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Abstract—2D keypoints detection is a computer vision task
applicable to several fields such as hand, face, and body tracking,
which provides useful information for spatial analytics, gestural
interactions, and augmented reality applications. This work
investigates the usage of depthwise separable convolutions (an
optimized convolution operation) to speed up the inference time
on a largely used architecture for 2D keypoints estimation.
We evaluate the impacts on the precision and performance of
such optimization on a hand pose estimation task. We also
extend the evaluation towards simulated challenging scenarios
of defocused lens, motion blur, occlusions, and noisy images to
understand how these stress situations affect both the original
and the optimized architectures. We show that the execution
time can be improved on average by 12.8% with an accuracy
compromise of less than 1 pixel (mean EPE). The experiments
on challenging scenarios revealed that the model powered by
depthwise separable convolutions is most fit for the occlusion
cases and noisy environments while suffering more on the motion
blur simulated scenarios.

I. INTRODUCTION

The detection of 2D keypoints is a generalizable task often
applied to retrieve human poses, including the estimation of
hand joints and facial landmarks. Applications are also found
in the HCI field for controlling vehicle functions through
micro-gestures [1], interacting in immersive Virtual Reality
(VR) systems [2], commanding smart homes gadgets and
devices such as televisions and wall displays [3] and other
general appliances [4], human-robot interaction [5] and reha-
bilitation therapy [6].

Approaches based on Convolutional Neural Networks
(CNNs) have been extensively applied to extract useful fea-
tures from images and, in particular, to detect 2D keypoints.
However, these techniques are often computationally costly,
requiring high-end Graphical Processing Units (GPUs) to
achieve execution on interactive frame rates [7], [8]. In this
sense, depthwise separable convolutions [9] can be used to
accelerate the inference time for CNN-based systems on the
most different tasks and is easy to apply on existing deep
learning models. These optimized convolutional layers also
have a significantly smaller number of trainable parameters,
allowing efficient models that can be executed on low and
mid-end GPUs and mobile or embedded devices.

However, reducing the number of trainable parameters may
prejudice the overall accuracy of the system. Additionally,

given 2D keypoints are extensively used for tracking purposes
(e.g., hand, body and face tracking), native challenges are
expected specially where users move around rapidly or where
there are dynamic cameras (as egocentric tracking solutions
for Head-Mounted Displays and handheld devices [10]–[12]),
generating issues due to the loss of focus, motion blur and
partial occlusions. Assuming the possibility that each of these
scenarios impacts the inference results in different manners,
a depthwise optimization can be analyzed considering these
varied scenarios.

In this work, we explore the usage of depthwise separable
convolutions for 2D keypoints detection in the context of hand
pose estimation, focusing on challenging scenarios for such
task. The main contributions of this work are:

1) An optimization of a broadly used architecture for 2D
keypoints detection (using depthwise separable convo-
lutions) achieving an improvement of 12.8% on the
average inference time with a ≈1 pixel average loss
of accuracy on an off-the-shelf hand tracking technique
evaluated on the Stereo Benchmark Dataset (STB) [13];

2) A data augmentation strategy and an augmented version
of the STB dataset [13] comprising simulated challeng-
ing scenarios that represent defocused lens, motion blur,
occlusions and noisy images;

3) A comparative analysis of the impacts of each challeng-
ing scenario on four versions of the target architecture
for 2D keypoints detection, which are 1) original, 2) op-
timized, 3) original retrained on the augmented dataset,
4) optimized retrained on the augmented dataset.

II. RELATED WORKS

A. 2D keypoints detection

In particular, 2D keypoints are a core step for human body
pose estimation. Earlier approaches treated the challenge as a
regression task [14] by extracting features and estimating the
keypoint position xi, yi in the image, in which i represents the
ID of the joint. Tompson et al. [15] proposed a more robust
approach that generates heatmaps as outputs, which predicts
the probability of the joint being in the given pixel. By taking
inspiration from this approach, many other works have been
proposed that improved the task’s accuracy and robustness.
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Zimmermann and Brox [16] proposed a related approach,
targeting the hand pose estimation task, called PoseNet, which
estimates 2D keypoints positions from a single RGB image.
The PoseNet architecture is similar to the work of Wei et al.
[17] and is also pre-trained with these weights. This approach
showed to be robust to self-occlusion cases and inspired other
works on the task of 2D hand pose estimation [18]–[22].

Guo et al. [23] proposed an approach for 3D hand pose
estimation (based on the proposal by Zimmermann and Brox
[16]) by predicting the 2D keypoints using PoseNet and lifting
them on a structured pose prior manner, improving the results
of the 3D hand pose estimation task.

Kong et al. [24] propose the use of a pool of graphical
models to estimate 2D keypoints in a rotation-invariant man-
ner. Although the PoseNet model is not applied directly in this
work, the work by Wei et al. is adopted as the 2D keypoint
estimation branch.

Fan, Rao, and Yang [25] follow the same pipeline for
predicting 3D hand keypoints as introduced before; first, they
propose the use of five sub-networks for refining the 2D
keypoints prediction and finally feeding them to a 3D pose
lifting module.

B. Depthwise separable convolutions

Sifre and Mallat [9] propose the depthwise separable con-
volutions inspired by a prior work on transformation-invariant
scattering [9], [26]. The authors applied this optimized con-
volution on the AlexNet [27] architecture and obtained small
gains in accuracy while significant gains in convergence speed
during training, as well as a meaningful reduction in model
size.

Later, an efficient model for mobile and devices with low
computational power was proposed by Howard et al. [8],
called Mobilenets. By using depthwise separable convolutions,
the computational cost of inference is lowered, allowing for
faster execution in mobile devices.

Following the implementation of earlier Inception CNN
models [28], [29], Chollet [30] proposes an ”extreme” incep-
tion architecture, referred to as Xception. Standard inception
modules are replaced by extreme versions, which implement
depthwise separable convolutions in the reverse order (first the
pointwise convolution, then the depthwise convolution). The
Xception model has shown improvements over the compared
Inception V3 model, and deeper evaluation shows that this is
due to more efficient use of trainable parameters.

Depthwise separable convolutions are also present on ar-
chitectures used for classifying diseases in plants [31]. For
medicine, Qi et al. [32] propose the use of this layer for stroke
lesion segmentation in brain images, and Girish et al. [33]
for intra-renal cyst segmentation. For electronics, Yoo, Choi,
and Choi [34] propose the use of architectures composed of
depthwise separable convolutions to allow for large models
to be used on embedded systems. Applications for depthwise
separable convolutions also include action recognition [35] and
geology [36].

C. Data augmentation and challenging scenarios

Augmenting datasets to add robustness against challenging
scenarios has been successfully used in recent literature to
mitigate problems in specific applications. Peng et al. [37] pro-
posed an augmented dataset for different head poses, lighting,
image quality (e.g., noisy and blurred images), and occlusions
settings for the task of face recognition, leading to significant
findings of the impact of each challenge, such as the impact of
shadows on eyes, nose, and mouth, and providing suggestions
to tackle these problems beyond using data augmentation.

Fong and Vedaldi [38] proposed a simple yet effective
paradigm for using occlusions on data augmentations for the
task of image classification, tackling the issue of ”photogra-
pher bias” present on datasets, meaning that the main subject
of these pictures tends to be centered and clearly visible on
the images. The authors also demonstrated that training on this
augmented dataset was beneficial for the technique, allowing
better occlusion-handling during evaluation.

Angelini et al. [39] proposed the use of an augmented
dataset for the task of human action recognition given a set
of 2D keypoints. The authors proposed strategies for human
action recognition for CCTV-based recordings, focusing on
issues such as occlusions and missing data, adding robustness
to these challenges by using an augmented dataset.

Chen et al. [40] proposed the use of dataset augmentation
for pedestrian detection. Their method can produce occlusion
cases by overlapping pedestrians, improving the detection
robustness for occlusions.

III. METHOD

A. 2D keypoints detection optimization

We propose an optimization of the PoseNet architecture,
firstly proposed Zimmermann and Brox [16], to detect 2D
keypoints given an RGB image as input. PoseNet is an
architecture based on simple convolutional blocks consisting
of a convolutional layer and followed by a pooling layer.
Approaches that are based on PoseNet or that follow the
same baseline of PoseNet have been extensively applied on the
literature for the task of hand pose estimation [20], [23]–[25],
[41]–[44]. In a more general view, PoseNet is directly inspired
by the way that Convolutional Pose Machines [17] extracts
features, especially on its first stage of computation. Many
other models based on the approach proposed in Convolutional
Pose Machines [17] are then also relatable to PoseNet, such
as OpenPose [45], [46]. Therefore, the findings and proposals
present in this research work are also relatable to other
approaches for 2D keypoints detection, serving as suggestions
and a baseline for the design of models that need to be robust
for challenging scenarios without compromising efficiency.

The proposed optimization is achieved by swapping the
dense convolutional layers for depthwise convolutional layers,
keeping the ReLU (Rectified Linear Unit) activations when
needed. The model’s outputs are J score maps, which we use
to predict the 2D locations. We show our proposed architecture
on Figure 1.



Fig. 1. Our proposed approach for 2D hand keypoints detection. We use as input for the PoseNet architecture a RGB image as input and a bounding box of
the hand (estimated using a segmentation technique also proposed by [16]). The first 17 convolutional layers have their weights pre-loaded from Convolutional
Pose Machines [17] and the subsequent layers are swapped for depthwise separable convolutions. Finally, the optimized network predicts the heatmap for
each joint.

Fig. 2. Example of a dense convolution operation. We convolve a kernel of
size Qm with the input image with shape (Nm, Nm, Dm), generating an
output of shape (Nm+1, Nm+1, Dm+1).

Depthwise separable convolutions allow optimizations, re-
ducing the cost of the convolutional operation by lowering
the number of total multiplications done in the process and
reducing the redundancy in the output features [9]. Given an
input of shape (Nm, Nm, Dm), in which Nm is the input
size and Dm its depth, a dense convolution would move
a kernel of dimensions (Qm, Qm, Dm) in which Qm is
the kernel size around the image applying the convolution
operation. The result of this operation is an output of shape
(Nm+1, Nm+1, Dm+1). The number of trainable parameters
for this operation is given by Q2

m ×Dm ×Dm+1 and gives a
vector of dimension Dm+1 in the output layer. We illustrate
the operation in Figure 2.

First, we apply a depthwise convolution, in which each
input depth is filtered with Km filters, a variable called depth
multiplier that controls the number of free parameters and
can be chosen arbitrarily without changing the input and
output depth of a kernel size Qm. For this stage, we have
Q2

m × Dm × Km trainable parameters. The result of this
operation is an intermediate layer of depth Dm × Km and,
at each position of the layer, the vector consisting of all
depths of this intermediate layer is transformed with matrix
multiplication, the pointwise convolution stage, resulting in
Dm ×Km ×Dm+1 and an output layer of depth Dm+1. We
exhibit the operation in Figure 3.

Fig. 3. The depthwise separable convolutions proposed by Sifre and Mallat
[9]. (a) In the depthwise phase, we convolve each depth channel of the input
with a single kernel, resulting in an (b) intermediate layer of depth Dm. We
apply a depthwise convolution at each position of this intermediate layer to
generate (c) the output layer of depth Dm+1 [9].

Therefore, a depthwise separable convolution layer can
have the same output depth as a dense convolution layer,
displaying the possibility of a direct replacement with less
redundancy. A depthwise separable convolution layer has a
total of Km×Dm×(Q2

m+Dm+1) trainable parameters, against
Q2

m×Dm×Dm+1 trainable parameters for a dense convolution
layer [9]. For our specific proposal, the total number of
trainable parameters for the selected layers decreased from
13, 045, 586 to 1, 206, 930, a compression ratio of 90.75%.

B. Data augmentation for challenging scenarios

To understand the impacts of the optimization strategy,
we propose an augmented dataset comprising challenging
scenarios for the 2D keypoint estimation task. Following the
baseline [16], we use two datasets for training and evaluation:
the Rendered Handpose Dataset (RHD) [16], which contains
approximately 44.000 synthetic images, and the Stereo Bench-
mark Dataset (STB) [13], with 18.000 annotated frames.

We split both datasets into training and validation sets fol-
lowing the baseline [16] to allow direct comparison. The RHD
dataset is divided into R-train, containing ≈ 41,200 images,
and R-val, containing ≈ 2,700 images. The STB dataset is
divided into S-train, containing 30,000 images and on S-val,
containing 6,000 images. Using a fine-tuning strategy, we train
the PoseNet variants first with synthetic images (R-train) and
then with real images (S-train).



The data augmentation targeted the S-train and S-val
datasets by adding artifacts relative to the challenging scenar-
ios on 20% of the images. For each different configuration of
each challenging scenario a new subset of 20% of the images
is created, focused on that particular condition (Figure 4). We
refer to these modified datasets as S-train* and S-val* for
train and evaluation sets, respectively. We evaluate each of the
proposed configurations by using a pipeline consisting of two
scenarios: (1) evaluating the capability to deal with unseen
challenges by training only on the original dataset (without
artifacts on S-train) but validating on them on the challenging
condition (S-val*) and (2) by training and validating on the
datasets with artifacts (training on S-train* and validating on
S-val*). We exemplify the evaluation pipeline on Figure 4.

Fig. 4. Full pipeline of our proposed evaluation.

The augmentation of each challenging scenarios present in
the S-train* and S-val* datasets are detailed as follows:

• Defocused lens to simulate the capture of images out of
focus, which causes a blurry effect that leads to the loss of
useful features in the image by applying Gaussian blur to
the augmented dataset. In this experiment, we simulated
different defocusing levels by using three different kernel
sizes for the Gaussian blur filter: 7×7, 13×13 and 21×21.

• Motion blur is a common condition in tracking scenarios
due to the movement of the target object or camera in the
scene during the exposure time, which is the time that
the camera shutter remains open [47]. It occurs when the
camera is placed on moving vehicles (e.g., automobiles
or planes) or when human hands hold the camera [48]. In
this experiment, we simulated this challenge by applying
a horizontal motion blur filter with three different kernel
sizes: 15× 15, 30× 30, and 45× 45.

• Occlusion denotes cases when a part of the target object
is not visible (e.g., covered up by another object) in
respect to the camera’s line of sight. Due to the loss of
features, occlusion is a challenging task for tracking solu-
tions. In this experiment, we simulate partial occlusion of
the target object (i.e., tracked hand) by covering different
parts of it with a black square. Using the ground-truth
annotations, we estimate a bounding box around the area
of the hand by calculating the minimum and maximum
coordinates for all keypoints. We add a margin of 15%
to this bounding box to ensure the hand fits inside of this
region of interest (ROI). Within the considered region, we
randomly select a point (x, y) that we use as the center
of the occlusion square. Using the center, we draw three
variations of the black square (with areas representing
occlusions of 10%, 20%, and 30% of the ROI).

• Noise often denotes an unwanted component of the input
image. It can occur due to faulty camera sensors or
transmission in a noisy channel [49], [50]. The Gaussian
noise is arguably the most common noise, which can
result from captures on poorly illuminated environments
or high temperature from the sensors [49]. This noise is
an additive noise, and we implement it by adding to the
image random noise samples from a normal distribution
with mean µ = 0 and standard deviation σ2 = 0.01.
Additionally, we use the salt and pepper (S&P) noise to
simulate a variety of processes that result in the image
degradation in which only a few pixels are noisy, however
with strong variations [49]. Errors in image acquisition
are what generally cause degradation by S&P noise [51].
Setting a probability r = 0.05 that a pixel is corrupted,
we apply the S&P noise by setting r/2 randomly selected
pixels to salt and another r/2 randomly selected pixels
to pepper. We apply the degradation in each channel of
the image, resulting in red, green, or blue noisy pixels.

IV. RESULTS AND DISCUSSION

For the exposition of the experiments, we will refer to
the original PoseNet architecture proposed by the baseline as
dense, and the optimized variant as depthwise. All configura-
tions were evaluated using the following metrics: the EndPoint
Error (EPE), which quantifies the difference in pixels between
the ground-truth and the predicted results; and the Area under
the Curve (AuC), in which, varying a threshold in pixels, we
calculate the Percentage of Correct Keypoints (PCK) and then
calculate the area under this specific curve.

We also calculate the average and minimum inference time
for each image. We compare the performance of the dense
and the depthwise variants by training both architectures on
the S-train dataset and evaluating them on the S-val dataset.
The results of this evaluation are displayed on Table I.

Regarding the inference time, the dense configuration
reached an average of ≈ 29.31 ms and a minimum of ≈ 27.19
ms while the depthwise variant achieved ≈ 25.55 ms as aver-
age and ≈ 20.55 ms as minimum, an increase in performance
of 12.83% and 24.42%, respectively. Regarding the accuracy,



TABLE I
PERFORMANCE AND ACCURACY EVALUATION OF PoseNet DENSE AND

DEPTHWISE VARIANTS ON S-VAL USING THE PROPOSED METRICS.

Metric Architecture
dense depthwise

Avg. mean EPE 16.95 px 17.60 px
Avg. median EPE 6.09 px 6.31 px

AuC 0.733 0.723
Avg. inference time ≈ 29.31 ms (34 fps) ≈ 25.50 ms (39 fps)
Min. inference time ≈ 27.19 ms (37 fps) ≈ 20.55 ms (49 fps)

Fig. 5. Qualitative analysis of the proposed configurations. (a) shows the re-
sults from the dense configurations and (b) from the depthwise configuration.

the depthwise configuration indicated an increased error on
the EPE metric for the mean and median scores, both under 1
pixel error, and a loss of 0.1 area on the AuC metric. A visual
analysis of the dense and depthwise results demonstrated no
perceptible difference between the predictions (Figure 5).

We conducted further experiments focused on challenging
scenarios to stress the possible impacts each condition would
impose on both the dense and depthwise. Figure 6 illustrates
sample retrieved 2D keypoints (and the corresponding hand
pose) for each condition. The accuracy-related results of all
challenging scenarios are displayed in Table II.

A. Per challenge analysis

1) Defocused lens: the dense architecture, while consider-
ing the standard evaluation as a baseline (first line of Table II),
presented an increased mean and median EPE and AuC for
all the tests performed on the S-val*. In particular, the mean
EPE increased in ≈6, ≈9, and ≈5 pixels while tested on the
blurred sets using the 7 × 7, 13 × 13, and 21 × 21 kernels
respectively. This result revealed a counter-intuitive behavior,
presenting a higher error (≈9) for a less intense blur effect
(13× 13 kernel compared to the 21× 21 as illustrated in the
”Defocused Lens” part of Figure 6). This behavior repeats
in all training configurations and variants of the architecture
for the defocused lens experiment. Currently, we have no
hypothesis regarding this curious behavior. In addition, while
comparing to the versions trained on S-train, training the
dense version on the augmented dataset S-train* resulted
in slightly worse values in all metrics, which may point to
avoid this specialized training procedure for this contextual
challenge on the dense version of the network.

Fig. 6. Qualitative results of each challenging scenario for both dense and
dephtwise configurations.

Regarding the depthwise variant, the average difference
in accuracy on all configurations (of training procedures and
kernel sizes) is below 2 pixels. Unlike the case of the dense



TABLE II
QUALITATIVE EVALUATION BETWEEN CHALLENGES

Challenge Train set Configuration
Architecture

dense depthwise depthwise-dense
Mean Median AuC Mean Median AuC Mean Median AuC

Standard 16.958 6.095 0.733 17.608 6.313 0.743 +0.650 +0.218 +0.010

Defocused lens

Trained on S-train
7x7 22.745 6.577 0.681 23.939 6.785 0.670 +1.194 +0.208 -0.011

13x13 26.251 7.121 0.628 27.923 7.313 0.623 +1.672 +0.192 -0.005
21x21 21.790 6.871 0.664 22.725 7.357 0.644 +0.935 +0.486 +0.020

Trained on S-train*
7x7 23.153 6.798 0.671 24.266 7.062 0.659 +1.113 +0.264 -0.012

13x13 26.784 7.387 0.626 26.120 7.487 0.626 -0.664 +0.100 0.000
21x21 21.816 6.875 0.663 22.719 7.354 0.644 +0.903 +0.479 +0.019

Motion blur

Trained on S-train
15x15 26.331 7.122 0.627 27.861 7.298 0.624 +1.530 +0.176 -0.003
30x30 31.039 7.331 0.599 27.914 7.730 0.609 -3.125 +0.399 +0.010
45x45 32.475 7.330 0.597 35.906 7.592 0.589 +3.431 +0.262 -0.008

Trained on S-train*
15x15 24.761 7.059 0.644 26.965 7.279 0.634 +2.204 +0.220 -0.010
30x30 28.027 8.345 0.585 27.930 7.373 0.609 -0.097 -0.972 +0.024
45x45 28.422 7.894 0.609 31.142 8.111 0.593 +2.720 +0.217 -0.016

Occlusion

Trained on S-train
10% 18.372 6.207 0.722 19.135 6.427 0.711 +0.763 +0.220 -0.011
20% 22.085 6.412 0.697 22.902 6.663 0.686 +0.817 +0.251 -0.011
30% 28.583 6.731 0.662 29.854 6.980 0.651 +1.271 +0.249 -0.011

Trained on S-train*
10% 18.725 6.426 0.717 18.939 6.663 0.710 +0.214 +0.237 -0.007
20% 21.444 6.497 0.696 21.222 6.563 0.699 -0.222 +0.066 +0.003
30% 27.783 6.843 0.667 27.717 6.800 0.670 -0.066 -0.043 +0.003

Noise: Gaussian Trained on S-train 38.845 7.326 0.597 38.997 7.588 0.587 +0.152 +0.262 -0.010
Trained on S-train* 26.109 7.062 0.636 25.610 7.238 0.637 -0.499 +0.176 +0.001

Noise: Salt Pepper Trained on S-train 32.361 7.323 0.598 38.895 7.599 0.588 +6.534 +0.276 -0.010
Trained on S-train* 30.161 8.075 0.586 28.826 7.939 0.599 -1.335 -0.136 +0.013

Accuracy results of both dense and depthwise variants on all challenging scenarios (S-val*). The depthwise-dense columns summarize the direct
comparisons of the differences between the two versions (original and optimized) of the PoseNet.

architecture, on the depthwise version for stronger defocusing
effects (kernels of 13×13 and 21×21) the specialized training
on S-train* showed slight improvements on the mean EPE.

2) Motion blur: The results of the dense architecture on
the scenario that simulates the motion blur (Table II) showed
an increased error ≈9 pixels on the mean EPE for the least
distorted configuration (15x15 kernel) going up to ≈16 pixels
on the most distorted case (45x45 kernel). For this challenging
scenario, training the dense variant with S-train* reduces
the mean EPE error for all configurations (the error drops
between 2 and 4 pixels). The median EPE, on the other hand,
presented slightly increased errors (≈1 pixel in the worst case)
after training in the S-train*. The qualitative results shown in
Figure 6 demonstrate errors related to this case.

The depthwise architecture trained on S-train presents
better results for the 30x30 kernel on mean EPE and AuC,
while the median EPE increases by ≈0.4. For the other kernel
sizes, the depthwise versions presented accuracy decreases on
all metrics. Training with the augmented set (S-train*) also
showed mixed results depending on the configuration. Thus,
it is not conclusive if it is positive to train the depthwise archi-
tecture on a specialized dataset (S-train*) for this challenge.

3) Occlusion: The dense architecture showed errors of ≈2,
≈5, and ≈8 pixels on the mean EPE for the occlusions of 10%,
20%, and 30% respectively (Table II). This result indicates that
the inference can handle occlusions to a certain point, which
can be verified in Figure 6, where the network infers positions
for the missing joints. Training the dense version on S-train*
improved the mean EPE for larger occlusions (>20%), while
slightly decreasing (≈-0.2 pixels) the median EPE.

The depthwise variant, while trained on S-train, is outper-
formed (with a small margin) by the dense version in every
metric for this challenge. However, the depthwise trained on
S-train* delivers slightly better mean EPE and AuC results for
the occlusions of 20% and 30% for both dense cases (trained
on S-train and S-train*). Regarding the occlusion level of 10%
the depthwise version trained on S-train* comparable results
to the other options. Therefore, the depthwise trained on the
augmented set (S-train*) seems particularly suitable for this
type of challenging scenario.

4) Noise: The dense network an increased error of ≈22
pixels on the mean EPE metric for the Gaussian blur config-
uration (Table II), once compared to the Standard baseline
network (tested on the original validation set S-val). This may
point that this type of challenge, simulated on the extended
validation set S-val*, heavily affects a portion of the detected
2D keypoints. Once the dense architecture is trained on the
augmented set S-train*, the mean EPE improves lowering
the error by ≈13 pixels. Improvements are also perceived in
the median EPE and AuC metrics, pointing that the network
may handle better this type of challenge once training on an
augmented set.

The depthwise version improves, as well, once trained on
the S-train* for the noise challenge on the Gaussian configu-
ration. On the mean EPE metric, the depthwise outperforms
the dense by ≈0.5 pixels), while on the other metrics, the
difference is below 0.3 pixels for the median EPE and 0.01
area for the AuC. The noise experiments of the salt and
pepper configuration produced similar behavior, also pointing
the depthwise specialized (trained on S-train*) architecture



with a better mean EPE and similar median EPE and AuC
results. These findings may suggest depthwise optimization as
an alternative to improve performance without compromising
accuracy for this type of challenging scenario.

B. Cross challenge analysis

While analyzing the impacts of each challenge compar-
atively, it is possible to point which contexts affect most
both the original dense architecture as well as the depthwise
optimized version. Overall, the results point that the depth-
wise version takes more advantage of the augmented training
procedure. In all challenging scenarios the use of the S-train*
set allows the depthwise to surpass the dense variant in part
of the accuracy metrics.

While comparing the results of the studied challenges, on
average, the minor (10%) and mild (20%) occlusion scenarios
were the hindrances that least affected the 2D keypoints
detection. As the most affected cases, the noise conditions
(given no augmented set is provided for training) provide mean
EPE, median EPE, and AuC values amongst the worst cases.
On the other hand, these were the cases where the training
procedure using S-train* presented the higher accuracy gains,
especially for the depthwise version.

The motion blur is the second challenge that heavily
impacted the resulting accuracy. Additionally, this was the
scenario in which the depthwise optimization imposed the
worst difference on the mean EPE (even after trained on S-
train*) if compared to the dense version. This may point that
the depthwise variant results in more extreme errors on this
type of challenge.

At last, Table II shows that for on the defocused lens
challenge there is a drop in accuracy on the mild configuration
(13 × 13) that is recovered on stronger blurred configuration
(21 × 21). The same behavior is present on the motion blur
challenge considering specifically the median EPE metric, the
mild configuration (30× 30) presents worse median EPE than
the stronger one (45 × 45). This behavior suggests that the
accuracy of the PoseNet inference does not respond linearly
to the amount of blur found on the target image, and this
observed behavior may deserve further investigation.

V. CONCLUSION

In this work we performed an exploration of the use of
depthwise separable convolutions for the 2D keypoint estima-
tion problem conducting experiments on the context of real-
time hand pose estimation in RGB images. We compared the
use of the PoseNet [16] architecture using dense convolutions
with our implementation using depthwise separable convolu-
tions. We show that this optimization leads to improvements
in inference time with gains up to 24.42% (best case scenario)
and 12.83% on average compared with the model with dense
convolutions with a maintaining similar accuracy scores met-
rics (loss below 1 pixel of error on the mean EPE) proposed by
the literature. This speed-up in inference time facilitates the
use of deep learning models to be executed in real-time on
systems with mid-end GPUs, allowing for natural interaction

and various other technologies to be in range for a wider public
through computers and smartphones with lower computational
power.

To compare the robustness to challenges that difficult the
task of tracking, we simulate different scenarios, namely
blur, occlusion, and noise, and evaluate both models on an
augmented testing set. Across all challenges, PoseNet (for both
dense and depthwise versions) showed to better handle the
minor and mild occlusion cases. The best improvements on
accuracy were obtained on the noisy simulated scenarios, once
the depthwise version was trained with the augmented set.
Overall, the difference between original and optimzed variants
of the PoseNet for all challenging scenarios is below 7 pixels
for the mean EPE, 1 pixel for the median EPE and 0.03 for
the AuC.

For future work, using a similar comparative strategies
we will investigate further optimizations, such as pruning.
In addition, we will also perform different validations on
new scenarios that offer different tracking challenges, such
as illumination variations. At last, we will investigate in
depth the non-linear behavior observed on the blurring related
challenges, where the obtained accuracy somehow increases
in some cases when the blur is stronger.
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