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Abstract—Convolutional neural networks (CNNs) have been
used in several computer vision applications. However, most
well-succeeded models are usually pre-trained on large labeled
datasets. The adaptation of such models to new applications (or
datasets) with no label information might be an issue, calling for
the construction of a suitable model from scratch. In this paper,
we introduce an interactive method to estimate CNN filters from
image markers with no need for backpropagation and pre-trained
models. The method, named FLIM (feature learning from image
markers), exploits the user knowledge about image regions that
discriminate objects for marker selection. For a given CNN’s
architecture and user-drawn markers in an input image, FLIM
can estimate the CNN filters by clustering marker pixels in a
layer-by-layer fashion – i.e., the filters of a current layer are
estimated from the output of the previous one. We demonstrate
the advantages of FLIM for object delineation over alternatives
based on a state-of-the-art pre-trained model and the Lab color
space. The results indicate the potential of the method towards
the construction of explainable CNN models.

I. INTRODUCTION

Deep learning has enabled important advances in differ-

ent areas of knowledge. In particular, Convolutional Neural

Networks (CNNs) have revolutionized computer vision, with

applications to various tasks, such as object detection and

identification. Since the first models called attention with com-

petitive results (e.g., AlexNet in the ImageNet competition),

CNNs have become more complex, with a higher number of

layers and a considerably higher number of parameters for

estimation. These models are considered as “black-boxes”,

implying that one cannot explain their decisions. Explainable

artificial intelligence (XAI) has appeared to address the prob-

lem and avoid wrong interpretations of the results [1]–[4].

In methods of XAI, however, the importance of human

participation during the model’s training process has called

little attention yet. A network designer must choose a suitable

architecture and the training hyperparameters with limited

control over the quality of the model’s estimated weights.

The designer might also have to count on an expert in the

application domain (user), who must provide a dataset with

a sufficient number of correctly annotated samples for the

model’s training. Ideally, the user and designer should actively

participate in the data annotation and training processes, both

assisted by the machine, to increase human understanding and

control, reduce effort, and improve interpretation of the results.

In this paper, we fill an essential part of the gap above

by presenting an interactive method where the user (also a

designer) draws strokes (markers) in parts that represent object

and background in an image, and the filters of a CNN are

learned from those markers with no need for backpropagation.

We call this approach feature learning from image markers

(FLIM) and demonstrate its potential for object delineation.

The method extracts a patch around each marker pixel and

finds clusters of patches per marker to derive the filters. The

center of each group defines one filter that will enhance

and extract features from the selected region. The network

is trained forward in a layer-by-layer fashion. The filters of

each convolutional layer are obtained from the previous layer’s

output by the same procedure – clustering patches of marker

pixels. The user only needs to put markers in the input image,

and, for segmentation, image resolution remains the same

along with the layers to preserve boundary information.

Note that our goal here is not to propose a new solution

for interactive segmentation. We aim to explain how feature

learning can be effectively solved from a simple and intu-

itive user-interaction procedure and demonstrate the FLIM’s

potential to develop and improve image segmentation methods.

For that, we use a sequence of convolutional layers for

feature extraction and solve object delineation by a watershed

transform from markers [5] on a gradient image derived from

FLIM features. By fixing the object delineation method, we

then compare different feature extraction procedures.

We have recently demonstrated FLIM for image classi-

fication [6], but the work differs from the current one in

several aspects besides the application – coconut-tree image

classification. In that work, the user put markers in a few

training images from each class, the filters are derived by clus-

tering patches per marker, but a single network is generated

for all images. The network has a single convolutional layer

with max-pooling and strides greater than one, followed by

batch normalization and image classification by a multilayer

perceptron. In the current work, a suitable feature extractor

with one or two convolutional layers is computed per image

based on user-selected markers, and a watershed transform

completes image segmentation.

The remainder of the text is divided as follows. In Sec-

tion II, we review works related to user-interaction for image

segmentation. In Section III, we introduce basic definitions

and present FLIM. Experimental results that demonstrate

FLIM can be more effective than baselines are presented in

Section IV. Finally, conclusion and future work are described
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Fig. 1. For a given image, set of user-drawn markers, and desired number m′
= 192 of filters, FLIM learns the weight of the filters (each with 3 channels

and 3 × 3 pixels), a gradient magnitude image is estimated from the output of the layer, and a watershed transform delineates the object from the same
markers on the gradient magnitude image. The user may add convolutional layers and markers to improve gradient and so image segmentation.

in Section V.

II. RELATED WORKS

Methods for image segmentation may be divided into au-

tomatic [7]–[11] and interactive [12]–[17] approaches. While

interactive methods aim to reduce the user effort and the total

time spent by the user to complete segmentation, automatic

methods aim to learn models for object localization and

delineation from an annotated set of training images. In both

cases, human interaction is required. However, interactive seg-

mentation approaches should also explore human knowledge

during the training process to improve the model. In [18],

the authors address the problem of object enhancement from

image markers during interactive segmentation. The method

does not require a pre-annotated dataset and selects marker

pixels for object enhancement by a pattern classifier. However,

there is no feature learning model, and the performance of the

classifier strongly depends on the choice of suitable marker

pixels. On the other hand, the idea is important to investigate

the impact of marker pixels on feature learning in future work.

Since [19], most works on semantic segmentation are based

on encoder-decoder models, also known as fully convolutional

neural (FCN) networks [8], [9], [11]. The encoder is respon-

sible for local image feature extraction and aggregation, while

the decoder combines the features into a higher-level image

content representation. Despite their popularity, such methods

usually require a large set of training images pre-annotated

by humans – a quite costly task. In interactive methods, a

pre-trained model on some large annotated dataset can start

the segmentation process, and the user may add markers to

correct segmentation and improve the model [16].

To reduce the amount of annotated data required to train

deep learning models for segmentation, Yang et al. [20]

proposed an active learning framework based on pre-trained

FCNs for medical image segmentation. The method suggests

samples for user annotation. In [21], the selection of samples

for user annotation is decided by reinforcement learning using

the maximization of intersection-over-union as an optimization

criterion.

Other works have actively pursued deep learning for in-

teractive segmentation [12], [13], [15], [16]. Such methods

have in common the use of an FCN model to estimate an

object probability map and solve segmentation by thresholding

that map. Xu et al. [13] introduce the idea of extending the

input with Euclidean distance maps of user’s clicks to improve

the pre-trained FCN model and so object segmentation from

the user’s corrections. Jang et al. [15] avoided updating the

pre-trained model for each user click so as not to lose the

knowledge learned in the training phase – only the interaction

maps are updated. During segmentation, multiple forward-

and backward-feed iterations may be required. To reduce the

computational cost of such operations, Sofiiuk et al. [16]

propose a variant that avoids backward-feed iterations through

the entire network.

The above methods explore user corrections to improve

segmentation, but the resulting FCN models are still not



explainable. Such methods are also not feasible whenever

annotated datasets are scarce, and pre-trained models are

not suitable. Our approach for feature learning from image

markers aims to improve the explanation of the resulting

models and cope with the possible absence of previously

annotated datasets.

III. FLIM: FEATURE LEARNING FROM IMAGE MARKERS

In convolutional neural networks (CNNs), feature extraction

is performed by a sequence of convolutional layers. In addition

to the convolution with a filter bank followed by activation,

each layer may also have other operations (e.g., pooling and

batch normalization). The filters in these layers are meant to

highlight image regions relevant for better class separation.

Fully-connected layers of a multilayer perceptron are then used

to reduce the feature space dimension and decide each input

image’s class. CNN architectures, famous for accurate image

classification, present several layers and thousands of filters,

leading to the problem of requiring large annotated training

sets for suitable weight optimization by backpropagation.

We explore the human knowledge to indicate image regions

suitable for filter estimation in CNNs (without pre-annotated

dataset, pre-trained model, and backpropagation) and use the

extracted image features for object delineation. The method

is a forward-feed training approach, called FLIM (Feature

Learning from Image Markers).

Let D be a set of images I with m channels each for

object delineation. Let φ be a CNN architecture with only

convolutional layers to extract image features from I . Each

layer l of φ consists of marker-based normalization, con-

volution with a set Fl of filters, a ReLU activation, and a

max-pooling operation with stride one to preserve boundary

information (see example in Figure 1). Let k × k × m be

the shape of each filter F ∈ Fl. Given a filter F ∈ Fl, the

convolution between I and F at a pixel p is the inner product

between vecPI(p) and vecF , where PI(p) is a k × k patch

centered at p with m channels and vec is the vectorization

operation. If PI(p) contains a pattern detected by F , then the

convolution at p must have a positive value, and its value is

negative otherwise. That is, vec(F ) is the normal vector of

a hyperplane in R
k×k×m, and patches with patterns detected

by F are represented by vectors on the positive side of that

hyperplane. We want these filters to highlight image features

from I that are important to segment a given object. Therefore,

the user places markers in regions of I that discriminate object

and background properties, and these markers are used to find

the set Fl. The weight estimation of the filters in Fl and

marker-based normalization are explained next.

For c objects of interest, a pixel p of I may be assigned

to one label λ(p) = i ∈ {0, 1, 2, · · · , c} where λ(p) = 0
indicates background. Let MI be the set of pixels for markers

placed in image I , and Pi be the set of all patches around

pixels of MI that have label i.

Pi =
⋃

I∈D,p∈MI ,λ(p)=i

PI(p). (1)

One can apply a clustering (K-means [22] in this work)

operation on Pi to detect the patterns that best represent

label i. One can also execute clustering per marker rather than

per label to cope with the case of multiple markers per object,

each covering a region with distinct properties. We use the

latter option for binary segmentation (i.e., λ(p) ∈ {0, 1}). The

centroid of each cluster defines the weights of a filter F ∈ Fl,

representing a pattern associated with some label i. The

user specifies the number of clusters per label i (or per

marker, as mentioned above) to capture all relevant patterns

for segmentation.

To mostly enhance the regions detected by a filter F at

its corresponding output channel, the image I must have its

pixel values normalized as follows. Let P =
⋃

i∈{0,1,2,...,c} Pi

be the set of all patches. Their mean and standard de-

viation (channel-wise) are calculated for centralization and

standardization, by subtracting the mean values from the pixel

values with the result divided by the standard deviation. We

call this operation marker-based normalization. It must be

included at the beginning of each convolutional layer to extract

patches and estimate the filter weights by clustering. We also

force ‖ vec(F )‖ = 1 to avoid preferences among filters.

Each image I ∈ D derives a CNN with one or more

layers, as specified by the user, whose filters are estimated

from user-drawn markers. To illustrate the advantages of this

feature learning approach, we compute a gradient magnitude

image and apply a watershed transform from the same markers

to delineate the object, as shown in Figure 1. The input

image I , as well as the output image O from FLIM, are

multi-channel images, and gradient magnitude images can be

similarly computed from them. Let m′ be the number of filters

in the last layer of the CNN, such that Ok, k = 1, 2, . . . ,m′,

are the channels of O. Let A(p) be the set of adjacent pix-

els q = (xq, yq) of a pixel p = (xp, yp) such that ‖q− p‖ ≤ r

(e.g., r = 1). A gradient image GO(x, y) at a pixel p is defined

as

GO(p) =
1

|A(p)|

∑

∀q∈A(p)

‖Ok(q)−Ok(p)‖2. (2)

FLIM is applied to learn filters in a layer-by-layer fashion.

Thus, the output of layer l is used to learn the filters of

layer l + 1 by clustering, as described above. Note that, once

the user defines the CNN architecture, the whole process is

fully automatic. However, the user may add new markers and

select filters manually, based on the visualization of its output

channel. For instance, the user may decide to simplify the

CNN by eliminating redundant filters – i.e., filters that produce

similar output channels. In Figure 2, we illustrate one example

to which changes in the model’s architecture improves the

result with no additional markers. It also calls attention to the

importance of activation and gradient visualization for better

explaining the results.

IV. EXPERIMENTAL RESULTS

The watershed transform from the same set of user-drawn

markers, and gradient image will present different segmen-
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Fig. 2. (a) Input image with user-drawn markers. The user specifies the first layer with 8 filters of 3× 3 pixels per marker but eliminates redundant filters
whose inner product between them is above 0.85. (b) One example of an activation image for one filter of the first layer. (c) The gradient image from the
output of 6 selected filters in the first layer and (d) the resulting watershed segmentation. The user specifies a second layer with 64 filters of 5 × 5 pixels
per marker and applies the same threshold to eliminate redundant filters. (e,f) Examples of activation images from two filters of the second layer. (g) The
gradient image from the output of 34 selected filters in the second layer and (h) the resulting watershed segmentation.

tation performances depending on the image features used

for gradient computation in Equation 2. In this section, we

evaluate the performance of the watershed transform when

FLIM obtains the image features for gradient computation,

image features are the Lab colors of the input image, or image

features are obtained at one of two evaluated outputs of a

network named DeeplabV3 [23] – well known as very effective

for semantic segmentation [24].

The Geostar dataset [25] was chosen for the segmentation

experiments. It consists of 151 color images of up to 800× 600

pixels each, a set of user-drawn markers per image, and the

ground-truth segmentation masks. Since the idea is to select

markers in regions that discriminate object and background,

we decided to create our own set of user-drawn markers. The

number of markers and size varies from image to image, but

they are all 5-pixel-wide. These markers are fixed as default in

all methods. However, in order to make clear that our marker

set is better than the original one, we present the results of

FLIM using both marker sets. FLIMmk1 uses the original

marker set from Geostar, and FLIMmk2 uses the default

marker set. We evaluate a single-shot segmentation by the

watershed transform using those markers and gradient images

from each method. The segmentation results are evaluated by

Intersection Over Union (IoU) between segmented image and

ground-truth mask. As higher is the IoU value, better is the

segmentation result.

We call INPUT the case of no feature learning – i.e., the

gradient is obtained in the Lab colors of the input image. Since

DeeplabV3 [23] uses an encoder to reduce image resolution

(losing boundary information) and a decoder to obtain an

object probability map (increasing object enhancement), we

evaluate image features from the outputs of its first and last

blocks (it contains several blocks, and a block may contain

tens of convolutional layers). The output of the first block

(DLABfirst) is the one with the best results in the encoder,

while the output of the last block (DLABlast) should be

the one that best enhances the object’s boundary in the

gradient image. DeeplabV3 was also pre-trained in 11,530

images from the PASCAL dataset, and it is available in the

torchvision package. For pre-processing, DeeplabV3 uses the

images normalized by the mean and standard deviation of each

channel.

Like any other network, FLIM still requires the user spec-

ification of the model’s architecture. For a given set of user-

drawn markers, FLIM may take some seconds in CPU to

learn the filter weights of a network with a few convolutional

layers and strides 1. Therefore, it should be feasible to develop

strategies that optimize the model’s architecture in a layer-

by-layer fashion based on the pixel activations at object and

background markers. Nevertheless, we decided to evaluate the

segmentation pipeline for 90 different models per image by

varying the number of layers, size of filters, and the number

of filters per marker. The values of these hyperparameters are

presented in Table I. Assuming that architecture optimization

is feasible, we selected the best model per image in order to

compare its result with the ones of using INPUT, DLABfirst,

and DLABlast. The results are presented in Table II. First,

they show that FLIMmk2 is better than FLIMmk1, indicating



TABLE I
TESTED HYPERPARAMETERS FOR FLIM-BASED MODEL ARCHITECTURE.

Hyperparameter Possible values

Number of layers 1, 2

Kernel size 3, 5, 7

Number of kernels per marker 8, 16, 32

TABLE II
MINIMUM, MAXIMUM, MEDIAN, MEAN, AND STANDARD DEVIATION OF

IOU FOR THE SEGMENTATION OF ALL 151 IMAGES USING INPUT,
DLABfirst , DLABlast , FLIMmk1 , AND FLIMmk2 . THE BEST RESULTS

PER METRIC ARE IN BOLD.

Method min max median mean std

INPUT 0.084 1.000 0.601 0.590 0.216

DLABfirst 0.134 0.977 0.583 0.585 0.205

DLABlast 0.040 0.824 0.403 0.395 0.179

FLIMmk2 0.406 0.998 0.796 0.784 0.147

FLIMmk1 0.220 0.999 0.746 0.713 0.194

that our marker set is more suitable than the one from Geostar.

Second, for both marker sets, FLIM can provide more effective

segmentation with very simple models than using the image

features from DeepLabV3 and the Lab color space.

Table III presents the IoU values for each image in GeoStar

when using INPUT, DLABfirst (better than DLABlast), and

FLIMmk2 (better than FLIMmk1). One can observe that

FLIMmk2 can consistently achieve the best IoU for most

images. When INPUT and DLABfirst achieve higher IoU than

FLIMmk2, the difference is usually low.

A. Implementation details for FLIM

Feature extractors were implemented using the Pytorch

package [26]. For clustering, we use the implementation of

K-means with mini-batches available in the Scikit-Learning

package [27]. We set the maximum number of iterations to

100 and stopped after 10 iterations with no improvement.

The batch size was 100, and the clustering was initialized

with “k-means++”. The remaining parameters were set with

their default values. For the watershed transform, we use the

implementation available in the Scikit-Image package [28]

using 8-neighborhood for label propagation.

B. Discussion

Tables II and III indicate that FLIM can consistently learn

relevant filters for given network architecture, improving im-

age features as compared to the Lab color space and feature

spaces obtained by DeepLabV3, a pre-trained model. The

results between DLABfirst and DLABlast show that the

decoder cannot cope with the loss of spatial resolution (bound-

ary information) in the encoder, impairing object delineation.

Note that, the U-shape of encoder-decoder models is usually

adopted for semantic segmentation. They might improve object

detection, but this raises a question about their effectiveness for

delineation, and both are required for accurate segmentation.

The results between FLIMmk1 and FLIMmk2 show that user-

draw markers play a role in filter estimation, and the com-

parison between the FLIM-based models and the baselines

indicates that a specific model per image can considerably

improve effectiveness using very simple architectures.

Figure 2 shows that an interactive choice of the model’s

architecture can improve segmentation with no additional

markers. When drawing strokes in parts that discriminate

object and background, FLIM can estimate filters that will

enhance selected parts of both (Figures 2b, 2e, and 2f).

Irrelevant and redundant filters can be eliminated, simplifying

the convolutional layer of the model under construction. As a

consequence, the gradient improvement from layer 1 (Figure

2c) to 2 (Figure 2g) was enough to improve segmentation.

For the experiments, marker selection did not follow any

particular strategy rather than drawing markers in parts that

discriminate object and background. Some examples are pre-

sented in Figure 3. Note that external markers should be

around the object. Markers, such as those selected on the

sky, water, and reef in Figure 3k are irrelevant for that result.

Markers near the boundary in parts where the object and

background have similar properties are also important (e.g.,

Figure 3e). Such selection creates redundant filters, but it

avoids errors by the watershed transform. Most errors in

Figure 3 have been caused by not following a better strategy

for marker selection.

Figure 4 shows that a suitable strategy for marker selection

combined with the incremental construction of FLIM-based

models can be a practical methodology for interactive seg-

mentation. Redundant filters are eliminated as in the example

of Figure 2 from a set of 64 estimated filters per marker.

V. CONCLUSION AND FUTURE WORK

We introduced an intuitive and interactive method, named

FLIM, to estimate CNN filters from image markers. As far as

we know, FLIM is the first feature learning approach for the

construction of neural networks, which does not require pre-

training from large annotated datasets and backpropagation.

Its potential has been demonstrated for image classification [6]

and, in this paper, for object delineation. In both applications,

the results are promising such that future work involves several

tasks.

We must further explore clustering algorithms, develop

techniques to identify and eliminate irrelevant and redundant

filters, and investigate data visualization methods to facilitate

marker selection and architecture choice while constructing the

model in a layer-by-layer fashion. We intend to develop inter-

active image segmentation methods based on FLIM, verify the

model’s updates as the user selects new markers, and compare

them with other interactive segmentation methods based on

deep learning, such as f-BRS [16]. It seems that strategies

to avoid irrelevant and redundant filters will be necessary at

this point. Another interesting direction is to use a multilayer

perceptron for pixel-wise classification from the features ex-

tracted with FLIM to combine the gradient of its object map

with the gradient computed from the network features in the



(a) FLIM - IoU: 0.878. (b) DLabfirst - IoU: 0.868. (c) FLIM - IoU: 0.808. (d) INPUT - IoU: 0.815.

(e) FLIM - IoU: 0.929. (f) INPU - IoU: 0.808. (g) FLIM - IoU: 0.918. (h) DLabfirst - IoU: 0.867.

(i) FLIM - IoU: 0.946. (j) DLabfirst - IoU: 0.413. (k) FLIM - IoU: 0.945. (l) DLabfirst - IoU: 0.867.

(m) FLIM - IoU: 0.900. (n) DLabfirst - IoU: 0.763. (o) FLIM - IoU: 0.931. (p) DLabfirst - IoU: 0.645.

Fig. 3. Segmentation results using FLIMmk2 and the best baseline for each image.



TABLE III
IOU VALUES PER IMAGE USING THE METHODS FLIMmk2 , DLABfirst , AND INPUT. THE BEST RESULTS PER IMAGE ARE IN BOLD.

Image FLIMmk2 DLabfirst INPUT

001 0.900 0.763 0.565
002 0.853 0.699 0.758
003 0.848 0.419 0.696
004 0.739 0.666 0.666
005 0.906 0.834 0.911
006 0.902 0.884 0.393
007 0.882 0.583 0.807
008 0.859 0.742 0.843
009 0.967 0.936 0.971
010 0.649 0.662 0.661
011 0.791 0.741 0.792
012 0.650 0.550 0.639
013 0.595 0.519 0.449
014 0.739 0.385 0.638
015 0.748 0.583 0.438
016 0.946 0.413 0.228
017 0.466 0.383 0.304
018 0.754 0.328 0.419
019 0.985 0.954 0.915
020 0.972 0.894 0.975
021 0.995 0.947 0.846
022 0.922 0.638 0.752
023 0.841 0.714 0.247
024 0.671 0.377 0.484
025 0.713 0.725 0.355
026 0.491 0.528 0.659
027 0.478 0.281 0.420
028 0.739 0.250 0.484
029 0.533 0.227 0.263
030 0.673 0.583 0.608
031 0.808 0.704 0.815
032 0.904 0.532 0.894
033 0.860 0.624 0.684
034 0.634 0.436 0.355
035 0.776 0.651 0.316
036 0.720 0.270 0.265
037 0.713 0.385 0.450
038 0.849 0.805 0.737
039 0.898 0.373 0.507
040 0.634 0.230 0.389
041 0.643 0.351 0.378
042 0.796 0.670 0.772
043 0.566 0.467 0.424
044 0.922 0.854 0.932
045 0.443 0.516 0.333
046 0.814 0.217 0.607
047 0.821 0.581 0.742
048 0.911 0.720 0.737
049 0.853 0.727 0.703
050 0.944 0.567 0.634
051 0.628 0.529 0.492

Image FLIMmk2 DLabfirst INPUT

052 0.815 0.486 0.626
053 0.605 0.395 0.403
054 0.813 0.697 0.714
055 0.629 0.663 0.636
056 0.784 0.919 0.576
057 0.675 0.657 0.652
058 0.789 0.286 0.216
059 0.675 0.580 0.601
060 0.878 0.868 0.806
061 0.792 0.313 0.705
062 0.452 0.512 0.382
063 0.912 0.410 0.426
064 0.726 0.266 0.219
065 0.613 0.481 0.510
066 0.970 0.844 0.972
067 0.729 0.628 0.725
068 0.632 0.439 0.488
069 0.666 0.635 0.642
070 0.909 0.908 0.908
071 0.578 0.401 0.447
072 0.945 0.864 0.785
073 0.920 0.434 0.425
074 0.890 0.902 0.977
075 0.406 0.419 0.301
076 0.774 0.734 0.776
077 0.788 0.760 0.776
078 0.907 0.694 0.713
079 0.910 0.895 0.439
080 0.998 0.959 0.403
081 0.990 0.928 1.000
082 0.957 0.854 0.858
083 0.758 0.593 0.547
084 0.825 0.732 0.557
085 0.793 0.378 0.563
086 0.766 0.737 0.605
087 0.795 0.734 0.307
088 0.929 0.689 0.808
089 0.727 0.473 0.717
090 0.991 0.948 0.985
091 0.705 0.553 0.761
092 0.725 0.619 0.589
093 0.910 0.939 0.886
094 0.963 0.484 0.505
095 0.962 0.455 0.456
096 0.990 0.303 0.345
097 0.858 0.240 0.352
098 0.939 0.636 0.611
099 0.976 0.742 0.940
100 0.833 0.758 0.763
101 0.990 0.252 0.177
102 0.893 0.543 0.630

Image FLIMmk2 DLabfirst INPUT

103 0.918 0.867 0.832
104 0.797 0.517 0.516
105 0.569 0.544 0.493
106 0.848 0.466 0.858
107 0.693 0.368 0.230
108 0.650 0.486 0.593
109 0.664 0.465 0.638
110 0.943 0.818 0.896
111 0.570 0.134 0.150
112 0.914 0.568 0.476
113 0.659 0.453 0.432
114 0.580 0.231 0.506
115 0.800 0.715 0.448
116 0.931 0.645 0.084
117 0.581 0.263 0.296
118 0.785 0.721 0.520
119 0.510 0.445 0.538
120 0.983 0.578 0.582
121 0.768 0.800 0.456
122 0.611 0.731 0.698
123 0.558 0.309 0.354
124 0.851 0.572 0.801
125 0.764 0.708 0.469
126 0.922 0.679 0.768
127 0.792 0.525 0.626
128 0.662 0.684 0.592
129 0.582 0.588 0.645
130 0.947 0.816 0.897
131 0.505 0.585 0.550
132 0.795 0.383 0.328
133 0.688 0.458 0.552
134 0.877 0.425 0.365
135 0.917 0.669 0.735
136 0.763 0.606 0.756
137 0.969 0.810 0.103
138 0.830 0.726 0.768
139 0.954 0.168 0.916
140 0.639 0.494 0.490
141 0.714 0.476 0.451
142 0.945 0.391 0.362
143 0.996 0.720 0.681
144 0.994 0.977 0.995
145 0.895 0.856 0.878
146 0.798 0.728 0.738
147 0.647 0.531 0.327
148 0.649 0.413 0.371
149 0.481 0.353 0.356
150 0.822 0.705 0.685
151 0.853 0.183 0.800

watershed transform. We also intend to investigate FLIM in

the context of different applications for CNNs.
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