
An Offline Writer-Independent Signature
Verification Method with Robustness Against

Scalings and Rotations
Felix Eduardo Huaroto Pachas
Instituto de Informática – UFRGS

Porto Alegre, RS, Brazil
fehpachas@inf.ufrgs.br

Eduardo S. L. Gastal
Instituto de Informática – UFRGS

Porto Alegre, RS, Brazil
eslgastal@inf.ufrgs.br

Abstract—Handwritten signatures are still one of the most used
and accepted methods for user identification and authentication.
They are used in a wide range of human daily tasks, including
applications from banking to legal processes. The signature verifi-
cation problem consists of verifying whether a given handwritten
signature was generated by a particular person, by comparing it
(directly or indirectly) to genuine signatures from that person.

In this paper, we introduce a new offline writer-independent
signature verification method based on a combination of hand-
crafted Moving Least-Squares features and features transferred
from a convolutional neural network. In our experiments, our
method outperforms state-of-the-art techniques on Western-style
signatures (CEDAR dataset), while also obtaining good results
on South Asian-style handwriting (Bangla and Hindi datasets).
Furthermore, we demonstrate that the proposed method is the
most robust in relation to differences in scale and rotation of the
signature images. We also present a discussion on dataset bias
and a small user study, showing that our technique outperforms
the expected human accuracy on the signature-verification task.

I. INTRODUCTION

Signature Verification consists of verifying whether a partic-
ular handwritten signature is genuine (i.e., was generated by
a particular person of interest) or if it is a forgery (i.e., was
generated by someone else, maybe trying to mimic the genuine
signature of the first person, in order to impersonate them).
This problem can be approached using either online or offline
information [1]. In the online approach, signature information is
collected using a helper device such as a tablet, a special pen or
handwriting digitizer, which collects writing-time information
about the signature, such as: x and y coordinates for each
signature point (at each moment in time), total time employed
by the writer to perform the signature, pen inclination, applied
pressure, etc. On the other hand, in the offline approach the
signature is only available as a static image, normally a scanned
piece of paper containing the handwritten signature (Figure 2a).
Offline signature verification is a more difficult problem
to solve [1], since less information about the signature is
available [2]. Nonetheless, it is still the most needed approach,
since many legal and banking processes base their legality on
the verification of the truthfulness of handwritten signatures.

Signature verification methods can be classified as either
writer dependent or writer independent [3]. A writer-dependent

technique builds a distinct and unique classification model for
each person (writer), which is then used to distinguish genuine
from forgery signatures for that specific person. On the other
hand, a writer-independent technique uses a single classification
model to deal with signatures from any person. This is usually
performed by operating on top of signature pairs [4]; that is,
given a pair of images (each image containing a single handwrit-
ten signature), the classification model classifies the pair as ei-
ther genuine (if both signatures are believed to be written by the
same person), or as a forgery (if the signatures seem to be from
two different writers). Writer-independent models have the ben-
efit of being able to work with new signature examples or new
writers without requiring retraining or the generation of new
person-specific models [3]. Furthermore, since they are com-
posed of a single classifier trained on signature-pair examples
of several writers, writer-independent models perform well even
when a small number of signatures is available per writer [5].

In this work, we present a new offline writer-independent
technique for signature verification. As shown by our ex-
periments (Table II), our approach significantly outperforms
state-of-the-art techniques on the CEDAR dataset (Western-
style handwriting) [2], while performing on-par with the state-
of-the-art on the Bangla and Hindi datasets (South Asian-
style handwriting) [6]. Furthermore, our proposed method
outperforms the listed state-of-the-art techniques when one
considers the more challenging situation where the signatures
are subjected to differences in scale and rotation. As such, our
method is more robust against data variability (Section IV-C).

Our approach works by describing each signature image by
a set of hybrid features: some handcrafted and some obtained
from a pretrained CLIP neural network [7]. We design our
handcrafted features based on Moving Least-Squares goodness-
of-fit, with simplicity and robustness in mind. Furthermore, we
propose an alternative pipeline for obtaining the CLIP features
for each signature image, and we validate our choices with an
ablation study (Table III). For classification we use a simple
linear Support Vector Machine (SVM) classifier.

The contributions of our work include:
• A new offline writer-independent signature verification

method, which outperforms the state-of-the-art in our

Input signature pair

Our MLS
feature generation

Normalize

Normalize
L2 distance

Quadratic
difference

Our CLIP
preprocessing

CLIP
(ResNet)

Sum
+

Norm.

Sum
+

Norm.

C
on

ca
te

na
te

SVM
binary

classifier

Genuine
(signatures
from same

writer)

Forgery
(signatures

from
different
writers)

r2 histograms (75-D)

r2 histograms (75-D)

75-D

75-D

1-D

75-D

1024-D

1024-D

22
74

-D

Fig. 1. Overview of our offline writer-independent technique for signature verification. Given a pair of signature images (left), our method generates features
based on a Moving Least-Squares strategy (Section III-A), in addition to CNN-transferred features (Section III-B). The resulting 2274-D feature vector for the
pair is fed to a binary SVM classifier, which distinguishes between genuine and forged signature pairs. Signature images provided by CEDAR [2].

experiments and is robust against changes in scale and
rotation of the signature images. Our method uses a novel
set of handcrated features based on the idea of Moving
Least-Squares (MLS) [8].

• A discussion of unintended bias on signature-verification
datasets, and a proposal of how to remove such bias (defin-
ing new Unbiased datasets), supported by experiments;

• The proposal of variations on existing datasets considering
scalings and rotations of the images, and experiments on
scale and rotation invariance of the signature-verification
methods and of humans.

II. BACKGROUND AND RELATED WORK

A lot of research has been done in the field of signature verifi-
cation, either using online or offline approaches, as well as using
writer-dependent or writer-independent models [1], [3]. Most of
this research effort has been focused in extracting good feature-
representations of an individual signature, in order to discrim-
inate effectively between genuine signatures and forgeries.

A. Types of Forgeries

A signature is a forgery when it is generated by a person (the
forger) that is trying to impersonate someone else. Forgeries can
be ascribed to one of three categories, in order of decreasing
complexity: skilled, unskilled, or random [3]. A skilled forgery
is one in which the forger tries to mimic the original writer’s
signature after having seen it, and has time to practice the
signature in order to reproduce it accurately. An unskilled (or
simple) forgery is one where the forger does not have access
to the actual signature of the original writer, but knows his
or her name. Finally, a random forgery is produced knowing
neither the original signature nor the name of the original
writer (in this case signature pairs are usually generated by
pairing genuine signatures from two different writers [3]).

B. Offline Writer-Independent Signature Verification

In this work we focus on offline and writer-independent
signature verification, aimed specifically at distinguishing
genuine signatures from skilled forgeries (the most difficult type
of forgery to handle). As mentioned in the introduction, this sce-
nario is most applicable to current practices in legal and banking
processes, which still rely heavily on handwritten signatures.

For online and/or writer-dependent methods, we refer the reader
to recent surveys and techniques in the literature [1], [3], [9].

Most signature verification methods consider the whole
signature image as source for feature extraction. For example,
Kalera et al. [2] use a set of gradient, structural and con-
cavity features to determine statistical distance distributions
as discriminators. Other researchers proposed camera-based
approaches [10], geometric features [11], [12], spatial distri-
bution features (describing signature shape) [13], grid-based
methods [14], texture-based features [6], and also moment-
based representations with envelope characteristics and tree-
structured Wavelet features [15]. Some works extract features
from the signature images using neural networks in a writer-
independent approach [16]–[19], while others propose hybrid
methods considering handcrafted features and features learned
from probabilistic neural networks [20].

One of the top-performing offline writer-independent meth-
ods is SigNet by Dey et al. [4]. It uses a Convolutional Siamese
Network to extract feature information from the two images
in a signature pair. Before feeding each image to the network,
some preprocessing steps are required, including: resizing the
images to a standard size, inverting the pixel values (so that
background pixels have value zero), and “normalizing” the
images by dividing the pixel values by the standard deviation
of all the image pixels in the dataset. The network architecture
consists of two twin networks joined by a cost function, which
computes a distance metric between the 128-D feature vectors
of the two images in a pair.

Since SigNet outputs a continuous numerical distance
D(s1, s2) that measures the dissimilarity between two signature
images s1 and s2, one has to fix a threshold value τ to generate
the binary classifier prediction. That is, if D(s1, s2) ≤ τ the
classifier predicts that the signatures are genuine (came from
the same writer), otherwise, if D(s1, s2) > τ , the classifier
predicts that the pair (i.e., one of the signatures) is a forgery.
For performance evaluation of SigNet, the authors compute
metrics such as accuracy (which depends on the threshold τ)
by selecting the maximum accuracy that is obtained in the
test set over all possible thresholds τ [4]. According to their
results, the proposed technique outperforms the state-of-the-art
in datasets with a sufficient number of signatures for training,

but its accuracy is negatively affected when signatures vary too
much in style and the number of signature samples is low. The
authors also perform an experiment training only with unskilled
forgeries, demonstrating that the results are worse than training
only with skilled forgeries. The accuracy for SigNet is listed as
100% on the CEDAR dataset, 86.11% on the Bangla dataset and
84.64% on the Hindi dataset [4]. As shown by our experiments,
the 100%-accuracy number is likely caused by an inherent bias
in the CEDAR dataset (Section IV-B).

Dutta et al. [21] also propose a top-performing writer-
independent method for offline signature verification, based
on handcrafted local features and global statistics. They
employ BRISK feature points, which are used as input to
a Delaunay triangulation step. Their hypothesis is that, for
genuine signatures, most of the edges from the triangulation
remain stable, while for forged signatures they suffer distortions.
Additionally, histogram of oriented gradient (HOG) descriptors
are computed for each feature point (local descriptors), and
for points connected by an edge in the triangulation, their
HOG descriptors are concatenated (pairwise descriptors). These
descriptors go through an encoding process, followed by the
computation of weighted-histograms that define global image
statistics (weights are defined based on the areas of signature
features, from a ‘water reservoir model’). Finally, a kernel
function that measures the similarity between two images is
defined, and an SVM is trained to perform classification. The
SVM hyperparameters are optimized for each cross-validation
fold based on the maximum accuracy obtained over a range
of possible parameters [21].

III. PROPOSED METHOD

Our method receives as input a signature pair, which must
be classified as either genuine (if both signatures belong to
the same writer), or as a forgery (if the signatures belong to
different writers). As illustrated in Figure 1, this is treated as
a binary classification problem, where the pair of signature
images is converted to a high-dimensional feature vector, which
is then given as input to an SVM classifier.

We propose a set of hybrid features extracted from the
signature images: handcrafted features obtained by a novel
Moving Least-Squares (MLS) strategy (Section III-A), in
addition to features obtained from a pretrained convolutional
neural network (CNN) (Section III-B). No parameters require
manual tuning. We train the SVM classifier in a supervised
manner (Section III-C), using default hyperparameter settings.

A. Moving Least-Squares Feature Generation

Our handcrafted features are aimed at extracting geometrical
and topological characteristics of the signatures, which are good
discriminators for signature verification [2]. Our secondary goal
is to do this in a way that is simple and robust. To do this, our
idea is to quantify the occurence of pronounced curvatures and
stroke-intersections in the signatures, based on the observation
that forgers would need to mimic these exact characteristics
in order to obtain a convincing forged signature. Furthermore,
while straight or nearly straight parts of the signature may be

(a) Input signature images (b) Signatures skeletons

0.0 0.5 1.0

(c) r2 coefficients visualization

0.0 0.5 1.0

0.3

0.6

0.0 0.5 1.0

0.3

0.6

(d) r2 coefficients histograms

Fig. 2. Illustration of our Moving Least-Squares (MLS) feature generation
pipeline, for two example signatures from CEDAR. (a) An input signature
is converted to a (b) binary skeleton, followed by (c) MLS goodness-of-fit
computation (r2 coefficients), which detects curved and stroke-intersection
signature regions. The resulting (d) r2 histograms describe the distribution of
curved and straight regions of the signature. Input images from CEDAR [2].

easier for forgers to copy, the exact proportion between curved
and straight regions is more difficult to imitate.

Overview: We quantify the curvature of each location in
the signature by evaluating how well it fits a straight line.
More precisely, we fit a weighted least-squares line to each
small neighborhood along the signature’s stroke, and evaluate
its goodness-of-fit using the r2 (r-squared) coefficient [22].
Since locations with high curvature or stroke-intersections are
not well described by a straight line, they will be associated
with small r2 values (Figure 2c). Furthermore, by computing
histograms of all r2 values obtained along the signature, one
is able to describe the distribution between curved and straight
regions of the signature (Figure 2d).

Detailed Algorithm: For each signature image, we use the
following algorithm to compute a 75-D feature vector based
on the idea of r2 histograms described above:
1) Binarize the input signature image. We use Otsu’s algo-

rithm [23], which determines an optimal global binarization
threshold from the image’s histogram;

2) Compute the signature’s skeleton from the binarized im-
age (Figure 2b). We use the thinning algorithm of Zhang
and Suen [24], since it generates good results;

3) For each L×L pixel neighborhood Ωp centered at each point
p in the signature’s skeleton, we fit a straight line through
all skeleton points existing in Ωp, using a Moving Least-
Squares (MLS) strategy (described below in Section III-A1).
We discard all neighborhoods which contain less than
5 skeleton points, and we fix L = 11 pixels in our
implementation (according to our experiments, the final
result is not sensitive to the exact value of L, likely due to
the weighting in our least-squares fits);

4) For each neighborhood Ωp, we compute its associated r2

goodness-of-fit coefficient from the weighted least-squares
residuals (Eq. (2), below);

5) Finally, we collect all r2 values and compute their distri-
butions at several scales, using histograms with 5, 10, 15,
20 and 25 bins (uniformly distributed in the [0, 1] interval,
since r2 ∈ [0, 1]). Figure 2d shows the 25-bin version of
the r2 histograms. By concatenating all these histograms,
we obtain a 75-D feature vector for the signature image.

Given a signature pair, as shown in Figure 1(left), we
compute the 75-D r2 histograms descriptors (feature vectors)
for each image in the pair. These feature vectors are then
normalized by dividing them by their L2 norm (this makes the
histograms invariant to the absolute number of pixels in the
signature image). Furthermore, we compute the L2 distance
between the normalized feature vectors ~u and ~v of both images
(resulting in a positive scalar d = ‖~u− ~v‖L2), in addition to
their quadratic difference (resulting in another 75-D vector
~w, whose i-th component is ~wi = (~ui − ~vi)2). Concatenating
all these quantities as [~u,~v, ~w, d] results in our final 226-D
handcrafted feature descriptor for the signature pair. This will
later be concatenated with the features generated by the neural
network backend (Section III-B).

1) Moving Least-Squares Fit and r2: The idea of performing
a sequence of least-squares line fits with a “sliding window” is
related to the concept of Moving Least-Squares [8], a technique
widely used to reconstruct continuous functions from scattered
data [25]. Of particular importance in this method is the use
of weights in the least-squares functionals, which are normally
inversely proportional to each data point’s distance from the
center of the window/neighborhood. We adapt this idea for our
purposes by also considering pixel intensity in the weighting.

Given a particular neighborhood Ωp and a collection of
points (xi, yi) ∈ Ωp ∩ S that are also part of the signature’s
skeleton S (Figure 2b), we fit a straight line y = ax+b through
the points by minimizing the weighted least-squares functional:

E(a, b) =
∑
i

w2
i (yi − axi − b)2. (1)

The weights wi are inversely proportional to the L2 distance
between the data points (xi, yi) and the point p = (xp, yp)
at the center of the neighborhood Ωp. That is, pixels that
are closer to the center of the neighborhood are given more
importance (greater weights) in the line fit. The weights are
also inversely proportional to the intensities f(xi, yi) of the
pixels. Thus, darker pixels also receive greater weights, as they
are more likely to be an important part of the signature’s stroke:
wi = 1/(1 + f(xi, yi) ‖(xi, yi)− (xp, yp)‖L2).

The optimal line parameters a? and b? that minimize E are
the ones where ∂E(a?, b?)/∂a = ∂E(a?, b?)/∂b = 0. One can
then compute the goodness-of-fit r2 value as:

r2 = 1− E(a?, b?)∑
i w

2
i (yi − ȳ)2

, where ȳ =

∑
i wiyi∑
i wi

. (2)

For lines with slope a? > 1, we instead fit x as a function
of y, with x = my+ c (this is done by simply swapping x and

(a) Input signature image (from [6]) (b) Bounding-box crop

(c) 50% padding (d) Final three square crops

Fig. 3. Our proposed CLIP preprocessing pipeline (Section III-B).

y in the equations above). This avoids numerical problems for
lines that are close to vertical (where the slope |a?| → ∞).

B. CLIP Feature Generation

Convolutional Neural Networks (CNNs) are able to auto-
matically learn features for distinguishing between images in
classification tasks [26]. The discriminative power of CNN
features also generalizes well between different problem
domains, which is the idea behind transfer learning [27]. This
technique allows one to use features learned in a domain
containing large amounts of training data, in another domain
where training data may be scarcer or harder to obtain.

In our experiments, we found that the recent CLIP network
(Contrastive Language-Image Pre-training) [7] contains features
which generalize well to our signature-verification problem.
This CNN was trained on 400 million images with associated
textual captions, with the goal of predicting which caption
belongs to which image. We use the publicly available pre-
trained CLIP network (with the ResNet-50 backend) to generate
1024-D feature vectors for each image in a signature pair (with-
out retraining). However, giving the “raw” signature image as
input to CLIP is not optimal due to variations in the signatures’
aspect ratios, and also because signatures are scanned with
varying degrees of padding (empty paper) around the signature.

We propose the following preprocessing pipeline for CLIP,
illustrated in Figure 3, which significantly improves classifica-
tion accuracy (Section IV-D). For each signature image:
1) Crop the image to the bounding-box of the signature. We

do this by removing pixel rows and columns (around the
border of the image) whose average pixel values are below
the threshold 254 (considering 8-bit encoded grayscale, with
pixel values in [0, 255]);

2) Pad the image with empty rows/columns (i.e., with white
pixels), to guarantee that the smallest dimension is no
smaller than 50% the size of the largest dimension. This
is done in order to guarantee that the crops generated in
the next step (3) cover the whole signature, while also
overlapping by ≥ 50%;

3) Generate three square crops from the signature image. If
the image has width > height, we extract crops aligned to
the left, center, and right of the image. Otherwise, the crops
are extracted from the top, center, and bottom of the image.

At the end of this preprocessing step, features are generated
for each of the crops, using the pretrained CLIP network. Each

square crop is resized to 224 × 224 pixels and fed to CLIP,
resulting in three 1024-D feature vectors (one for each crop).
We empirically evaluated the best way to join these three
vectors in order to obtain a single feature vector, and concluded
that performing their elementwise sum, followed by L2

normalization, generates the best results.1 This gives a single
1024-D feature vector that describes the whole signature.

C. Classification with SVM

For each signature pair, we concatenate our MLS fea-
tures (Section III-A) and CLIP features (Section III-B), re-
sulting in a 2274-D feature vector for the pair (Figure 1, right).
We use this as input information to a binary classifier, which has
the task of determining if the signature pair contains either two
genuine signatures, or one genuine and one forged signature.
We use a linear Support Vector Machine (SVM) for the binary
classification task, which performs well in this context. Our
implementation is based on the LinearSVC class of scikit-
learn [28], with default hyperparameters.2

We train this classifier in a supervised way, using a training
set composed of example signature pairs (from many different
writers) with known genuine/forgery status. Since our method
is writer-independent, we train a single model for all writers.

IV. EXPERIMENTAL RESULTS

We performed exhaustive experiments with our proposed
method over three commonly used skilled-forgeries datasets:
the CEDAR dataset [2], provided by the Center of Excellence
for Document Analysis and Recognition from Buffalo Univer-
sity;3and BHSig260 [6], which contains two different datasets,
for Hindi and Bangla writers. We analyze unbiased versions
of these datasets (Section IV-B), as well as versions subjected
to rotations and scalings of the signatures (Section IV-C).

We compare our technique against the best-performing state-
of-the-art offline writer-independent methods: Dutta et al. [21],
which is based on handcrafted features, and Dey et al. [4],
which is based on a neural network called SigNet. We use the
source code provided by the authors. Table II summarizes our
results, which we discuss in detail in the following sections.

A. Experimental Methodology

Each dataset is composed by a collection of writers, each
writer having a certain number of genuine signature images (G)
and skilled-forgery signature images (F). By pairing signatures
from the same writer, one can generate examples of genuine-
genuine signature pairs (G-G), and genuine-forgery signature
pairs (G-F). Table I summarizes these numbers for the CEDAR,
Bengla and Hindi datasets. To get a balanced dataset, one must
use the same quantity of G-G and G-F pairs. This is done
by randomly sampling 276 pairs from all possible G-F pairs

1We experimented with elementwise sum, mean, and max operations, as well
as concatenation, all optionally followed by renormalization. The concatenation
option significantly increases memory consumption and execution time since
the number of CNN features will be 3 times that of the other options.

3We optimize for the primal problem, which is the recommended procedure
when the number of training examples is greater than the number of features.

3http://www.cedar.buffalo.edu/NIJ/data/signatures.rar

Dataset Writers Genuine (G) Forgery (F) G-G G-F

CEDAR 55 24 24 276 576
Bengla 100 24 30 276 720
Hindi 160 24 30 276 720

TABLE I
STATISTICS OF THE DATASETS USED IN OUR EXPERIMENTS.

(since the number of G-G pairs is 276, smaller than that of
G-F pairs). In summary, we end up with 552 examples per
writer composed by 276 G-G examples and 276 G-F examples.

We retrain from scratch and perform 10-fold cross validation
for all methods, separating the training and test data by writer
for each fold (i.e., if a writer is included in the training set,
none of his or her signatures are included in the test set). The
implementation of Dutta et al. [21] requires large amounts of
memory for computation, and their source code provides a
parameter to control which percentage of the total number of
examples is used for training and testing in each fold. We use
the default value of 30% for CEDAR, which is hard-coded
in their source code, and we select 15% for Bangla and 10%
for Hindi, which leads to 828, 828 and 884 signature pairs,
respectively, for the testing set in each fold. The source code of
SigNet [4] does not implement cross validation, so we imple-
mented a cross-validation mechanism with the characteristics
mentioned above. Since SigNet is a CNN, it separates a portion
of the training data as validation data, in order to save the best
obtained model state across all training epochs.

In our evaluation tables, we report mean and standard
deviation of all metrics over the cross-validation folds. The
best results in each group are marked in bold, and the results
which are statistically equivalent to the best result (according
to Welch’s t-test with p < 0.05) are highlighted in green. We
include the Equal Error Rate (EER) metric, which is widely
used to compare signature verification techniques [1]. EER is
defined as the value at the intersection of the False Acceptance
Rate (FAR) and False Rejection Rate (FRR) curves (which
are generated by varying the discrimination threshold). Lower
EER means better classification performance. According to Mo-
hammed et al. [1], EER for offline signature verification systems
ranges from 10% to 30% (versus 2% to 5% for online systems).

As mentioned in Section II, the SigNet method selects the
discrimination threshold that maximizes its accuracy over the
test set, possibly using a different threshold in each different
fold. In contrast, our technique and Dutta et al.’s method use
SVM classifiers with a fixed threshold defined by the particular
implementation over the training set (normally the threshold
used is 0). Therefore, the EER metric is the most suitable when
comparing experimental results against the SigNet method,
since EER is not affected by the test-set threshold selection of
SigNet (we mark the names of the metrics that are affected by
this selection with an asterisk in our tables).

B. Evaluation on “Unbiased” Datasets

When performing experiments over the CEDAR dataset,
we noticed that genuine signature images have an extremely

http://www.cedar.buffalo.edu/NIJ/data/signatures.rar

(a) Forged signature (b) Genuine signature (c) Genuine signature
after our unbiasing step

Fig. 4. Example signatures from CEDAR dataset [2], illustrating the
significantly different background color between the (a) genuine and (b) forged
signature images. This is a source of bias for Machine Learning algorithms.

different background when compared against forged signature
images (Figures 4a and 4b). More precisely, genuine signature
images have light-gray background, in constrast with forged
signature images with completely white backgrounds. This
pattern is repeated for all writers in CEDAR, and is a significant
source of bias for Machine Learning algorithms, which could
“cheat” by differentiating between the two classes just based
on the background color. In particular, we hypothesize that
the 100%-accuracy listed in the SigNet paper for CEDAR is a
consequence of this bias.

To prove this hypothesis, we applied a histogram trans-
formation to all genuine signatures in CEDAR in order to
remove the background color discrepancy (i.e., make all images
have a white background). The pixel operation used was:
[new pixel color] = 1.23∗([original pixel color]−0.4)+0.35 .
This is illustrated in Figure 4c. From this “unbiasing” procedure
we define a new version of the CEDAR dataset which we call
C-Unbiased, and we rename the original CEDAR as C-Biased.

As shown in Table II, the accuracy for SigNet drops from
100% in C-Biased to 79.51% in C-Unbiased, supporting
our hypothesis that SigNet is heavily influenced just by the
background color (i.e., the classifier was not differentiating
between the signatures, just their backgrounds). The method
of Dutta et al., on the other hand, is not corrupted by this bias,
instead increasing its accuracy from 90.93% in C-Biased to
92.87% in C-Unbiased (likely the white-background images
work better for their BRISK feature extraction). Finally, our
proposed method also includes CNN features and thus is
sensitive to this type of bias, but proves significantly more
robust (versus SigNet): its accuracy drops just 2.15 percentage
points, from 99.57% in C-Biased to 97.42% in C-Unbiased.
Overall, our method significantly outperforms both SigNet and
the technique of Dutta et al. in C-Unbiased, achieving an EER
of just 1.95% (and thus FAR = FRR = 1.95%).

Following this bias analysis on the CEDAR dataset, we
analyzed both the Bangla and Hindi datasets also looking
for possible sources of bias. We found that genuine image
signatures from Bangla and Hindi writers are not centered.
In fact, all the genuine signature images have the signature
positioned at the left side, as shown in Figure 5b. To test
whether this could introduce bias, we applied a trimming
operation over all images in both datasets, cropping empty
regions around the signature images (Figure 5c). We thus
defined B-Unbiased and B-Biased datasets based on Bangla,
and H-Unbiased and H-Biased datasets based on Hindi dataset.

(a) Forged signature (b) Genuine signature (c) Genuine signature
after our unbiasing step

Fig. 5. Example signatures from Bengla dataset [6], illustrating the different
signature position between (a) genuine and (b) forged signature images.

As shown in Table II, the centering of the signatures did not
prove to be a significant source of bias.

C. Evaluation of Rotation and Scale Invariance

In real-world scenarios, signatures can be found in different
orientations and sizes. Therefore, it is important for signature-
verification methods to perform well in situations where the
signatures being compared are subjected to differences in
rotation and scale. To evaluate this property, we propose the
following variations of our previously-proposed X-Unbiased
datasets (for X ∈ {C, B, H}, respectively CEDAR, Bangla, and
Hindi), generated with imagemagick’s convert command:

• X-UR = X-Unbiased + Rotations, where each image in
the original X-Unbiased dataset has been subjected to a
different random rotation between 0 and 360 degrees;

• X-US = X-Unbiased + Scalings, where each image in
the original X-Unbiased dataset has been subjected to a
different random downscaling between 50% and 100% of
its original size;

• X-URS = X-Unbiased + Rotations + Scalings, which
combines both random rotations and downscalings (with
different random parameters versus UR and US datasets).

Table II summarizes our results, grouped by dataset. As one
can see, our proposed method is significantly more robust
against Rotations (UR datasets), with an average loss in
accuracy of just 2.2 pp (percentage points) when replacing
Unbiased by UR data. In comparison, the next-best method,
SigNet, suffers a 8.4 pp loss in accuracy, while Dutta et al. loses
14.8 pp. Furthermore, our technique is adequately robust against
Scalings (US datasets), with an average loss in accuracy of
2.2 pp (versus 0.9 pp for SigNet and 9.9 pp for Dutta et al.). Fi-
nally, our method is the most robust against combined Rotations
and Scalings (URS datasets), with an average loss in accuracy
of just 4.5 pp, versus 8.9 pp for SigNet and 22.7 for Dutta et al.

D. Ablation Study

Table III presents an analysis of our proposed set of features
and their individual performance, averaged over the CEDAR,
Bangla and Hindi datasets. Note how the proposed CLIP
feature extraction, which uses our preprocessing pipeline
described in Section III-B, performs better in the signature-
verification context than the original CLIP pipeline (which
simply crops the input image to a square, discarding information
from the signatures, which are often rectangular in shape).
Furthermore, combining our CLIP features with our MLS
features (Proposed Method), results in further increase in
performance (higher accuracy and lower EER), while also
reducing the standard deviation between different folds of the
cross validation experiment.

Dataset Method EER (%)
(lower is better)

Accuracy* (%)
(higher is better)

F1-Score* (%) Precision* (%) Recall* (%) ROC AUC

C-Unbiased Proposed Method 1.95± 1.71 97.42± 1.95 97.43± 1.97 97.08± 3.03 97.92± 3.40 99.75± 0.44
C-Unbiased SigNet 21.73± 9.17 79.51± 8.40 80.25± 7.74 78.90± 10.10 82.75± 9.83 85.43± 9.39
C-Unbiased Dutta et al. 6.67± 3.58 92.87± 3.39 92.80± 3.48 93.53± 4.65 92.49± 6.13 97.84± 1.89
C-Unbiased Human 79.20± 5.22

C-UR Proposed Method 2.82± 1.56 96.71± 1.95 96.68± 2.02 97.02± 2.43 96.48± 3.74 99.52± 0.49
C-UR SigNet 25.76± 6.18 75.83± 6.62 78.00± 6.08 71.65± 5.78 85.84± 7.98 81.31± 6.78
C-UR Dutta et al. 20.07± 3.82 79.18± 4.45 77.69± 7.03 82.64± 4.87 74.83± 12.46 87.85± 4.17
C-US Proposed Method 5.13± 2.90 94.17± 2.84 94.09± 2.97 94.75± 3.39 93.70± 5.30 98.71± 1.38
C-US SigNet 25.76± 9.23 75.05± 9.15 76.46± 7.46 73.97± 10.05 79.76± 6.45 80.19± 10.54
C-US Dutta et al. 23.68± 4.02 75.76± 4.77 73.94± 7.25 78.63± 2.66 70.87± 12.44 84.74± 4.50

C-URS Proposed Method 6.26± 2.16 93.39± 2.09 93.38± 2.16 93.24± 2.34 93.62± 3.65 98.34± 1.24
C-URS SigNet 27.10± 4.95 74.67± 5.30 76.92± 5.46 70.64± 4.91 84.96± 8.69 79.82± 5.09
C-URS Dutta et al. 34.23± 2.31 64.95± 2.49 59.39± 5.27 70.47± 3.31 52.03± 8.35 71.42± 3.36
C-URS Human 78.20± 4.66

B-Unbiased Proposed Method 15.87± 4.02 83.76± 3.68 83.57± 4.38 83.87± 2.36 83.62± 7.70 92.30± 3.32
B-Unbiased SigNet 16.46± 4.20 84.57± 3.82 85.14± 3.67 82.31± 4.70 88.45± 5.14 91.20± 3.71
B-Unbiased Dutta et al. 16.16± 3.36 83.55± 3.22 83.29± 3.44 84.83± 5.03 82.39± 6.60 91.90± 2.78

B-UR Proposed Method 17.66± 2.62 81.98± 2.62 81.80± 2.65 82.93± 4.47 81.05± 4.81 90.80± 2.35
B-UR SigNet 21.05± 4.37 79.62± 4.23 80.43± 3.88 77.51± 4.42 83.67± 3.98 86.94± 4.20
B-UR Dutta et al. 32.74± 3.49 66.82± 3.60 65.12± 5.26 68.46± 3.76 62.68± 8.64 72.96± 4.10
B-US Proposed Method 16.96± 4.01 82.90± 3.92 82.69± 4.45 83.40± 3.95 82.34± 7.21 90.91± 3.46
B-US SigNet 15.35± 3.66 85.45± 3.78 85.82± 3.59 84.03± 5.06 87.96± 4.68 91.76± 3.13
B-US Dutta et al. 22.15± 4.24 77.79± 4.06 77.10± 4.84 79.42± 4.75 75.39± 7.79 86.12± 4.24

B-URS Proposed Method 19.24± 2.78 80.65± 2.96 80.44± 3.01 81.60± 4.61 79.71± 5.28 89.36± 2.90
B-URS SigNet 21.78± 3.65 79.24± 3.46 80.39± 3.31 76.29± 3.85 85.16± 4.90 86.17± 3.68
B-URS Dutta et al. 35.99± 3.14 63.76± 3.12 62.39± 5.27 64.60± 2.85 60.94± 8.99 69.03± 3.91

H-Unbiased Proposed Method 16.39± 3.47 83.59± 3.37 83.53± 3.46 83.85± 3.94 83.36± 4.69 91.61± 3.31
H-Unbiased SigNet 15.22± 4.02 85.14± 3.90 85.33± 3.88 84.35± 4.41 86.48± 4.63 92.74± 3.03
H-Unbiased Dutta et al. 19.36± 2.67 80.69± 2.57 80.96± 2.61 79.83± 2.69 82.19± 3.37 88.94± 2.54

H-UR Proposed Method 20.64± 4.23 79.39± 4.21 79.21± 4.26 80.02± 4.86 78.55± 4.89 87.30± 4.25
H-UR SigNet 31.85± 3.30 68.55± 3.38 70.02± 3.53 66.84± 2.86 73.59± 4.83 74.42± 4.07
H-UR Dutta et al. 33.36± 2.65 66.56± 2.23 65.34± 3.09 67.71± 1.90 63.26± 4.79 73.20± 2.86
H-US Proposed Method 18.87± 3.73 81.03± 3.84 80.96± 4.04 81.19± 4.03 80.87± 5.26 88.88± 3.92
H-US SigNet 14.41± 3.57 86.06± 3.26 86.33± 2.90 85.26± 4.83 87.59± 2.38 92.89± 2.92
H-US Dutta et al. 26.15± 2.34 73.71± 2.40 73.26± 2.49 74.71± 3.57 72.13± 4.43 81.99± 2.75

H-URS Proposed Method 22.54± 4.22 77.28± 4.23 77.06± 4.25 77.87± 4.64 76.36± 4.76 84.99± 4.55
H-URS SigNet 31.77± 4.33 68.70± 4.29 70.13± 4.66 67.05± 3.91 73.91± 7.44 74.34± 5.10
H-URS Dutta et al. 39.66± 2.23 60.23± 1.86 59.19± 2.70 60.77± 1.97 57.85± 4.40 64.14± 2.53

C-Biased Proposed Method 0.20± 0.26 99.67± 0.34 99.67± 0.34 99.55± 0.66 99.79± 0.31 100.00± 0.00
C-Biased SigNet 0.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
C-Biased Dutta et al. 8.32± 4.36 90.93± 4.52 90.66± 5.04 92.41± 6.12 90.07± 9.89 96.44± 3.43
B-Biased Proposed Method 14.98± 3.31 84.80± 3.17 84.67± 3.49 85.17± 3.32 84.45± 6.00 93.10± 2.57
B-Biased SigNet 14.30± 3.99 86.46± 3.85 86.56± 3.62 86.37± 5.36 87.04± 4.59 92.48± 3.56
B-Biased Dutta et al. 17.25± 3.58 82.74± 3.56 82.39± 4.11 83.90± 4.20 81.45± 7.40 91.07± 3.10
H-Biased Proposed Method 16.03± 3.58 83.95± 3.61 83.85± 3.78 84.29± 3.91 83.57± 5.31 91.59± 3.65
H-Biased SigNet 14.93± 2.87 85.73± 2.66 86.26± 2.54 83.32± 3.40 89.52± 3.09 93.25± 1.85
H-Biased Dutta et al. 18.72± 2.62 81.19± 2.04 81.40± 2.07 80.55± 2.63 82.38± 3.28 89.52± 1.98

TABLE II
CLASSIFICATION METRICS FOR THE METHODS EVALUATED IN OUR EXPERIMENTS. BEST RESULTS IN EACH GROUP ARE MARKED IN BOLD, AND RESULTS

WHICH ARE STATISTICALLY EQUIVALENT TO THE BEST RESULT ARE HIGHLIGHTED IN GREEN (WELCH’S T-TEST). METRIC NAMES MARKED WITH AN
ASTERISK (*) ARE AFFECTED BY SIGNET’S TEST-SET THRESHOLD SELECTION PROCEDURE (SEE SECTION IV-A).

E. User Study with Human Subjects

We designed a small user study to measure the expected
human accuracy in the signature verification task. A pair of
signature images is presented to the user, who is asked to
determine if the signatures are genuine (written by the same
writer) or if one of them is a forgery (signatures are written by
different writers). We recruited a total of 5 users for the study,
with no previous experience in signature verification. Each
user saw a total of 200 signature pairs, being 100 from the
C-Unbiased and 100 from the C-URS dataset (in this order).

Within each dataset, we separated a balanced set of 50 genuine
and 50 forged signature pairs, which were presented to the users
in a random order. All users saw the same set of images, and
no time limit was imposed (average test time was 25 minutes).

As seen in Table II (rows in light blue), the average
human accuracy was ∼ 79%, and the users did not suffer
any significant performance loss due to rotations and scalings
of the images (C-URS dataset). This reinforces the impor-
tance for the classification methods to exhibit rotation and
scale invariance properties. The individual accuracies for the
users were {82%, 86%, 80%, 74%, 74%} for C-Unbiased and

Dataset Method EER (%)
(lower is better)

Accuracy* (%)
(higher is better)

Unbiased Proposed Method 11.40± 3.07 88.26± 3.00
Unbiased Our MLS Features 17.19± 4.87 82.71± 4.79
Unbiased Our CLIP Features 14.60± 4.06 85.28± 4.04
Unbiased Original CLIP 19.03± 3.35 80.59± 3.69

UR Proposed Method 13.71± 2.80 86.03± 2.93
UR Our MLS Features 22.88± 4.39 76.98± 4.62
UR Our CLIP Features 14.99± 2.86 84.74± 2.84
UR Original CLIP 19.68± 3.26 80.11± 3.26

US Proposed Method 13.65± 3.55 86.03± 3.53
US Our MLS Features 31.31± 3.09 68.72± 3.17
US Our CLIP Features 15.18± 4.03 84.60± 3.95
US Original CLIP 21.36± 4.28 78.27± 4.34

URS Proposed Method 16.01± 3.05 83.77± 3.09
URS Our MLS Features 35.00± 3.82 64.97± 4.01
URS Our CLIP Features 16.19± 3.02 83.64± 3.05
URS Original CLIP 21.48± 3.31 78.11± 3.37

TABLE III
ABLATION STUDY (AVERAGED OVER CEDAR, BANGLA AND HINDI

DATASETS). PROPOSED METHOD = OUR MLS + OUR CLIP FEATURES.

{81%, 81%, 80%, 79%, 70%} for C-URS. We conclude that
signature verification is not an easy task for (untrained) humans,
and state-of-the-art algorithms are able to significantly surpass
human performance.

V. CONCLUSIONS

We introduced a new offline writer-independent signature
verification method, based on a combination of Moving Least-
Squares handcrafted features and features transferred from a
CNN. In our experiments, our method outperforms state-of-the-
art techniques on the CEDAR dataset (Western-style writing),
while simultaneously obtaining good results on the Bangla and
Hindi datasets. Additionally, our method exhibits some degree
of rotation and scale invariance, being the best-performing
technique across all datasets when the signature images are
subjected to random changes in rotation and scale. We also
presented a discussion of unintended bias in the datasets,
supported by experiments, in addition to a user study measuring
the expected human performance on signature verification.

Acknowledgements. This work was partially supported by
CNPq-Brazil (436932/2018-0), Petrobras (2017/00752-3), and
financed in part by “Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior” - Brasil (CAPES) - Finance Code 001.

REFERENCES

[1] R. A. Mohammed, R. M. Nabi, M. Sardasht, R. Mahmood, and R. M.
Nabi, “State-of-the-art in handwritten signature verification system,”
in Intl. Conference on Computational Science and Computational
Intelligence. IEEE, 2015, pp. 519–525.

[2] M. K. Kalera, S. Srihari, and A. Xu, “Offline signature verification and
identification using distance statistics,” Intl. Journal of Pattern Recog.
and Artificial Intelligence, vol. 18, no. 07, pp. 1339–1360, 2004.

[3] A. Kumar and K. Bhatia, “A survey on offline handwritten signature
verification system using writer dependent and independent approaches,”
in International Conference on Advances in Computing, Communication,
& Automation. IEEE, 2016, pp. 1–6.

[4] S. Dey, A. Dutta, J. I. Toledo, S. K. Ghosh, J. Lladós, and U. Pal,
“SigNet: Convolutional siamese network for writer independent offline
signature verification,” arXiv:1707.02131, 2017.

[5] L. S. Oliveira, E. Justino, and R. Sabourin, “Off-line signature verification
using writer-independent approach,” in Intl. Joint Conference on Neural
Networks. IEEE, 2007, pp. 2539–2544.

[6] S. Pal, A. Alaei, U. Pal, and M. Blumenstein, “Performance of an off-line
signature verification method based on texture features on a large indic-
script signature dataset,” in 12th IAPR workshop on document analysis
systems. IEEE, 2016, pp. 72–77.

[7] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning trans-
ferable visual models from natural language supervision,” preprint
arXiv:2103.00020, 2021.

[8] P. Lancaster and K. Salkauskas, “Surfaces generated by moving least
squares methods,” Mathematics of computation, vol. 37, no. 155, pp.
141–158, 1981.

[9] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Characterizing
and evaluating adversarial examples for offline handwritten signature
verification,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 8, pp. 2153–2166, 2019.

[10] M. E. Munich and P. Perona, “Visual identification by signature tracking,”
IEEE TPAMI, vol. 25, no. 2, pp. 200–217, 2003.

[11] K. Huang and H. Yan, “Off-line signature verification based on geometric
feature extraction and neural network classification,” Pattern Recognition,
vol. 30, no. 1, pp. 9–17, 1997.

[12] M. A. Ferrer, J. B. Alonso, and C. M. Travieso, “Offline geometric pa-
rameters for automatic signature verification using fixed-point arithmetic,”
IEEE TPAMI, vol. 27, no. 6, pp. 993–997, 2005.

[13] R. Kumar, J. Sharma, and B. Chanda, “Writer-independent off-line
signature verification using surroundedness feature,” Pattern Recognition
Letters, vol. 33, no. 3, pp. 301–308, 2012.

[14] D. Bertolini, L. S. Oliveira, E. Justino, and R. Sabourin, “Reducing
forgeries in writer-independent off-line signature verification through
ensemble of classifiers,” Pattern Recognition, vol. 43, no. 1, pp. 387–396,
2010.

[15] V. Ramesh and M. N. Murty, “Off-line signature verification using
genetically optimized weighted features,” Pattern Recognition, vol. 32,
no. 2, pp. 217–233, 1999.

[16] G. Alvarez, B. Sheffer, and M. Bryant, “Offline signature verification
with convolutional neural networks,” Tech. Report, Stanford Univ., 2016.

[17] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Writer-independent
feature learning for offline signature verification using deep convolutional
neural networks,” in Intl. Joint Conference on Neural Networks. IEEE,
2016, pp. 2576–2583.

[18] ——, “Learning features for offline handwritten signature verification
using deep convolutional neural networks,” Pattern Recognition, vol. 70,
pp. 163–176, 2017.

[19] V. L. Souza, A. L. Oliveira, and R. Sabourin, “A writer-independent
approach for offline signature verification using deep convolutional neural
networks features,” in Brazilian Conference on Intelligent Systems. IEEE,
2018, pp. 212–217.

[20] S. Y. Ooi, A. B. J. Teoh, Y. H. Pang, and B. Y. Hiew, “Image-based
handwritten signature verification using hybrid methods of discrete radon
transform, principal component analysis and probabilistic neural network,”
Applied Soft Computing, vol. 40, pp. 274–282, 2016.

[21] A. Dutta, U. Pal, and J. Lladós, “Compact correlated features for
writer independent signature verification,” in Intl. Conference on Pattern
Recognition. IEEE, 2016, pp. 3422–3427.

[22] Y. Dodge, The Concise Encyclopedia of Statistics. Springer, 2008.
[23] N. Otsu, “A threshold selection method from gray-level histograms,”

IEEE Trans. on Systems, Man, and Cybernetics, vol. 9, pp. 62–66, 1979.
[24] T. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital

patterns,” Commun. of the ACM, vol. 27, no. 3, pp. 236–239, 1984.
[25] D. Levin, “The approximation power of moving least-squares,” Mathe-

matics of computation, vol. 67, no. 224, pp. 1517–1531, 1998.
[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521,

no. 7553, pp. 436–444, May 2015.
[27] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,

“A comprehensive survey on transfer learning,” Proceedings of the IEEE,
vol. 109, no. 1, pp. 43–76, 2021.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

	Introduction
	Background and Related Work
	Types of Forgeries
	Offline Writer-Independent Signature Verification

	Proposed Method
	Moving Least-Squares Feature Generation
	Moving Least-Squares Fit and r2

	CLIP Feature Generation
	Classification with SVM

	Experimental Results
	Experimental Methodology
	Evaluation on ``Unbiased'' Datasets
	Evaluation of Rotation and Scale Invariance
	Ablation Study
	User Study with Human Subjects

	Conclusions
	References

