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Abstract—Convolutional Neural Networks require large
amounts of labeled data in order to be trained. To improve such
performances, a practical approach widely used is to augment
the training set data, generating compatible data. Standard data
augmentation for images includes conventional techniques, such
as rotation, shift, and flip. In this paper, we go beyond such
methods by studying alternative augmentation procedures for
cross-dataset scenarios, in which a source dataset is used for
training and a target dataset is used for testing. Through an
extensive analysis considering different paradigms, saturation,
and combination procedures, we provide guidelines for using
augmentation methods in favor of transfer learning scenarios. As
a novel approach for self-supervised learning, we also propose
data augmentation techniques as pseudo labels during training.
Our techniques demonstrate themselves as robust alternatives
for different domains of transfer learning, including benefiting
scenarios for self-supervised learning.

I. INTRODUCTION

Deep Networks were able to thrive in computer vision
in the last decade due to the availability of computational
power and large training datasets [1]. With those requirements
sufficiently met, Convolutional Neural Networks (CNNs) are
widely applied for image classification tasks, initially clas-
sification of photographic images [2] and later extended to
different domains. These networks are characterized by having
a hierarchical architecture, in which the output of a given
layer serves as an input for a posterior one. Also, each layer
has specific functionalities, which the two most relevant are
convolution, filtering the input, and pooling to reduce the data
dimensionality [3]. Due to this hierarchical structure, one of
the great advantages of CNNs is their capacity to represent
different levels of abstraction. The first layers provide low-
level features (shapes, edges, and colors) while the last layers
are associated with high-level features, mostly semantics [4].
Another advantage of CNN filters is their capacity for gen-
eralization. By training a CNN using a sufficiently large and
diverse training data, such as ImageNet [2], those filters can
be useful for other datasets, favoring transfer learning [5].
For photographic images, the better the model performs using
ImageNet, the better it tends to transfer to other datasets [6].

In the context of transfer learning [7], [8], two approaches
are more common: extracting features directly from a pre-
trained CNN to an external classifier and fine-tuning a pre-
trained CNN [3]. In the first approach, one can choose which
layer offers the best descriptor for some data distribution and

Fig. 1. Considering a source dataset (as training set), we apply the stan-
dard augmentation or our alternative methods to increase the diversity and
representativeness of the final training set. This set is used to fine-tune the
classification model, obtained from a pre-trained model, followed or not by
self-supervised learning. Thus, a target set (another dataset from the same
domain of training set) is evaluated on the classification model.

perform feature extraction [9]. However, when performing
fine-tuning, the last layer (the prediction one) is redefined,
then the remaining parameters are initialized with the pre-
trained weights, and adaptation is resumed for a number of
epochs using a training set for the new task. During fine-
tuning itself, characteristics of the new domain are incorpo-
rated, promoting adaptability of the network weights to the
new context and increasing learning. The success of network
fine-tuning depends on sample representativeness, depth of
architecture network, and complexity of the task [10], [11].
Since recent architectures are often deep, and task difficulty is
not easily measurable [10], increasing the size of the training
set becomes a manner to ensure sample representativeness.
Thus, data augmentation may be used in this context to create
new examples by processing original images [12], which are
incorporated in the training set, increasing the diversity [13].

Data augmentation techniques were shown to be effective in
several applications [13]–[18]. Even for large datasets, such as
ImageNet [2], augmenting the training set is a common prac-
tice that showed to improve classification results [19], [20].
Image augmentation has been extensively studied for scenarios
within the same domain with respect to training and testing
sets [16], [17], while the literature still lacks evidence for
cross-dataset scenarios (using one dataset to train or fine-tune
the network and another to test it), where different forms of
acquisition, such as perspective and number of objects present
additional challenges. Also, methods of image manipulation
are mostly restricted to those available in software packages,
which perform subtle processing in individual images. Another
attempt to better adapt a pre-trained CNN to a new domain
or task is through self-supervised learning. In this context,

{fernando_persan, gabithume}@alumni.usp.br, ponti@usp.br


new synthetic images are generated following some heuristic
and pseudo-labels are distributed according to this methodol-
ogy [21]. For instance, given an initial training set of images,
one can rotate each image in different orientations, each one
representing a different class [22]. Then, after initial training
to learn the concepts inherent of the new domain, the network
is fine-tuned with the original data and respective original
labels. Hence, the performance may be increased significantly
without the required cost for labeling new examples. Also,
generalization in terms of external validation is an important
open question. In fact, usually, the augmentated data used in
training comes from the same source dataset/domain used in
test stage, while cross-dataset scenarios are more realistic and
challenging [11], [23].

Aiming to investigate the behavior of data augmentation
techniques for scenarios with different datasets, our general
proposal is depicted in Figure 1. We demonstrate that by
adding more diversity to the training set via alternative aug-
mentation methods, the model learns features that transfer
better to other datasets. In order to demonstrate that, we used a
cross-dataset approach: a source set (and augmentation) is used
to fine-tune the pre-trained network and another one (target
set) for testing only. In addition to the standard procedures,
our alternative augmentation techniques (see Section III-B)
improves the model performance. Beyond the conventional
data augmentation approach for the purpose of improving per-
formance, we thoroughly analyze the saturation of training set
size generated from those techniques. As a manner to enhance
the network fine-tuning step, we also investigated the influence
of self-supervision as a previous step. In this complementary
approach, each augmented set receives a pseudo-label.

Therefore, our contribution includes: (i) six alternative tech-
niques for data augmentation beyond standard ones, including
methods that simply apply some image transformation and
methods that perform combinations among images from the
same class; (ii) a study with self-supervised learning using
pseudo-labeling, in which different data augmentation tech-
niques act as distinct labels, providing a significant improve-
ment to network performance; and (iii) extensive cross-dataset
evaluation of standard techniques and our alternative methods,
increasing the training set size, verifying the saturation, and
sensibility to self-supervised learning.

II. DATA AUGMENTATION AND SELF-SUPERVISED
LEARNING CONTEXT

Data augmentation is a popular strategy to improve clas-
sification results, including on large annotated datasets [2]
and when using state-of-the-art algorithms [17], providing
increased diversity through a single dataset or merging distinct
sets that share the same labels to generate new instances [13].
An extensive survey by Shorten and Khoshgoftaar [12] defined
a taxonomy for data augmentation techniques performed on
Deep Learning models, which has three main categories:
image manipulation; deep learning approaches; and meta-
learning. Potential benefits were reported: an increase in the

amount of data available and data variability; convergence im-
provement; and reduced overfitting. However, the survey could
not find a consensus about the best strategy for combining
techniques and did not report papers investigating cross-dataset
and transfer learning scenarios.

Image manipulation for data augmentation consists of gen-
erating modified versions of images in some source dataset.
Such transformation techniques are chosen considering the
dataset context and often ensuring the creation of plausible
versions, avoiding transformations that may alter the actual
label of the image. For instance, by applying a 180-degree
rotation operation as augmentation for handwritten digits,
digits six and nine can have their label swapped [24]. In the
literature, image manipulation, such as rotation and shift (more
details in Section III), are considered standard methods due to
their low computational cost and easy implementation, with
availability in most software packages [12]. Such standard
methods perform subtle changes in pixel content so that not to
change the image in a manner its label would be altered [12].
Alternatives in this sense include simulating occlusion [18],
in which some pixels are erased within a rectangle region
and receive random values, and a crop-and-patch method [25],
which mixed images and provided results that are similar to
more complex methods that rely on learning.

Data augmentation methods can also be conceptually
grounded by learning approaches [24]. Often Generative Ad-
versarial Networks (GANs) are applied to generate instances
based on the initial set through adversarial learning [26].
However, these networks are difficult to train, involving high
computational cost. Considering meta-learning, Wang and
Perez [17] proposed the Neural Augmentation, a method that
allows a neural network to learn which data augmentation
method is better to reduce classification loss for a given
dataset. This architecture is composed of two networks, one
performs the classification properly while the other performs
the combination of two images of the same class, resulting in
an image of six channels. During training, the loss functions
are combined to improve both branches simultaneously. In
their results, they indicated that simple transformations, such
as cropping, rotating, and flipping, are very effective when
used alone, consuming lower computing time. Another meta-
learning data augmentation, a Reinforcement Learning algo-
rithm called AutoAugment, was proposed by Cubuk et al. [16],
which automatically searches the best policy for the neural
network to yields the highest accuracy. Sixteen operations
were performed, among them are: equalize; rotate; bright-
ness; posterize; translate; and others. In both studies [16],
[17], image manipulation-based augmentation combined with
learning-based augmentation was shown to increase accuracy
and reduced overfitting.

Another concept to reduce possible overfitting during the
training process is self-supervision. Self-supervised learning
presents itself as an unsupervised technique for supervised
networks [22], due to the creation of pseudo-labels. Thus,
synthetic data are generated to increase the representativeness
of the training set following a methodology that defines those



labels. In this context, different self-supervised methodologies
can be applied in an attempt to improve the generalization
and performance of a deep network. Concerning images,
some alternatives that are presented in the literature include:
rotation [27] to recognize different orientations; exemplar [28],
where each image represents a class, however, several generat-
ing image methods must be employed; and jigsaw [29], which
aims to teach the spatial localization of patches. However,
these techniques essentially have a specific learning objective,
such as orientation or location.

Based on these related studies, recent literature indicates
image manipulation still plays a significant role as data aug-
mentation, with low computational complexity, being com-
plementary to or compared with learning techniques which,
generally, have high computational costs and require them-
selves sufficiently large training sets. Therefore, aiming to
maintain low complexity in the generation of images and
well performance behaviors, we investigated six alternative
methods. These methods are compared, in our results section,
with the standard methods in the literature for cross-dataset
scenarios, considering the saturation of training set size. In
addition to the saturation analysis, we also propose a novel
methodology for self-supervised learning. Taking advantage
of the new images, generated by data augmentation techniques
investigated here, our approach embraces several methods in
a single framework. Unlike existing approaches, we consider
that each image set generated by a single data augmentation
technique becomes a training class. Therefore, exploring sev-
eral methods simultaneously does not restrict the learning to
a unique scenario.

III. METHODOLOGY

Our pipeline is composed by the choice of a data augmen-
tation method and the number of synthetic images that will
be generated from a single instance of the source training
dataset. Considering a pre-trained network (described in Sub-
section IV-C), we fine-tune the network with this resulting set
and validate its predictive capability with the target dataset,
as described in the Algorithm 1. In addition, as a previous
step of fine-tuning, we may or may not apply self-supervision
(detailed in Subsection IV-D).

We describe in the following the standard augmentation
methods, as well as the alternative ones we propose to
complement and improve cross-dataset feature learning. In all
cases, we respected the characteristics of the datasets used
in the experiments, by setting parameters so that the image
manipulation does not alter the resulting image’s label [30].
Six alternative image manipulation methods are described. Our
proposed data augmentation techniques are divided into two
different categories: methods that use a single source image as
input (Blur, Correlated Noise, and Sharpening); and methods
that combine a pair of images from the same label (Blend,
Threshold, and Visual SMOTE). Examples of such methods
are shown in Figure 2.

Algorithm 1 - Methodology procedure
Tr: Training set;
Te: Testing set;
D: Data Augmentation techniques;
n: Number of images to be generated for each image in Tr;
i: Number of methods of D to be selected;
f : Pre-trained CNN model.

1: Generate n images (Ai) using D for each image in Tr

2: if self-supervised learning then
3: All images in Tr receive a pseudo-label (zero)
4: Each images in Ai receive the pseudo-label i, i > 0
5: Self-supervised training of f using Tr and Ai

6: end if
7: Fine-tune f using all images from Tr and A (original labels)
8: Evaluate f using all images of testing set Te

Fig. 2. Examples of outputs from: (top) original one; Blur; Correlated Noise;
Sharpening; and (bottom) pair from the same class; Blend; Threshold; Visual
SMOTE.

A. Standard Methods

i) Flip: Flipping images to augment training data is one
method to improve performance by oversampling. This tech-
nique simulates different points of view of an image. We
performed random flips on both horizontal and vertical axes.

ii) Rotation: One of the most widely used operations and
considered to be an oversampling technique [12]. Original
images were rotated, generating new ones with different ori-
entations. We performed random rotation from 0-degree to a
90-degree clockwise range in our experiments.

iii) Shift: Shift augmentation artificially creates horizontal
and vertical shifted versions of the training data. Applying
a shift to an image means moving all pixels horizontally
or vertically, which we performed of a maximum of twenty
percent for the width and height of the image.

B. Alternative Methods

i) Blur: Image blurring, also known as image smoothing,
is useful to filter an image, intentionally removing noise and
other not relevant details. Common methods can blur the
edges, which is an unwanted behavior when we want to
generate new images, as some relevant information can be
removed. On the other hand, an operation called bilateral
filter can be used to preserve sharp edges but at the same
time blur the image. It replaces the pixel value with the
average of neighboring pixels of similar intensity [31]. It



is a weighted average of the intensities while considers the
difference between the values of neighbors (nearby pixels) to
preserve the edges. Thus, for one pixel to influence another,
it must be close in the coordinate space and have similar
intensity.

ii) Correlated Noise: Correlated noise occurs in the photon
count of optical devices and follows the Poisson distribution,
which represents the number of occurrences of an event at any
given time. A common implementation is based on Poisson-
distributed random numbers, as developed by Knuth [32], and
adapted to a matrix of pixels. To calculate the noisy value in
a pixel, the pixel is considered the average of this distribution.
Thus, there will be barely any noise for dark intensities.
On the other hand, at intensities close to 255, the resulting
intensity will be higher. For adding this noise to an image,
no parameters are provided due to noise being calculated for
each pixel.

iii) Sharpening: A well-known image sharpening technique
that seeks to emphasize intensity transitions called unsharp
masking was used. It starts by creating a blurry image from
the original, then it subtracts the blurred one from the original,
and adds the image result to the original one, given a weight
of k. Gaussian blur was the method used to produce the
blurred image, and we applied the weight of k = 1 to highly
emphasize the image.

iv) Blend: This method generates a new image by calculat-
ing the weighted sum of two images. From a pair of images,
we draw an α value below 100%; then, we calculate β, which
is equivalent to the remaining value to complete 100% (100%
- α); and lastly, each pixel of the new image is the result of
multiplying the pixel of the first image by β and adding it to
the pixel of the second image times α. The parameters α and
β are chosen at random. A value between 10% and 90% is
chosen for α so any image contributes with at least 10% for
the final result and β is calculated according to its value.

v) Threshold: The resulting image is a composition of the
foreground (scene object) of an image and the background of
another image. We use the OTSU threshold method to find the
binary foreground and then we apply morphological operations
to improve the resulting mask, which is subsequently used to
apply the colored foreground to the image used as background.

vi) Visual SMOTE: SMOTE (Synthetic Minority Oversam-
pling Technique) is a dataset balancing method often applied
in images after feature extraction [33]. It creates a new sample
by performing a combination of instances that are close in the
feature space. A visual alternative was adapted to pixel-level
and performed between two images of the same label. The
difference between the pixels of the two images is calculated;
multiplied by a random number in the range of [0 − 1]; and
added to the original image. We note the effects are similar
to the Blend method, but the random component at each pixel
creates more diverse images in terms of color combination and
background.

IV. EXPERIMENTS SETUP

A. Datasets

We evaluated two domains, representing the classification
task of objects and fruits. A pair of distinct datasets are used
for each domain. The largest dataset is used as a source to fine-
tune the CNN, where we applied the data augmentation meth-
ods and self-supervised learning, while the smaller one serves
as a target only for testing. The diversity of domains with
different styles, scene composition, and degrees of difficulty
enriches the contribution of this study for data augmentation
and self-supervised learning. All datasets present somewhat
unbalanced classes, but none is severely imbalanced. Four
datasets were used in our experiments:

a) Objects: Amazon and Webcam [34] are datasets with
office objects containing the same 31 categories. Amazon
consists of e-commerce images of products with controlled
illumination and constant background, while Webcam was
captured with illumination variations, clutter (including back-
ground and confounding objects), and noise. Amazon has 2817
images of 300 × 300 pixels (used as the training set) and
Webcam has 795 examples with varying resolution (used as
the test set).

b) Fruits: Supermarket Produce [35] is a dataset with
15 classes and around 2600 images of 1024 × 768 pixels,
containing a variation of lighting, poses, number of objects
in the image, and including images with packed fruit. Within
the same domain, FIDS30 [36] has 31 classes and 972 images
with different resolutions, also having variations of lighting
and number of objects in the same photo. In our experiments,
we considered a subset of both datasets, containing only
seven common classes between them: kiwis; limes; oranges;
peaches; pears; plums; and watermelons. Hence, we selected
1206 images of Supermarket Produce (training set) and 221
images from FIDS30 (test set).

Due to the input layer of CNN used in our experiments,
all images were resized to 224 × 224 pixels, as shown in
Fig. 3. Considering the training sets (Amazon and Supermarket
Produce), we generated new synthetic images using the data
augmentation techniques and all original set.

(a)

(b)

(c)

(d)

Fig. 3. Original examples from: (a) Amazon; (b) Webcam; (c) Supermarket
Produce; and (d) FIDS30. For objects domain, from left to right: backpack;
bookcase; calculator; desk lamp; keyboard; mug; and ruler. For fruits domain,
from left to right: kiwi; lime; orange; peach; pear; plum; and watermelon.



B. Synthetic sets

Considering a data augmentation technique D and a training
set Tr for the target task, each image belonging to Tr will
provide n resulting images. Therefore, if Tr has k images,
the new synthetic set A will have A = k ∗n examples. Hence,
we may generate different synthetic set sizes, given a single
method at a time and the number of variations. During the
CNN fine-tuning, the final training set size will be F = Tr +
A. In our approach, n ranges from 0 to 5. When n = 0,
only the original set is used as a training set. This scenario is
our baseline. When n = 1, the training set is formed by the
original set and by one additional image from each original
example, i.e the final set has twice as many examples of the
baseline. This procedure is scalable to the other values of n. It
is important to note that each synthetic set was generated using
only a single technique and by the full source set. Accordingly,
several synthetic sets were generated.

C. CNN Backbone

Residual Networks [20] introduced the concept of residual
blocks with “skipping layers” to allow training for deeper
networks. After the last residual block, an Average Pooling
is applied, which is followed by a dense output layer. Its 50-
layer version, ResNet50, is widely used for transfer learning
and remains among the state-of-the-art for many applications,
including domain adaptation [37], [38], and often used to
evaluate data augmentation [16], [18]. We fine-tuned the
network changing only the last layer during 1000 epochs
with SGD optimizer (learning rate of 0.01 and momentum
of 0.0001), using the Cross-entropy loss function [39], [40],
and a 32 batch size (stipulated optimal value [41]), allowing
all layers to update. The test performance is measured using
accuracy and only the target set.

D. Technical Self-supervised

We apply self-supervision as a manner to leverage the
network fine-tuning step. Our approach for self-supervised
learning is to consider each set, generated by a data augmen-
tation technique, as a distinct label. Initially, a mandatory set
is the initial training set, i.e the original images without their
respective labels (Amazon or Supermarket Produce), which
all images assume an unique label (zero). To complement
these images to form the training set, one can choose as
many data augmentation techniques as desired, each one will
assume a new unique label (label one until n, each one for a
different technique). Consequently, if n methods are selected,
the number of self-labels will be n+1 (due to the original set).
Therefore, considering c the number of self-labels belonging to
the final training set, c = n+1, where n > 0. Self-supervised
training is carried out following the same specifications as
fine-tuning, SGD optimizer with a learning rate of 0.01 and
momentum of 0.001, Cross-entropy loss function, and 32
batch size during 1000 epochs. After, fine-tuning is performed
using the same training set, changing the pseudo-labels for the
original ones.

V. RESULTS AND DISCUSSION

Our results and discussions are reported in three parts: (i)
data augmentation techniques performance, where we analyze
the accuracy of each technique; (ii) data augmentation for
self-supervised learning, where we analyze the behavior of
data augmentation techniques in relation to the sensitivity
of self-supervision; and (iii) augmented and self-supervised
computational costs.

A. Data Augmentation techniques performances

For each data augmentation technique, both the alternative
and standard methods, we ranged the number of examples
generated from each image from 1 to 5. Contextually, when
n = 1 each image in the original set provided 1 additional
image, and so on, successively.

Considering the objects domain (Amazon as training set
and Webcam as test set), the accuracy achieved using only
the original training set, without data augmentation (n = 0),
was 40.62%. Based on the performance achieved applying
data augmentation methods (see Table I), we can see that
the best accuracy was obtained using the Correlated Noise
(68.93% for n = 2) and the worst accuracy was Shift (51.44%
when n = 1). Consequently, the performance gain due to data
augmentation techniques ranged from 10.82% to 28.31%. As
expected, performances for n = 1 are not as satisfactory as
for other values of n, despite the expressive performance gain
(about 58.23% on average). In addition, standard methods
provide inferior results to the proposed methods. The best
performance of these methods is achieved with Shift (66.41%
with n = 4). Of the proposed methods, only Blend (−1.89%
lower when n = 2) and Visual SMOTE (0.13% when n = 3)
do not provide better accuracy. In the saturation view, only
Flip reaches its better performance with n = 5. All other
methods suffer a training set saturation when the same image
provides many equivalent examples. This degradation is more
sensitive in methods that combine images, such as Blend,
Threshold, and Visual SMOTE. Specifically for this domain,
we have classes that have about 30 examples, providing the
combinations (randomly) less distinct from each other. Thus,
the variability does not become a relevant factor for high n in
these techniques. Despite some disparities, the concentration
of the best performances is for n = 2 and n = 3, indicating
that increasing the training set more and more does not
guarantee high performances. The increase in the training set
is only valid if the variability of the examples is accompanied,
otherwise it can cause overfitting. In addition to the lack of
performance guarantee for very large sets, derived from a
few original examples, the computational cost will increase
proportionally, both in image generation and during training
(see more details in Section V-C).

In Table II, we have the fruits domain results (Supermarket
Produce as training set and FIDS30 as test set). For this
domain, the accuracy without data augmentation methods
(n = 0) was 27.6%. Using data augmentation methods, the
best performance was achieved with Correlated Noise (37.1%
with n = 2) and the worst accuracy with Rotation (28.05%



TABLE I
ACCURACY RESULTS (%) FOR OBJECTS DOMAIN: USING AMAZON AS A

SOURCE DATASET AND WEBCAM AS A TARGET DATASET. FOR THIS SETUP,
THE BASELINE WAS 40.62%, I.E PERFORMANCE ACHIEVED ONLY WITH

THE ORIGINAL SOURCE DATASET ON THE FINE-TUNING PROCEDURE. THE
HIGHEST ACCURACY FOR EACH ROW IS HIGHLIGHTED IN BOLD.

Method n = 1 n = 2 n = 3 n = 4 n = 5
Flip 56.85 55.72 60.00 62.64 63.89

Rotation 57.61 62.76 58.74 60.12 62.64
Shift 51.44 53.96 58.74 66.41 57.61
Blur 60.12 64.77 64.03 67.92 61.50

Correlated Noise 57.35 68.93 68.8 67.79 68.93
Sharpening 58.74 64.90 66.66 64.77 60.0

Blend 55.84 64.52 63.01 63.77 62.76
Threshold 61.00 66.41 67.04 64.40 64.15

Visual SMOTE 65.15 65.53 66.28 65.28 64.29

TABLE II
ACCURACY RESULTS (%) FOR FRUITS DOMAIN: USING SUPERMARKET
PRODUCE AS A SOURCE DATASET AND FIDS30 AS A TARGET DATASET.

FOR THIS SETUP, THE BASELINE WAS 27.60%, I.E PERFORMANCE
ACHIEVED ONLY WITH THE ORIGINAL SOURCE DATASET ON THE

FINE-TUNING PROCEDURE. THE HIGHEST ACCURACY FOR EACH ROW IS
HIGHLIGHTED IN BOLD.

Method n = 1 n = 2 n = 3 n = 4 n = 5
Flip 28.05 33.03 36.65 28.05 33.93

Rotation 31.67 31.22 35.74 33.93 30.76
Shift 31.22 35.29 37.10 28.05 27.60
Blur 30.76 35.29 31.22 29.41 30.76

Correlated Noise 35.74 37.10 32.57 34.38 33.93
Sharpening 33.03 32.12 28.05 32.12 29.86

Blend 28.50 35.74 30.31 31.22 34.84
Threshold 31.22 30.76 33.03 32.12 29.86

Visual SMOTE 32.12 35.74 31.22 29.41 28.05

with n = 1), representing gains from 0.45% to 9.5%. As
the object domain, n = 1 does not provide high satisfactory
results, performing better for n = 2 and n = 3. Once
again, the statement that excessive generation of examples
does not translate into performance gains is seen in cross-
dataset scenarios. An observable behavior of the methods
for this domain is the oscillation of performances when we
differentiate the value of n. There is no smooth curve of
growth and/or decrease, presenting successive gains and losses
in this variation, except for Shift and Visual SMOTE. However,
the performance difference among the distinct methods is less
pronounced for this domain: Correlated Noise (37.1% for
n = 2) and Sharpening (33.03% for n = 1).

To complement the view of the data augmentation perfor-
mances for cross-dataset scenarios, an additional experiment
was to select random examples of different techniques to
fine-tune the pre-trained network. The first technique set
encompasses all the methods performed here (“All”). The other
techniques sets define the proposed methods, separating them
through the generation of images using an example (“Single”)
or a pair of examples (“Combined”). The random sampling of
the generated examples guarantees the same amount of images
to carry out the network training. Thus, the performances can
be directly compared to the results obtained for n = 1 and
n = 2 from Tables I and II, as worse and better performances.

Fig. 4. Accuracies using random examples selection for objects domain: (left)
Using n = 1; (right) Using n = 2.

Fig. 5. Accuracies using random examples selection for fruits domain: (left)
Using n = 1; (right) Using n = 2.

In Figures 4 and 5, we have the comparison for the object
and fruit domains, respectively. In both results, the random
selection of training examples from the data augmentation
techniques provides lower accuracy than the best results
obtained when directly choosing one of the methods. When
compared to the worst performances, training with random
examples tend to be better. However, this behavior cannot be
generalized, since the oscillation occurs by varying the domain
and the value of n.

B. Data augmentation for self-supervised learning

In addition to the performance analysis considering the
training size set saturation, generated by the data augmen-
tation techniques explored, we also analyzed the efficiency
of self-supervised learning in cross-dataset scenarios. Thus,
considering a data augmentation technique, we apply self-
supervision followed by traditional fine-tuning and compared
to respective fine-tuning approach only. For these experiments,
we consider both domains of Office and Fruits. Additionally,
we also selected a half set of 15 classes from the Office
domain, called “Medium Office”, chosen randomly, to check
the sensitivity of self-supervision when we reduced the number
of classes.

Observing the results (see Table III), we can note that the
fruit domain benefits more from the self-supervision learning
before conventional fine-tuning. In contrast, the office object
domain does not benefit from this additional step as pre-
processing. From the perspective of the number of classes,
it is evident that, in classification tasks with cross-datasets,
the number of classes can interfere in the sensitivity of
self-supervision. Office objects have 31 classes and self-



TABLE III
ACCURACY RESULTS (%) FOR FINE-TUNING APPROACH (FT) AND

SELF-SUPERVISED LEARNING FOLLOWED BY FINE-TUNING (SSFT), WHEN
n = 1. BOLD SSFT PERFORMANCES ARE SUPERIOR TO THE RESPECTIVE

PERFORMANCE WITH FT.

Method Office Medium Office Fruits
FT SSFT FT SSFT FT SSFT

Flip 56.85 44.77 75.00 72.55 28.05 32.57
Rotation 57.61 43.77 76.90 77.17 31.67 33.48

Shift 51.44 39.74 74.72 72.82 31.22 33.48
Blur 60.12 43.39 73.09 63.58 30.76 33.93

Correlated Noise 57.35 52.95 77.98 75.27 35.74 36.19
Sharpening 58.74 43.39 76.08 67.11 33.03 29.41

Blend 55.84 50.44 75.54 76.9 28.5 35.29
Threshold 61.00 48.80 73.36 64.13 31.22 28.05

Visual SMOTE 65.15 55.09 74.72 74.18 32.12 36.65
Single 51.82 52.07 77.17 61.95 31.22 37.55

Combined 55.34 52.45 78.26 67.11 30.31 25.79
All 62.01 49.18 82.06 66.3 38.46 28.05

supervision reduces performance for all approaches. However,
this efficiency is a little more incorporated with Medium
Office, containing only 15 classes, selected from the original
set. The fruits domain has greatly improved with the adoption
of self-supervision, being composed of only 7 classes. Conse-
quently, there is a trend for cross-dataset classification, where
fewer classes may benefit more than scenarios with a greater
number of labels when self-supervised learning is applied.

Specifically, considering the data augmentation techniques
for the fruit domain, we can see that Blend and Visual
SMOTE, two techniques that operate image combinations,
provide the greatest performance gain, 6.79% and 4.53%
respectively. This performance gain is justified by the small
number of classes in the dataset and the large difference among
the images generated and the original ones.

C. Augmented and self-supervised computational costs

Data augmentation techniques add computational costs due
to image generation and during network training. In addition to
the training time, there is a cost to generate the new augmented
images, which varies according to the complexity of each
algorithm and the number of replications. Although we do
not intend to fully investigate computational complexity, we
measured the running times for the Amazon dataset with the
rotation technique using the same setup of our experiments:
doubling the training set size, and training it for 1000 epochs.
We performed these measures using a GPU Nvidia Tesla P100
with 3584 Cuda Cores and 16GB vRAM, 2 CPUs Intel Xeon
E5-2650v4 2.2 GHz with 12 kernels and 128 GB DDR3
1866MHz of RAM. To generate the augmented set (2817
images of 300× 300) it was necessary a fixed time of 0.58s,
i.e. 2 milliseconds per image. Training only with the original
dataset took 15.8s/epoch on average, while for augmented
training set it was necessary 32.24s/epoch, i.e approximately 2
times more. By taking into consideration the best scenario for
each dataset, improvements from 8% to 24% were obtained
by doubling the training set size via augmentation. Although
one has to take this into consideration, this additional cost

is reasonable given the accuracy improvement. When self-
supervision is included in the learning process, the processing
time by epoch remains the same, since the exact setup is used
in both approaches and the training data is equally the same.
Therefore, when applying self-supervision followed by fine-
tuning, the total time is doubled. However, as the size of the
training set generated by the data augmentation techniques
increases significantly, n = 5 for example, we realize that
the trend is to reduce the classification performance. Hence,
generation and training time increases significantly.

VI. GUIDELINES

When transfer learning to different datasets, alternative
methods for pixel manipulation, such as Blur and Correlated
Noise, tend to provide higher performances than popular
approaches (such as rotation and flip) and methods that operate
by mixing images. Thus, as mentioned above, these methods
are highly cost-effective, since they are less computationally
complex than learning or meta-learning approaches [12]. Con-
sequently, as guidelines for applying data augmentation to
cross-dataset scenarios we recommend the following obser-
vations:

a) in datasets with few classes, self-supervised learning
using pseudo-label via data augmentation can be used as
a warmup stage in order to improve the final classification
performance;

b) data augmentation methods that perform pixel manip-
ulation are less computationally intensive and provide good
results;

c) augmenting the data has a limit in terms of being useful
for training; a massive increase in training set size without
a variability only causes additional learning costs and does
not guarantee improved performance. Thus, if the class has
few instances, performing combinations among them does not
provide an increase in representation.

Our study does not cover possible combinations of tech-
niques that may enhance the results. This restriction was
imposed to ensure an individual analysis of these techniques
in the context of cross-dataset, being an approach to be
investigated in the future.

VII. CONCLUSIONS

In this paper, we investigated six augmentation techniques
beyond the popular flip/rotation, with high potential to improve
cross-dataset feature learning. We present diverse results and
discussed it considering the saturation of training set size
and the influence of self-supervision. We demonstrated that
adding multiple data augmentation methods simultaneously
or increasing the training set size is no guarantee of bet-
ter performance. Instead, generating many images from the
original set increases only the quantity and not the quality,
especially in sets with few examples per class. Our findings
shed light on transfer learning classification scenarios with
small datasets, demonstrated by using difficult cross-dataset
scenarios. Augmentation based on single images has great
potential for this matter. Also, augmented training sets allowed



faster convergence, which may be explained by the increase
in the visual variety of the images. As future work, we point
to the need to evaluate complementary domains other than the
ones described here and the usage of unlabeled databases as
data augmentation for semi-supervised learning.
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[36] Š. Marko, “Automatic fruit recognition using computer vision,” Mentor:
Matej Kristan), Fakulteta za racunalništvo in informatiko, Univerza v
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