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Abstract—More than 500 painful interventions are carried out
during the hospitalisation of a newborn baby in a neonatal
intensive care unit. Since neonates are not able to verbally
communicate pain, some studies have been done to identify the
presence and intensity of pain by behavioural analysis, mainly by
facial expression. These studies allow a better understanding of
this painful experience faced by the neonate. In this context,
this work proposes and implements a mobile application for
smartphones that uses Artificial Intelligence (AI) techniques to
automatically identify the facial expression of pain in neonates,
presenting feasibility in real clinical situations. Firstly, a Convo-
lutional Neural Network architecture was adapted and trained
with face images captured before and after painful clinical
procedures carried out routinely. Then, this computational model
was optimised to a mobile environment to make it practical for
everyday use. Moreover, we used an explainable AI method to
identify facial regions that might be relevant to pain assessment.
Our results showed that is possible to classify the facial expression
of the pain of neonates with high accuracy. Additionally, our
methodology presented novel results highlighting as well sound
facial regions that agree with pain scales used by neonatologists
and with the visual perception of adults when assessing pain in
neonates, whether they are health professionals or not.

I. INTRODUCTION

More than 500 painful interventions are carried out during
the hospitalisation of a newborn baby in a neonatal intensive
care unit [1], [2]. In the past, due to the inability of neonates
to verbally communicate pain, it was believed that the central
nervous system of newborn babies was not fully developed,
consequently, not being able to sense and suffer from pain
[3]. However, it was observed in the latter years of 1980 that
the central nervous and nociceptive systems are sufficiently
developed in the sixth month of gestation [4], [5], leading to
an increased sensitivity of pain, since inhibitory pathways of
painful stimulus are not fully developed yet [6], [7].

The non-treated pain felt by neonates is associated with
changes in their respiratory, cardiovascular and metabolic
stability, increasing mortality in neonatal intensive care units.
In the short-term, neonates may suffer, as a consequence of
pain, irritability, inattention, change in resting pattern, dietary
denial, and interference in the mother-child relationship [3].
In the long-term, pain may cause degrading effects on the
neurological and behavioural development such as cognitive
problems, alterations in brain development with implications

on learning disabilities, and hypersensitivity to painful and
non-painful stimuli [1], [8].

The most common observations reported by health pro-
fessionals when treating neonatal pain are crying, irritability,
sudden movements, and change in their facial expression and
behaviour [9]. Due to the range of sounds, most people believe
that crying is the best expression to estimate the presence
and, if necessary, the intensity of pain or discomfort in their
newborn babies. However, it has been argued that almost
half of newborn babies do not cry in painful interventions,
meanwhile, a stressful stimulus may lead to crying as well.
Therefore, although useful, crying alone is not reliable to
verify the presence of pain [10]. Another useful method to
verify the presence of neonatal pain is the analysis of their
movements. This can be justified by the fact that newborn
babies have a standardised movement. Consequently, changes
in that pattern, such as sudden and disorderly movements, may
indicate the presence of pain. More recently, pain presence
may be verified through the analysis of the facial expression
of the neonate [3]. Although this analysis may be subjective,
it is a noninvasive method that has been widely used in
clinical practice that delivers valid information regarding the
nature and intensity of the pain allowing better communication
between the neonate and his/her caregiver [5], [10].

A. Related Work

Methods based on Artificial Intelligence (AI) and facial
expression recognition have been proposed in the last 5 years
that allow the implementation of non-invasive computational
frameworks that are specific to the pain phenomena and enable
continuous monitoring of the neonate.

In 2015, Heiderich et al. [3] proposed a computational
framework that enables pain assessment through facial move-
ments based on the NFCS [5], [10]. This framework was cre-
ated using the Embarcadero Delphi XE2 software for Windows
operating system. In order to measure the facial pattern of a
neonate, Heiderich et al. used the LuxandFaceSDK software,
enabling the identification of 66 facial landmarks, such as the
contour of the eye, nose, and mouth, and the tip of the nose.
When the neonate featured three or more of the facial actions
based on the Neonatal Facial Coding System (NFCS) [5], [10],



it was considered that the neonate was suffering from pain. The
results obtained by Heiderich et al. showed 85% of sensitivity
and 100% specificity when assessing a neonate during periods
of rest and 100% of sensitivity and specificity when assessing
a neonate with pain. Among all the frameworks analysed in
this section, this is the only one that was implemented to use
in real clinical situations.

Later, Teruel et al. [11] implemented a pattern recogni-
tion and feature extraction method based on the framework
proposed by Thomaz et al. [12]. This method uses Principal
Component Analysis [13] in order to reduce the dimensionality
of the input data (in our case, a neonate face image) and, then,
uses the Maximum uncertainty Linear Discriminant Analysis
[12] to identify the hyperplane that better discriminates the
input data, enabling its classification as ”pain” or ”no pain”.
Teruel obtained an accuracy of 100% when comparing his
results with the health-professionals classification. However,
when comparing with the NFCS, the method showed 72.77%
of accuracy.

In 2018, Zamzmi et al. proposed two different techniques
based on the use of Convolutional Neural Networks (CNNs).
Their first work [14] proposed the use of transfer learning to
four pre-trained CNNs architectures: VGG-F, VGG-M, VGG-
S, and VGG-Face [15]. VGG-F, M, S architectures were orig-
inally trained on the ImageNet dataset for object classification
while VGG-Face was trained on a face-specific dataset. Deep
features of each input data were extracted from high- and
lower-layer of these architectures and, then, these features
were used to train a supervised machine learning classifier. The
results obtained achieved 0.841 AUC and 90.34% accuracy. It
was also observed that the VGG-Face architecture performed
better than others since this architecture was pre-trained on
a face dataset, leading to a better feature extraction. More
recently, Zamzmi et al. also proposed a Neonatal Convolu-
tional Neural Network (N-CNN) [16], designed and trained
end-to-end to detect neonatal pain. The architecture is a
cascaded CNN that has three convolutional branches, allowing
combining the image-specific information with the general
information after applying convolutions. The features obtained
by these branches are merged and, then, classified as ”pain” or
”no pain” by two fully connected layers. The proposed N-CNN
achieved 91% average accuracy and 0.93 AUC on the Neonatal
Pain Assessment Dataset [16] and 84.5% average accuracy on
the infant Classification of Pain Expression dataset [17]–[19].

B. Contribution

This paper presents a novel computational framework based
on CNNs to automatically identify the facial expression of
pain in neonates, showing feasibility in real clinical situations.
We approach this problem by applying transfer learning to
a CNN architecture pre-trained with face images. We adapt
this architecture adding fully connected layers specifically
trained with neonatal face images captured before and after
painful clinical procedures carried out routinely. Then, this
classification model was embedded in a mobile application
in order to make this framework practical for everyday use.

Moreover, we used an explainable AI method to better un-
derstand the relationship between the classification model
prediction in terms of its features (image pixels). To the best of
our knowledge, this paper is the first to apply these techniques
in neonatal pain classification, identifying facial regions that
might be relevant to pain assessment, leading to a better
comprehension of the facial expressiveness of a neonate when
experiencing pain.

C. Outline

The paper is organised as follows. In Section II we describe
the neonatal pain assessment datasets, computational methods,
and implementation of our mobile application. Then, Section
III presents evaluation metrics results and our findings on
model interpretability. And Section IV comments on the
feasibility of our mobile application. Finally, we conclude and
provide guidance for further work in Section V.

II. MATERIALS AND METHODS

This section is divided into three parts: (1) Face image
datasets, (2) Computational methods, and (3) Implementation
of our mobile application.

A. Face Image Datasets

We used two image datasets to design our proposed frame-
work: UNIFESP [3] and iCOPE [17]–[19].

1) UNIFESP Image Dataset: The UNIFESP dataset was
developed by Heiderich et al. [3] at the Federal University of
São Paulo. It includes 30 healthy neonates (7 late preterms
and 23 born at term) with 34 to 41 weeks of gestational
age and 24 to 168 hours of life. For each neonate, it was
recorded 10 minutes videos before, during, and after painful
procedures. These procedures, such as venipuncture, capillary,
or intramuscular injection, were performed while collecting
routine tests or administering vaccines. After capturing the
videos of each neonate, images were extracted every three
seconds.

All photographs were captured using three Foscam cameras
with a resolution of 320x233. From the images captured by the
system, 12 images were chosen for each one of the 30 partici-
pating neonates. In total, 360 images were collected, of which:
138 were captured before a painful procedure, 30 during the
procedure, and 192 images captured within 10 minutes after
a painful procedure. Subsequently, each image was randomly
submitted for evaluation by health professionals. These health
professionals were neonatologists with experience working
in neonatal intensive care units. The assessment led to 164
images classified as ”in pain” and 196 images classified as
”without pain”.

It is noteworthy that these images have not undergone any
kind of transformation or processing, maintaining the original
features from the recording. Besides the face of the neonate,
objects related to the hospitalisation and also other parts of
the body, such as the neck and hands, are present in the
images. Therefore, the similarity with real situations found
in the intensive care units is preserved.



2) infant Classification of Pain Expression: The infant
Classification of Pain Expression (iCOPE) dataset was de-
veloped by Brahnam et al. [17]–[19] during a study at the
St. John Hospital (now called Mercy Hospital) with the
Neonatology Department in Missouri, USA. A total of 200
images were captured from 26 neonates, 13 girls and 13 boys,
all Caucasians. The age group of these neonates ranges from
18 hours to 3 days of life. Although all of them were in good
health, it was reported that six male babies were circumcised
the day before the photos were captured and that everyone’s
last feed was done in a period of 45 minutes to 5 hours before
the photographs were taken.

All images were photographed using a Nikon D100 dig-
ital camera in ambient light conditions with a resolution of
3008x2000 in a room separate from other neonates. The
neonates were photographed during a session in which they
experienced 4 different stimuli performed in the following
sequence:

1) Transport from one crib to another: after transport
between cribs, the neonate was swaddled and several
photographs were taken over 1 minute. Besides, it was
noted whether the neonate was crying or resting;

2) Air stimulus: after resting for 1 minute, the neonate’s
nose was exposed to a breath of air emitted from a
squeezable plastic camera lens cleaner;

3) Friction: after 1 minute, the external lateral surface of
the heel was rubbed for 10 to 15 seconds with cotton
wool soaked with 70% alcohol;

4) Pain: after 1 minute of rest, the external lateral surface
of the heel was punctured for blood collection. The
photographs were taken from the moment the needle
was introduced until the end of the collection.

This dataset is composed of: 63 images of neonates resting,
18 crying, 23 images of air stimulation, 36 during friction, and
60 with neonates during a painful procedure.

B. Computational Methods
To design our computational model, we performed three

main steps:
1) Facial Detection: using a facial recognition algorithm,

we extracted neonate faces from all images of both
datasets;

2) Data Augmentation: we performed several image ma-
nipulations, such as rescaling and rotation in order to
increase the diversity and quantity of our training set;

3) Classification Model: we apply transfer learning to a
CNN architecture pre-trained with face images and
also add fully connected layers specifically trained with
neonatal face images, enabling pain assessment.

1) Facial Detection: We applied the state-of-the-art Retina
Face [20] algorithm in all images of the UNIFESP and iCOPE
datasets to extract the face from each image. It is a single-stage
pixel-wise face localisation method that employs a multi-task
learning strategy to simultaneously predict face score, face
box, five facial landmarks, and 3D position and correspon-
dence of each facial pixel. The results obtained in the original

experiments by the authors outperformed existing methods and
achieved average precision equal to 91.4%. Accordingly, all
faces from UNIFESP and iCOPE datasets were detected.

2) Data Augmentation: It is well known that in order to
successfully train a CNN, a significant amount of images
is required. Therefore, for each face image of our dataset,
we generated a total of 20 augmented images. Using Tensor
Flow [21], we applied the following manipulations: rotation
angle (30º), rescaling (0.15), horizontal (0.2) and vertical
(0.2) offsetting, brightness (0.5 - 1.1), zoom (0.7 - 1.5) and
horizontal flip.

3) Classification Model: Following results presented by
Zamzmi et al. [14], we chose the VGG-Face architecture with
16 layers, originally proposed and implemented by Parkhi
[15], as our classification model. Since we are dealing with a
small dataset it is common to use the transfer-learning method,
where we take advantage of an already pre-trained VGG-Face
model, adding a fully-connected classifier on top, specifically
trained with neonatal face images captured before and after the
painful clinical procedure to classify the facial expression into
two classes ”pain” or ”no pain”, without pain level detection.
We used Tensorflow [21] for training and testing our proposed
CNN.

To find the best architecture, we performed a random search
with parameters ranging from 50 to 2048 neurons and 1
to 3 fully connected layers. Using both datasets, the result
suggested 2 fully connected layers with 512 neurons each.
We used the Categorical Cross-Entropy with L1 regularisation
penalty as the loss function and the RMSprop (Root Mean
Square Propagation) [22] as our gradient descent optimisation
algorithm. Experimentally learning rate (ηpre−ft = 1e − 4
and ηduring−ft = 1e − 6 ), dropout (50%) and weight
regularisation (l1 = 5e−4) have also been selected, preventing
overfitting.

It is noteworthy that all images must match the VGG-Face
input size of 224 x 224 x 3. Also, Parkhi [15] changed RGB
channels to BGR and centralised values of each channel on
zero. An example is shown in Figure 1.

Fig. 1. VGG-Face pre-processing on an iCOPE image.

The training process was carried out to obtain three classi-
fication models: (1) trained with the UNIFESP dataset only,
(2) trained with the iCOPE dataset only, and (3) trained with
the UNIFESP + iCOPE dataset. However, all models were
tested on both datasets (UNIFESP + iCOPE). Prior to fine-
tuning, only weights of fully connected layers were adjusted.



Fine-tuning started when the result had not improved after 5
epochs, leading to weight adjustment of Groups 4 and 5 of
the convolutional layers as well. We performed training with
a batch size of 16. Each model was evaluated with the Hold-
Out Cross-Validation technique (10 repetitions), randomly
choosing independent test sets (20% of original datasets) for
each repetition. The best model was optimised using the
TensorFlow Lite Dynamic Range Quantisation function. The
embedded model was quantised from floating-point weights
(float32) to integers (int8) and during the inference process,
weights are converted back from integers to floating points
and cached in memory to reduce latency.

C. Mobile Application

We developed a mobile application capable of detecting
a neonate’s face and classifying it as ”pain” or ”no pain”
with low latency and offline. Also, our software registers
the performed analysis and makes them available for query,
allowing metadata analysis and the collection of new face im-
ages. The classification model previously described had been
optimised for mobile environment, considering the mobile
devices’ storage and processing specification. The application
was developed for Android OS using the Android Studio IDE.

On the app’s home screen, illustrated in Figure 2a, three
buttons activate different functionalities of the application:
instructions, camera, and history.

In Instructions, the user will find a quick guide for the app
operation containing texts and images explaining the other two
functionalities (camera and history).

Selecting the Camera button activates the app’s main func-
tionality: the neonatal facial expression classifier. Initially, in
this mode, the user is asked to type the neonate’s name to
register the analysis that is going to be done. Then, the screen
will show the back-camera’s view, but with an oval shape
on its center, which should be used to guide the user when
positioning the neonate’s face on the screen.

The real-time analysis starts right after the name insertion
(Figure 2b). The camera automatically captures a picture,
which is then processed by the face detector algorithm. In
the mobile environment, the face detection is carried out by
the Face Detection API from the Firebase’s ML Kit, a Google
platform for mobile and web applications development. If that
algorithm could not detect a face in the captured image, the
oval shape assumes a red colour (Figure 2c), indicating that
the neonate’s face positioning had not been done properly, and
the app automatically captures another picture. In contrast, if a
face was successfully detected, the oval shape is presented in
green. The picture’s region corresponding to the detected face
is cropped out and inputted in the classification model, which
will determine if the facial expression indicates the presence of
pain or not. These screens are illustrated in Figures 2e and 2d.
At the end of the classification model analysis, the user will see
the image’s classification, the result’s confidence score, and the
processing time. Then, the application automatically captures
another picture, and the face detection and classification pro-
cess are repeated. In order to interrupt this cycle and conclude

TABLE I
EVALUATION METRICS RESULTS FOR EACH MODEL.

Metric UNIFESP iCOPE Both
Accuracy 72%± 3% 83%± 2% 89%± 4%
Precision 0.85± 0.04 0.80± 0.03 0.86± 0.05

Sensibility 0.62± 0.06 0.93± 0.04 0.92± 0.05
F1 0.72± 0.04 0.86± 0.02 0.89± 0.04

AUC 0.74± 0.03 0.82± 0.03 0.86± 0.05

the real-time analysis, the user needs to exit the Camera mode
and get back to the app’s home screen. To execute another
analysis, the user must select the Camera button again.

At last, by selecting the History button at the home screen,
the application will present a list containing the performed
analyses register and a search tool, which can be used to find
a specific neonate. This screen is shown in Figure 2f. The
software always saves the first picture associated with the state
change (“pain” or “no pain”) of the subject’s face. Therefore,
in the Camera mode, after the analysis start, the first face to be
detected will be saved, independently of the results. The next
facial image to be saved is going to be the first one to receive
a different classification from the last one. For instance, if in
the first moment the neonate’s face expression was classified
as “no pain” (the first image to receive this denomination
was saved), after detecting a state change (”pain”), the first
face image will be saved. From this moment, the next face
image to receive the “no pain” classification will be saved as
well, and the cycle goes on until the user ends the analysis.
This algorithm allows a highly scalable solution for depicting
hundreds and thousands of neonatal face images.

Saved face images are associated with the neonate’s name,
the classification given, the reliability, and the date and time of
the image capture, resulting in an analysis record. All records
are grouped by the neonate’s name, composing a profile for
each patient. To view a specific profile, the user may type the
neonate’s name into the search tool. By clicking on the desired
profile, the user will be directed to a screen containing graphs
about the total number of analyses, days, and hours when the
neonate was assessed as ”pain” or ”no pain”. Figure 2g shows
this profile.

III. RESULTS AND DISCUSSION

In this section, we describe the results of our framework.
Firstly, we present the evaluation of our classification model
and, then, the results of model interpretability.

A. Evaluation Metrics

Table I shows results obtained for each classification model,
as described at the end of Section II-B3.

We can see that, even though the UNIFESP model achieved
72% mean accuracy, the sensibility was relatively low (< 0.7).
That means that the model has incorrectly classified a consid-
erable amount of images as ”no pain” (false negatives). This
result also compromised the F1 Score and AUC. These metrics
are equally important due to the serious consequences that
under- or over-treatment of pain may cause to the neonate.



(a) Mobile application home
screen.

(b) Input neonate’s name. (c) Failed face detection. (d) Neonate with ”pain”.

(e) Neonate with ”no pain”. (f) History. (g) Individual analyses.

Fig. 2. Mobile application screens.

Afterward, we can observe that the iCOPE model presented
substantial gain in sensibility, leading to better F1 Score
and AUC when comparing to the UNIFESP model. Overall,
the iCOPE model obtained a better performance than the
UNIFESP model. Our hypotheses are that this better perfor-
mance is due to the higher resolution of the iCOPE dataset or,
perhaps, by the fact that all neonates of the iCOPE dataset are
Caucasians. Further investigations are still necessary. Lastly,
we can observe that the model trained with both datasets
(UNIFESP + iCOPE) showed a better performance than both
models analysed previously with 89% accuracy, 0.89 F1 Score,
and 0.86 AUC. Specifically, the model obtained presented bet-
ter metrics when comparing to the UNIFESP model, although
it showed a slightly better performance than iCOPE model.
We believe that these results are suited for neonatal pain

assessment since commonly used clinical pain scales achieved
similar results, such as the NFCS [10] that achieved reliability
of 0.86.

We applied Analysis of Variance (ANOVA) [23] to verify
the statistical difference between all models. The results sug-
gest that UNIFESP + iCOPE model is the one that achieved
better performance and differences between evaluation metrics
are statistically significant at the p = 0.05 level.

Finally, we carried out a new training using UNIFESP +
iCOPE dataset to better maximise evaluation metrics. This
model achieved 93.07% accuracy, 0.9431 F1 Score, and 0.9254
AUC. As noted in Section II-C, we performed a mobile envi-
ronment optimisation using the Dynamic Range Quantisation
function available on TensorFlow [21]. The model had a
reduction in memory space cost from 160Mb to 26Mb and



showed similar performance to the original. These results are
shown in Table II.

TABLE II
FINAL CLASSIFICATION MODEL. EVALUATION METRICS PRIOR TO AND

AFTER MOBILE ENVIRONMENT OPTIMISATION.

Model Accuracy Precision Sensibility F1 AUC
Prior 93.07% 0.9355 0.9508 0.9431 0.9254
After 93.07% 0.9107 0.9623 0.9358 0.9291

B. Model Interpretability

In order to better understand the relationship between our
classification model prediction in terms of its features, we
applied an explainable AI method, named Integrated Gradients
[24]. The main idea of this technique is to accumulate pixel
(image feature) local gradients and attribute its importance as a
score for how much it adds or subtracts to the model’s overall
output class probability. To do so, we interpolate (α) images
between a baseline image (e.g. black image with pixels equal
to zero) and the input image. Then, we compute gradients
to each interpolated image and we accumulate these local
gradients, approximating the integral between the baseline and
input image. Based on these accumulated local gradients, we
have an attribution mask highlighting pixels relevant to the
classification.

Figures 3 and 4 show some examples of Integrated Gra-
dients applied to the test set of both datasets. Observing
Figure 3, we can see that the most highlighted facial features
are the forehead, upper contour of the nose, and nasolabial
groove. Specifically to images classified as ”pain”, Integrated
Gradients highlighted the mouth with tongue protrusion. Inter-
estingly, however, is the fact that Figure 3b shows a neonate
classified as ”no pain” with 59.89% probability and with the
mouth open. Finally, it is noteworthy that these images did
not present gradients highlighting secondary artifacts of the
image, such as the blanket, but were concentrated on the face
of the neonate itself.

Figure 4 shows results on the UNIFESP dataset, highlight-
ing similar facial features. Interestingly about Figure 4c, it
shows a neonate with deep eye contours, and this feature
was highlighted as well. However, as shown in Figures 4b
and 4d, Integrated Gradients showed high dispersion in these
images, highlighting, besides the face, other artifacts of it. As
questioned before, the higher resolution of the iCOPE dataset
may preserve better information for pain classification.

Analysing these results, we believe that the nasolabial
groove, as well as the open mouth and protrusion of the
tongue, maybe the most discriminating facial regions to pain
assessment. Moreover, it is interesting that these features are
deemed clinically relevant and agree with the visual percep-
tion of adults when assessing pain, whether they are health
professionals or not [10], [25].

IV. MOBILE APPLICATION FEASIBILITY

Recognition of neonatal pain is a challenge for health
professionals. The Mobile Convolutional Neural Network pro-

posed is revolutionary in the sense that facial recognition
of neonatal pain features will be independent of individual
variation. The ”human factor” in pain recognition may lead
to wide variation and it depends on previous pain experience,
affective mood and workload. In this context, the robustness
of the proposed app may be one of the important features of
its application in clinical practice.

Translational research need to be done in order to assess
the accuracy of the app for different neonates and clinical
situations in order to assess if the performance of the neural
network is less prone to to subjective variables that modify
pain assessment than the human performance.

V. CONCLUSION

This paper presents a novel computational framework im-
plemented in a mobile environment that uses AI techniques to
automatically identify the facial expression of pain in neonates,
presenting feasibility in real clinical situations and practical
for everyday use. Our findings showed promising results to
correctly identify the facial expression of pain in neonates with
high accuracy and generalisation capability.

Moreover, to the best of our knowledge, this is the first work
to apply explainable AI techniques in neonatal pain classifi-
cation. Our methodology presented novel results highlighting
as well sound facial regions that agree with pain scales used
by neonatologists and with the visual perception of adults
when assessing pain in neonates, whether they are health
professionals or not.

As future work, we intend to carry out practical tests of our
mobile application in the Neonatal Intensive Care Unit of the
São Paulo Hospital. We believe that these practical tests are
needed to identify limitations of the proposed solution when
dealing with difficulties of real situations, such as the presence
of artifacts on the face of the newborn and physiological
signal measuring instruments. We also intend to apply different
explainable AI methods to better understand facial regions
that might be relevant to pain assessment and use all the
depicted face images to enlarge the face image samples and
train our computational model. Finally, we are considering
to evaluate more recent CNNs architectures, such as the
Neonatal-CNN [16], the InceptionResNet [26], the DenseNet
[27], the MobileNet [28], and ResNet [29], [30].
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