented in the
Supplementary Material. Here, it is sufficient to show that a
d-dimensional point x = (x1, x2, · · · , xd) encoding input data
will be represented by the (d+ 1)-dimensional vector:

X = (x′1, x
′
2, · · · , x′d, x′o)

ᵀ , (4)

such that xi = x′i/x
′
o and x′o 6= 0, for i ∈ {1, 2, · · · , d}. Vector

X is mapped to Y by the ReSPro function as:

Y = (y′1, y
′
2, · · · , y′d, y′o)

ᵀ

=

(
x′1, x

′
2, · · · , x′d,

α

2
x′o +

1

2α

d∑
i=1

(x′i)
2

)ᵀ

, (5)

such that yi = y′i/y
′
o and y′o 6= 0, for i ∈ {1, 2, · · · , d}.



In (4) and (5), X and Y are simplified version of P (3).
They do not include the coefficient related to ed+1, since
this coefficient is always zero (see Section III-A), nor the
coefficient related to e∞, because it can be computed from
the other coefficient. The x′o and y′o coefficients are related to
the basis vector eo and act as homogeneous coordinates.

The tensor representation of ReSPro applied to X is ob-
tained by rewritten (5) as:

Y = (y′1, y
′
2, · · · , y′d, y′o)

ᵀ
= (FM + FTX)X , (6)

where

FM =


1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
0 · · · 0 α

2

 and FTX =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
x′
1

2α · · · x′
d

2α 0

 .

FM is a (d+ 1)× (d+ 1) diagonal matrix, and FT is a rank-
3 tensor of size (d+ 1)× (d+ 1)× (d+ 1) filled with zeros,
except for the slice at the bottom, which is the diagonal matrix:

FT [d+1] =


1
2α · · · 0 0
...

. . .
...

...
0 · · · 1

2α 0
0 · · · 0 0

 .

C. Tensor Representation of ConformalLayers

Recall that X in (6) represents a finite point x ∈ Rd, whose
coordinates are the coefficients of some feature map produced
by some CNN layer. It is well known that linear function
typically used in layers and their configurations can be written
in matrix form and applied to vectors by matrix multiplication.
For instance, Toeplitz matrices encode n-dimensional discrete-
time convolutions and can be modified to encode valid cross-
correlation [11]; average pooling is the mean filter [19], a
particular case of convolution with constant weights; and
configurations such as padding, dilation, and stride can be
encoded by matrices composed of zeros and ones (see the Sup-
plementary Material). By writing these and other operations in
the matrix form, the associativity of the matrix product allows
the composition of operations to produce matrices U which,
when multiplied by a vector X , produce the vector Z = UX
representing the output of linear layers. By replacing X in (6)
by Z and combining U with FM and FT , we write:

Y = L(X) = (FM + FT (UX)) (UX)

= (FMU + (UᵀF ᵀ
TU)ᵀX)X ,

(7)

where L is the conformal layer function, a sequence of linear
operations applied to X , followed by the application of the
ReSPro activation function. Here, ᵀ denotes the transposition
of the first two dimensions of tensors and matrix transposition.

In CNN architectures, it is typical for linear layers and
activation functions to be interspersed. A sequence of k
conformal layers applied to X can be written as:

Y (k) = L(k)(L(k−1)(L(k−2)(· · · ))), (8)

Fig. 3: The non-linear mapping produced by ReSPro. The
surfaces in (a) and (b) show, respectively, the coordinates y1
and y2 of points y resulting from applying ReSPro to points
x = (x1, x2). Here, we assume α = 3, i.e., ‖x‖2 ≤ 3.

where L(0) = X . In L(l), the upper index identifies the l-th
conformal layer, X =

(
x′1, x

′
2, · · · , x′din

, x′o
)ᵀ

encodes the in-

put data x ∈ Rdin , and Y (k) =
(
y
′(k)
1 , y

′(k)
2 , · · · , y′(k)dout

, y
′(k)
o

)ᵀ
encodes the output y ∈ Rd

(k)
out , whose actual coordinates can

be computed as yj = y
′(k)
j /y

′(k)
o , for j = {1, 2, · · · , d(k)out }.

We expand (8) to model a sequence of k conformal layers
applied to X using tensor form:

Y (k) =
(
L
(k)
M + L

(k)
T X

)
X , (9)

where

L
(k)
M = F

(k)
M U (k)F

(k−1)
M U (k−1) · · ·F (1)

M U (1) (10)

is a (d
(k)
out + 1)× (din + 1) sparse matrix, and

L
(k)
T =

k∑
l=1

(
F

(k)
M U (k)F

(k−1)
M U (k−1) · · ·F (l+1)

M U (l+1)
)

(
U (1)ᵀU (2)ᵀ · · ·U (l)ᵀF

(l)ᵀ
T U (l) · · ·U (2)U (1)

)ᵀ
(11)

is a tensor of size (d(k)out + 1)× (din + 1)× (din + 1) filled with
zeros, except for the slice at the bottom, which is a sparse
(din + 1)× (din + 1) matrix. The Supplementary Material in-
cludes the algebraic manipulation that turns (8) into (9).

Notice that the L
(k)
M and L

(k)
T components of (9) do not

depend on the input data X , and they encode a complete
sequence of k conformal layers. Therefore, after the weights
of the CNN be adjusted through the training process, L(k)

M

and L
(k)
T can be computed once by associativity using (10)

and (11), and applied afterward to any X to perform inference.

D. Implementation of ConformalLayers

We have implemented ConformalLayers as an nn.Module
of PyTorch 1.81. The cl.ConformalLayers module be-
haves like an nn.Sequential module, and its current
version accepts submodules that mimic the behavior of
nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.AvgPool1d,
nn.AvgPool2d, nn.AvgPool3d, nn.Dropout, and
nn.Flatten, in addition to the cl.ReSPro module.
The configuration of existing modules includes stride, zero
padding, and dilation whenever necessary.

1Source code at https://github.com/Prograf-UFF/ConformalLayers/



Fig. 4 shows the algorithm of the forward function im-
plemented by cl.ConformalLayers. During the training
process, the cl.ConformalLayers module uses the native
PyTorch implementation of supported submodules to compose
the network (line 5). The only exception is the cl.ReSPro
module, which is implemented according to (5), and the com-
putation of the coefficient y′(k)o in all submodules. Once the
training process is completed, the cl.ConformalLayers
module builds an internal cache containing the sparse matrix
L
(k)
M (10) and the sparse matrix representing the slice at the

bottom of L(k)
T (11). This cache has to be updated only if the

user decides to retrain the conformal layers (see lines 4, 9, and
10). As the value of y′(k) can be different from 1, the result of
applying the sequence of submodules to the input data needs
to be divided by y′(k) to obtain the correct interpretation of the
output data (lines 6 and 16). Due to the sparse nature of L(k)

M

and L
(k)
T , the expression in line 15 is evaluated using only

two sparse matrix-vector multiplications, one dot product of
vectors, one addition, and one multiplication.

The calculation of sparse tensors U (l) used in the compu-
tation of L(k)

M and L(k)
T is implemented using the Minkowski

Engine library2 as PyTorch 1.8 does not implement the appli-
cation of its neural network modules on sparse tensors. The
trick used to convert a sequence of linear operations into an
U (l) matrix is transforming a sparse identity tensor I(l) by the
Minkowski Engine modules that we adapted to behave like
PyTorch modules. I(l) is built by stacking a sequence of d(l)in
sparse tensors along the first (batch) dimension. Each of the
stacked tensors has the volume expected as input to the l-th
sequence of linear operations and includes a single 1 entry
identifying which coefficient of the input data is represented
by this tensor. The resulting sparse tensor has size d(l)in × d

(l)
out,

which correspond to the transposed version of matrix U (l).
The module cl.ReSPro accepts the user to explicitly enter

the value of its α(l) argument while defining the network
architecture or leave it for the cl.ConformalLayers
module estimate the α(l) value. For doing so, we need to
keep the tracking of the maximum distance from the origin
the point interpretation of the result of the linear operations in
the l-th conformal layer may have. Before applying the U (l)

matrix (which encodes the linear operations), it is reasonable
to assume that the L2-norm of the layer’s input point is 1,
as long as we set the x′o coordinate of the input data to the
Euclidean distance of x to the origin (line 2 in Fig. 4). By
doing so, all input vector X will encode a point 1 unit away
from the origin, and, by definition, the vector resulting from
the application of ReSPro in the previous layer (i.e., Y (l−1),
for l > 1) encodes points distant up to 1 unit from the origin.

But after applying U (l), the maximum distance of the point
given to the cl.ReSPro module may change from 1 to any
value, depending on the composition of U (l). Therefore, our
implementation needed to deal with each case, progressively
updating the maximum distance as the upper limit for the L2-
norm that each operation may produce. In the end, α(l) is set

2Minkowski Engine: https://github.com/NVIDIA/MinkowskiEngine

Require: input, a tensor representation of the input data
1: x← input reshaped as a point with din coordinates
2: x′

o ← ‖x‖2
3: if this cl.ConformalLayers module is in training then
4: Set the cache as invalid
5: output, y

′(k)
o ← the tensor and the extra coefficient resulting from

processing input and x′
o using the sequence of submodules

6: output← output/y
′(k)
o

7: else
8: if the cache is invalid then
9: Compute and store L

(k)
M and L

(k)
T in the cache

10: Set the cache as valid
11: else
12: Get L(k)

M and L
(k)
T from the cache

13: end if
14: X ←

(
x1, x2, · · · , xdin , x

′
o

)ᵀ
15: Y (k) ← (L

(k)
M + L

(k)
T X)X

16: y(k) ← (y
′(k)
1 , y

′(k)
2 , · · · , y′(k)dout

)/y
′(k)
o

17: output← y(k) reshaped as the expected output data
18: end if
19: return output

Fig. 4: The cl.ConformalLayers’s forward function.

to the upper limit of the distance between points emitted by
the last operation in U (l) and the origin of the Cartesian space.

For nn.AvgPoolNd, nn.Dropout, and nn.Flatten,
the upper limit for the distance of the resulting point to
the origin is equal to the upper limit given as input. For
nn.ConvNd without bias, the Young’s inequality [20] defines
the boundaries of the convolution operator ∗ as:

‖g ∗ h‖r ≤ ‖g‖p ‖h‖q , subject to
1

p
+

1

q
=

1

r
+ 1, (12)

where g and h denote two discrete signals, and ‖·‖t denotes
the Lt-norm. In our case, we use p = 2, since we have the L2-
norm of the input vector of the layer, q = 1, which corresponds
to the L1-norm of the convolution kernel, and r = 2 for
estimating the upper bound for the L2-norm of the output. The
usage of ConformalLayers is transparent to the PyTorch user.

IV. EXPERIMENTS AND RESULTS

We have performed experiments to assess classification
accuracy, memory footprint, and inference time of CNNs im-
plemented using ConformalLayers and their counterparts using
typical non-associative layers. For accuracy evaluation we
used MNIST, Fashion-MNIST, and CIFAR-10 datasets. For
memory footprint and inference time assessment, we generated
large datasets comprised of random RGB images since the
classification capacity of the networks are not being compared
in these experiments. For Experiments I, II and III we used
an Intel Xeon E5-2698 v4 CPU with 2.2Ghz with 512Gb of
RAM and 8 GPUs NVIDIA Tesla P100-SXM2 with 16Gb of
memory each. We ran Experiment IV in an Intel Core i7-4770
CPU with 3.4Ghz with 20Gb of RAM and a GPU NVIDIA
GTX 1050 Ti with 4Gb of memory. All the experiments were
performed inside Docker containers. The number of visible
GPUs was set to one even when more GPUs were available.



DenseConv2d AvgPool2d

(a) BaseLinearNet

AvgPool2dReLU DenseConv2d

(b) BaseReLUNet

AvgPool2dReSPro DenseConv2d

(c) BaseReSProNet

Fig. 5: Baseline CNNs used in Experiment I.

For each CNN used for image classification, we performed
hyperparameter optimization via a Bayesian approach [21]
assuming validation accuracy as metric and Hyperband [22]
as stopping criteria, with arguments max_iter = 50, s = 2,
and η = 3. Refer to Supplementary Material for the hy-
perparameter search space, the graphical analysis produced
by the hyperparameter optimization procedure, and the hy-
perparameter values selected for each CNN/dataset pair. In
all experiments, we set the ConformalLayers to automatically
estimated the α values used by the ReSPro activation function.

A. Experiment I – Linear Baseline

This experiment aims to measure the performance of three
baseline architectures in terms of classification accuracy. The
CNNs used in this experiment are very simple to emphasize
the effect of the activation function on the result. Fig. 5
illustrates those architectures. The three CNNs expect 32× 32
RGB images as input, include one stage for feature extraction
and one fully connected layer with bias to classify the flatted
features into one of the 10 classes defined by the MNIST,
Fashion-MNIST, and CIFAR-10 datasets. The feature extrac-
tion stage of BaseLinearNet is composed of a convolu-
tional layer with bias follower by average pooling. Notice that
this architecture includes only linear layers. BaseReLUNet
extends BaseLinearNet by including a ReLU activation
function after the convolution. Both CNNs described so far are
implemented using native PyTorch modules. In contrast, the
feature extraction stage of BaseReSProNet is implemented
using ConformalLayers, including one convolutional layer
with no bias, the ReSPro activation function, and average
pooling. The convolutional kernels in all CNNs have size
3× 3, 32 output channels, no padding, and stride 1. The
pooling kernels have size 2× 2, no padding and stride 1.

The classification results are presented in Table I. The
BaseReSProNet provides higher accuracy when com-
pared to BaseLinearNet, with improvement ranging from
1.36% to 2.17%, and lower accuracy when compared to
BaseReLUNet, with decrease from 1.95% to 7.61%. The
comparison to BaseLinearNet reinforces that our acti-
vation function makes BaseReSProNet more interesting
than a simple linear architecture. The α parameter of ReSPro
guarantees the non-linearity needed for model learning. An
α value much higher than the maximum L2-norm expected
for the input data would cause ReSPro to behave as a linear
mapping. According to these experiments, the strategy adopted

TABLE I: Validation accuracy of baseline classification CNNs.

MNIST Fashion-MNIST CIFAR-10

BaseLinearNet 92.12% 82.19% 40.50%
BaseReLUNet 97.24% 85.90% 49.47%
BaseReSProNet 94.29% 84.01% 41.86%

to automatically estimate α prevents BaseReSProNet from
behaving like BaseLinearNet. On the other hand, as
the complexity of the dataset increases, we noticed that the
accuracy improvement of BaseReSProNet decreases fast,
when compared to BaseReLUNet. ReLU seems to provide
a better accuracy when compared to ReSPro. This difference
suggests a drawback of shallow neural networks using ReSPro
to model the complexity of the dataset.

B. Experiment II – LeNet vs. LeNetCL

To check if the issue observed on learning the complexity
of the dataset is mitigated as we increase the number of
layers, we ran an experiment to compared the accuracy of
CNNs based on the LeNet-5 architecture [23] (Fig. 6). The
LeNet CNN consists of layers configured as proposed in
the original architecture. The differences are that max-pooling
replaced the original pooling function with learned weight and
bias, and ReLU replaced the sigmoid activation function. The
other CNN, LeNetCL, implements the feature extraction stage
(i.e., layers 1 and 2) using ConformalLayers. Therefore, the
use of biases in the convolutions were disabled, and those
layers included ReSPro, and average pooling.

Classification results on MNIST, Fashion-MNIST, and
CIFAR-10 datasets are reported in Table II. As it can be
noticed, LeNetCL shows a significant improvement when
compared to BaseReSProNet in Table I, mainly because the
neural network is deeper and, therefore, able to model more
complex data. In addition, the differences in the classification
accuracy obtained with the usual implementation of LeNet-
5 and LeNetCL are smaller than the differences between
BaseReLUNet and BaseReSProNet in all datasets, rang-
ing from 1.01% (Fashion-MNIST) to 5.78% (CIFAR-10).

The relatively small drawback on the accuracy of CNNs
built with ReSPro and ReLU is mostly due to the gap between
the α value and the upper bound of L2-norm, and may be
acceptable in scenarios where the memory footprint and com-
putational cost of typical CNNs limit their application.



ReLU

Conv2d

Pooling
Dense

Activation

Fig. 6: LeNetCL/LeNet architecture used in Experiment II.

TABLE II: Validation accuracy of LeNet and LeNetCL.

MNIST Fashion-MNIST CIFAR-10

LeNet 98.87% 90.13% 59.05%
LeNetCL 97.33% 89.12% 53.27%

C. Experiment III – Network Depth vs. Inference Time

In this experiment, we assessed the impact of the depth-
independence property of the ConformalLayers on inference
time. This property comes from the fact that (9) require fixed
amounts of memory and arithmetic operations to perform
inference, regardless of the number of layers in the network.

Batches including 64 random RGB images having 32× 32
pixels with intensities sorted from a uniform distribution were
used as input in this experiment. We also set the weights of
the compared CNNs to uniformly distributed random values
since the objective is to measure the computation time of the
solutions instead of analyzing their classification capabilities.

Fig. 7 illustrates the architecture of the CNNs used in this
experiment. They comprise sequences of convolutional layers
with kernels of size 3× 3, 32 output channels, stride of 1, and
padding of 1 to keep input and output with the same size. We
placed an activation function following each convolution layer.
After the first k layers, both CNNs include two fully connected
layers, with bias, that produce vectors with, respectively,
32.768 and 10 entries. The differences between DkNetCL and
DkNet are that the former uses ReSPro as activation function,
no bias in the convolutions, and implements the first k layers
as ConformalLayers. The latter uses native PyTorch modules,
ReLU, and includes bias in the convolutions.

The average inference time of 100 executions of DkNetCL
and DkNet for different depths k is presented in Fig. 8.
Our first observation relies on the constant inference times
of DkNetCL as we increase the depth of the neural network.
DkNet, on the other hand, shows inference time as a linear
monotonically crescent curve. For k = 1, DkNet is almost
6× faster than DkNetCL. This apparent drawback, however,
is quickly overcome as the neural networks become deeper.
For k ≥ 9, the ConformalLayers-based CNN becomes more
profitable than the one using non-associative layers.

We believe that much of the processing time required in the
inference performed by networks based on ConformalLayers is
due to the computational inefficiency of existing sparse matrix
libraries compared to the same procedures implemented to
dense matrices. Unfortunately, the size of the matrices involved
prevents the use of dense matrices in our solution. But it is
noted that recent versions of libraries like PyTorch have paid

particular attention to operations with sparse arrays, gradually
improving the performance of the available implementations.

D. Experiment IV – Batch Size vs. Inference Time

This experiment compares the processing time and the
supported number of images processed simultaneously using
a ConformalLayers-based solution and its conventional coun-
terpart while performing inference. For this experiment, we
defined the D3ModNetCL and D3ModNet networks, which
implement the architecture presented in Fig. 9. As in previous
experiments, the networks expect 32× 32 RGB images as in-
put and the difference between D3ModNetCL and D3ModNet
is in the choice of the activation function, the use of bias in
convolutions, and the possibility of applying associativity in
the first three layers. Both CNNs have fixed depth, perform
2× 2 average pooling after the activation function, pooling
and convolutions have no padding, and FC layers have bias.

The average processing times resulting from 100 executions
of each compared CNN are presented in Fig. 1, where one
can notice that D3ModNetCL performs inference faster than
D3ModNet. The zoomed-in portion of the curves shows an
interesting behavior: the inference time of D3ModNetCL
increases in steps, where each step has a length of 32 batches.
This is related to the size of the thread block of the GPU used
in this experiment. In practice, the size of thread blocks defines
the number of cycles needed to perform some calculation.

Another interesting observation can be done if we analyze
Fig. 1 alongside Fig. 10. The GPU used has 4GB of memory.
As one may notice in Fig. 10, D3ModNet’s memory usage
line has a higher slope when compared to D3ModNetCL.
As a result, the approach based on non-associative layers
consumes the full GPU memory quickly. In contrast, the
ConformalLayers-based approach supports larger batches be-
fore using all the memory. It is because the feature map
resulting from each operation in D3ModNet has to be stored

...

Dense

Conv2d
Activation

Fig. 7: DkNetCL/DkNet architecture used in Experiment III.

Fig. 8: Inference times for DkNetCL and DkNet.



Dense

Conv2d
Activation
AvgPool2d

Fig. 9: D3ModNetCL/D3ModNet CNNs from Experiment IV.

in memory to be passed as input to the next operation. Hence,
D3ModNet’s curve in Fig. 1 shows that the maximum batch
size for this architecture in this GPU is 14K, while the
D3ModNetCL supports up to 89K images simultaneously.

We used linear regression in Fig. 1 to extrapolate the
memory bottleneck of D3ModNet and estimate its inference
time with more than 14K images. The extrapolation allows
the comparison of both approaches under the maximum ca-
pacity of D3ModNetCL. Fig. 1 shows that our approach is
about 1.16× times faster than the non-associative CNN. Such
improvement and memory saving suggest that the presented
technique is feasible for devices with limited capabilities.

V. CONCLUSIONS AND FUTURE WORK

We presented the ReSPro, a novel non-linear and differen-
tiable activation function that can be fully encoded as matrices
and rank-3 tensors, whose product satisfies the associative
law. In our experiments, we did not notice ReSPro suffering
from vanishing or exploding gradient, like other S-shaped
functions, probably because it behaves like element-wise acti-
vation followed by normalization instead of performing simple
element-wise transformations. We also presented a new neural
network back end called ConformalLayers. To the best of our
knowledge, ConformalLayers is the first non-linear sequential
CNN with associative layers. The combination of layers by
associativity has several advantages in terms of computational
efficiency during inference.

The current implementation of ConformalLayers does not
support channel groups nor bias in convolutions, and does not
implement transposed convolution and fully connected layers.
We are working on adding these features to our framework.

Although this paper presents ConformalLayers as an archi-
tecture for sequential CNNs, we believe that we can expand
the concept to non-sequential networks. One possibility is,
before inference, to traverse the graph defined by the layers
of non-sequential CNNs in a depth-first fashion and apply the
associativity of the ConformalLayers to the paths found.

We hope that our original ideas lead to new lines of inves-
tigation. Possible directions of future exploration include the
proposition of other activation functions, and the study of the
data encoded by the matrix L(k)

M and rank-3 tensor L(k)
T .

ACKNOWLEDGMENTS

This work was partially supported by CNPq
(311.037/2017-8) and FAPERJ (E-26/202.718/2018) agencies.

Fig. 10: Memory footprint for D3ModNetCL and D3ModNet.

REFERENCES

[1] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in NeurIPS, 2014, pp. 1269–1277.

[2] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in NeurIPS, 2016, pp. 4114–4122.

[3] ——, “Quantized neural networks: training neural networks with low
precision weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6869–6898, 2017.

[4] J. Frankle and M. Carbin, “The lottery ticket hypothesis: finding sparse,
trainable neural networks,” in ICLR, 2019, pp. 1–13.

[5] H. Zhou, J. Lan, R. Liu, and J. Yosinski, “Deconstructing lottery tickets:
zeros, signs, and the supermask,” in NeurIPS, 2019, pp. 3592–3602.

[6] H. Omidvar, V. Akhlaghi, H. Su, M. Franceschetti, and R. Gupta,
“Associative convolutional layers,” in AISTATS, 2021, pp. 3115–3123.

[7] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” in MICRO, 2016, pp. 1–12.

[8] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: efficient convolutional neural
networks for mobile vision applications,” arXiv: 1704.04861, 2017.

[9] M. Tan and Q. Le, “Efficientnet: rethinking model scaling for convolu-
tional neural networks,” in ICML, 2019, pp. 6105–6114.

[10] O. Saha, A. Kusupati, H. V. Simhadri, M. Varma, and P. Jain, “RNNPool:
efficient non-linear pooling for RAM constrained inference,” in NeurIPS,
2020, pp. 20 473–20 484.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT, 2016.
[12] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and

H. S. Seung, “Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit,” Nature, vol. 405, no. 6789, p. 947, 2000.

[13] D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),”
arXiv: 1606.08415, 2016.

[14] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: a self-gated activation
function,” arXiv: 1710.05941, 2017.

[15] I. V. Tetko, “Associative neural network,” Neural Process. Lett., vol. 16,
no. 2, pp. 187–199, 2002.

[16] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: unified, real-time object detection,” in CVPR, 2016, pp. 779–788.

[17] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet: unified,
small, low power fully convolutional neural networks for real-time object
detection for autonomous driving,” in CVPR Workshops, 2017, pp. 129–
137.

[18] L. Dorst, D. Fontijne, and S. Mann, Geometric algebra for computer
science: an object-oriented approach to geometry. Elsevier, 2010.

[19] R. C. Gonzalez and R. E. Woods, Digital image processing, 3rd ed.
Pearson, 2008.

[20] W. H. Young, “On the multiplication of successions of Fourier con-
stants,” Proc. R. Soc. Lond. Series A, Containing Papers of a Mathe-
matical and Physical Character, vol. 87, no. 596, pp. 331–339, 1912.

[21] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model
search: hyperparameter optimization in hundreds of dimensions for
vision architectures,” in ICML, 2013, pp. 115–123.

[22] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: a novel bandit-based approach to hyperparameter optimiza-
tion,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 6765–6816, 2017.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.


