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Abstract—We present a schematic for image edge-aware Gaus-
sian GPU filtering which has linear complexity on the number
of pixels of the image. It allows us to reduce the execution time
as we increase the number of Streaming Multiprocessors (SMs)
on the GPU. We make use of a domain transformation and use a
complex-valued recursive formulation of the Gaussian filter. The
algorithm partitions the image in disjoint regions, where we com-
pute in parallel the filtering operations, avoiding communication
between regions. Our implementation leads to a real-time solution
using a modern GPU. With the RTX 2080 Ti, we achieved an
execution time of less than 10 milliseconds for 2 filtering iterations
on high-resolution RGB images of dimensions 2048× 2048.

I. INTRODUCTION

Digital filtering is a fundamental operation on image pro-
cessing. When implemented naively, a digital filter can be
costly since it might involve 2D convolution with quadratic
worst-case O(N2) complexity. The problem becomes more
sophisticated when we also desire filtering to preserve edges
on the image (Figure 1). It is advantageous to reduce the
convolution operation to computing a linear recursive equation
as this is guaranteed to have O(N) complexity on the number
of pixels. In this paper, we do so by making use of the domain
transform algorithm [4]. We restrict ourselves to Gaussian
edge-aware filtering, introduced as the bilateral filter [11],
which is a popular filter that has often been an object of
study. For example, Jiawen et al. [1] and Qingxiong et al. [12]
present techniques to implement the bilateral filter that only
handle grayscale images. We use the more general techniques
presented by Gastal and Oliveira [5].

In this paper, we introduce an algorithm designed for edge-
aware recursive GPU filtering in linear time O(N). We analyse
its behavior in a series of experiments considering both per-
formance and error bounds. The main contribution is that the
algorithm developed in this work is easy to implement, makes
efficient use of the GPU resources, and has its numerical
efficiency analytically justified. For instance, by using our
approximation scheme we achieved a speedup of 100% for
filtering 2048×2048 images on the RTX 2080 Ti due to better
resource utilization.

We point out that Nehab et al. [8] present an algorithm
designed to efficiently compute recursive filters on the GPU.
It requires communication between neighbouring blocks but
requires only two image reads and filters in every direction in

Fig. 1: (Left) Original photograph with dimensions 768×1024.
(Right) Output of the edge-aware Gaussian filter with σ = 50
and σr = 51, computed using one of the algorithms proposed
in this paper (Algorithm A). Note how small details of the
image are smoothed but important edges are preserved.

only one kernel. As described in [8], the algorithm is designed
for spatially-invariant filtering and relies on representing the
filter on each block by a single matrix. As such, their algorithm
cannot be directly applied to edge-aware recursive filters, since
the edge-aware transform removes the spatial invariability of
the filter (which can be seen as a non-uniform sampling).
Thus, to the best of our knowledge, our work describes the
first parallel GPU implementation of an edge-aware recursive
Gaussian filter.

In Section II we provide the basic concepts on edge-aware
filtering and GPU programming. In Section III we present
a theoretical analysis of filtering approximation errors. Sec-
tion IV describes first our standard approach to filtering, and
then we state our proposal to better scale this approach in more
powerful GPUs. In Section V we state what are the relevant
variables to the experiments and show our experimental results
for both quality of filtering and processing time in two GPU
cards: GTX 1050 Ti and the RTX 2080 Ti. We provide
source code for all of our algorithms and experiments in the
supplementary materials.



II. BACKGROUND AND BASIC CONCEPTS

Intuitively [4], an RGB image can be considered as a
bidimensional surface residing within a 5-dimensional space.
Each pair p = (x, y) ∈ Ω has its RGB value I(p) =
(R(p), G(p), B(p)), and so the image surface is given by
Î : Ω → R5 where Î(p) := (p, I(p)). An edge-aware filter
is such that the amount of information exchanged between
two pixels (points on the surface) is inversely proportional to
their distance in R5. This filter requires a choice of a metric
for the space R5, we shall use the geodesic distance (other
metrics are also viable).

Instead of working with the 5-dimensional underlying space,
we would rather flatten this surface into R2 while preserv-
ing the distance between points. Unfortunately, this is not
generally possible (for more details see [3]). It is, however,
possible to isometrically flatten a curve within the surface
because this is a one-dimensional object. Since linear recursive
filters are computationally more efficient and are defined for
one-dimensional signals, once we do such transformation we
have substantial performance gains. The idea is to flatten first
the rows of the image and apply recursive filtering, and then
flatten the columns and filter them recursively. It should be
noted, however, that the filtering must include more vertical
and horizontal passes. This is required because a 2D edge-
aware filter is not separable, as it cannot be written as a
composition of two 1D edge-aware filters.

A. Expressions for the domain transform and one-dimensional
Gaussian edge-aware filtering

Each pixel in a particular flattened row (or column) of the
image is given by f [k] where k ∈ {0, 1, .., L} are the sample’s
indices. In particular, with RGB images the signal is of the
form f [k] = (f1[k], f2[k], f3[k]), with a number of d = 3
channels. In the isometrically-flattened curve (the transformed
domain), the new sample positions are given by [4]:

t(k) =

k∑
i=0

√√√√1 +
σ2
s

σ2
r

d∑
c=0

(fc[i]− fc[i− 1])2 . (1)

The new signal is essentially the same, although with the
underlying abstraction that the samples have non-uniform
spacing given by the values t(k)− t(k− 1). Here σs controls
how the mixing occurs based on the pixel distance in the 2D
image space, and σr controls it based on the color distances
in the 3D RGB space. We will be interested in the values

∆tk := t(k)− t(k − 1) =

√√√√1 +
σ2
s

σ2
r

d∑
c=0

(fc[k]− fc[k − 1])2 .

(2)
In this work, we will implement a Gaussian filter in the

transformed domain (described by the non-uniform spacings
∆tk ). Deriche [2] gives the following approximation for the
positive region (x > 0) of the Gaussian distribution with
deviation σ and unit-height (unnormalized):

u+(x) = Re
{
α0 exp

(
−λ0

σ
x

)
+ α1 exp

(
−λ1

σ
x

)}
. (3)

Choose σ = σs. Using the procedure for computing a recursive
filter in a non-uniform domain described in [5], one obtains the
filter g[k] =

∑1
i=0 Re

{
g+
i [k] + g−i [k]

}
, which has a causal

component and an anticausal component (one that propagates
forwards, and one that propagates backwards):

g+
i [k] = aif [k] + b

∆tk
i g+

i [k − 1] + Φik−1,k(∆tk), (4)

g−i [k] = aib
∆tk+1

i f [k+1]+b
∆tk+1

i g+
i [k+1]+Φik+1,k(∆tk+1

),

Φij,k(δ) =

(
bδi − 1

ri,0δ
− ri,1bi

)
f [k]−

(
bδi − 1

ri,0δ
− ri,1bδi

)
f [j].

The constants that should be replaced into the above equations
in order to implement an edge-aware Gaussian filter, extracted
from Eq. (3), are given in the appendix. To filter a 2D image,
we filter in parallel the causal and anticausal components of
each horizontal/vertical pass. We compute first the horizontal
pass and then the vertical pass on the output. (It is also
possible to interchange the vertical filtering with the horizontal
filtering). This sequential vertical/horizontal filtering is best
used with low-pass filters, such as the Gaussian filter.

B. On GPU architecture

Modern GPUs are composed of Streaming Multiprocessors
(SMs), equipped with computational cores. The GTX 1050 Ti
used in our experiments has 6 SMs, each with 128 cores.

In an SM, every 32 cores are grouped into a so-called warp.
Within the same warp, cores execute the same instruction
at the same time. This means that diverging the execution
patterns of cores within the same warp might significantly
reduce performance.

When launching a program on the GPU, also known as a
kernel, we assign it two values: the number of blocks it will
execute and the number of threads executed per block. Blocks
are assigned to SMs and threads are assigned to cores within
the SM. It is possible to assign more blocks than SMs available
and more threads than cores, and this might even increase
performance in some cases, since it gives more leeway to the
job scheduler.

Each SM has fast access to on-chip shared memory. Because
it is faster, we desire to make more use of it when performing
the filtering operations. The GPU memory hierarchy also
includes the device global memory, which can be accessed
by every SM, and provides superior bandwidth vs. accessing
host (CPU) memory.

To access global memory, the best approach is to extract
consecutive addresses of 4 bytes, since this can be done in a
single instruction by a warp. This means that if V is a vector
of 4-byte values in global memory, a warp should access in the
pattern: V [offset + threadId]

copy to−−−−→ on-chip shared memory.
Above, threadId is the index of the core in the SM card, in

our scenario, this value is an integer between 0 and 127 since
the SMs in the GTX 1050 Ti have 128 cores each. The use
of shared memory imposes a practical challenge, as it might
introduce bank conflicts – that is, access patterns that become



Fig. 2: Number of simultaneous warps available for execution
in the SM of the GTX 1050 Ti as a function of: the block size
(left), the number of registers used in the execution (center),
and the employed amount of shared memory (right). These
graphs were obtained through Nvidia’s visual profiler for our
horizontal causal filtering kernel.

serialized and thus do not fully utilize the bandwidth of the
shared memory.

Shared memory is divided into separate banks in a round-
robin fashion as illustrated below:

Bank 0 Bank 1 ... Bank 31 Bank 0

4 bytes

Therefore, when accessing shared memory, we should take
caution that two different threads in the same warp are not
accessing the same banks at the same time, as this is a conflict.
If we are striding the shared memory by a multiple of 32,
this is not a problem, since each thread will access only one
bank. If a thread is accessing consecutive addresses in shared
memory, it will access more than one bank. In this scenario,
it compensates to introduce padding, as it can potentially
reduce conflicts. For example, if S is a shared memory vector
of consecutive 4-byte values we could access in the pattern
S[threadId·(width + padsize) + j] while varying j. In this
case, the padsize should be chosen so that width + padsize
becomes a prime number. In some cases, this reduces the
conflicts to zero. One exception to this discussion is that, when
all threads within a warp require access to a single value, it
can be broadcasted in a single instruction.

Finally, it is important to note that each thread has access
to a maximum number of registers and that making use of an
excessive number of these registers might reduce performance
(Figure 2). A good basic reference for GPU programming is
the book by Sanders and Kandrot [10].

III. APPROXIMATION SCHEME AND THEORETICAL
RESULTS

In this section we present our chosen approximation scheme
(used to parallelize the computation into independent blocks)
and its theoretical implication on filtering quality.

We partition the image into identical disjoint blocks of
pixels and compute the recursive causal and anticausal filtering
components in each of these blocks in parallel.

Suppose a one-dimensional block for simplicity, denoted as
{f [0], f [1], ..., f [B]} where B is the block length. Our causal
filter is of the form

g[k] = af [k] + b∆tk g[k − 1] + Φk−1,k(∆tk). (5)

Here the indices are local to the block partitions, so that f [−1]
might be a value inside the image, but outside the current
block. To compute g[0] (the first output value of the block), one
would need to know the output g[−1] of the previous block.
This creates a data dependency between blocks, severely
impacting performance and how much the algorithm can be
parallelized. To avoid this, our idea is to extrapolate the block
to obtain an approximation to the value g[0] without depending
on the previous block’s output. We approximate by considering
an extended block {f [−L], ..., f [0], ..., f [B]}, for some L, and
then computing the appropriate filter’s boundary conditions
(which take into account its edge-aware characteristics). We
should give a reasonable value of L such as to not compromise
the performance of the algorithm. In the next subsections we
will analyse the error given by this block partition.

A. Theoretical error analysis

We can describe the causal filter by the general equation

gn = unfn + vn−1fn−1 + wn−1gn−1 , (6)

where the input is given by f . Unrolling the recurrence
we obtain the expression for the error ε(i, n) in gn pro-
duced by assuming gn−i = 0, for a given i: εσ(i, n) =(∏i

j=1 wn−j

)
gn−i. As expected, the error depends on the

true value of gn−i, and also on the weights wn−i, . . . , wn−1.
Using that wn−j = b∆n−j+1 (see Eq. (5)) we obtain

εσ(i, n) = b(
∑i−1
j=0 ∆n−j) = bd(tn,tn−i) · gn−i , (7)

where d(ti, tj) is the distance between the i-th and j-th
samples in the transformed (non-uniform) domain. Now using
that b = e

−λ
σ we conclude εσ(i, n) = e

−λ
σ d(tn,tn−i) · gn−i .

Since the filter is normalized and the 8-bit image colors
are integers between 0 and 255, we have |gn−i| ≤ 255.
Therefore, taking the smallest of the lambdas listed in the
Appendix (which generates the worst-case error), we obtain
|εσ(i, n)| ≤ 255 · e−1.72

σ d(tn,tn−i) . So by extending the block
from 0 to −L the error at index n of the output is bounded by

|εσ(n+ L, n)| ≤ 255 · e
−1.72
σ (d(tn,t0)+d(t0,t−L)) . (8)

Choosing L such that d(t0, t−L) = σ we obtain

|εσ(n+ L, n)| ≤ 255 · e−1.72 · e
−1.72
σ ·n ≤ 46 · e

−1.72
σ ·n . (9)

This is a crude estimate which we can improve upon by
making assumptions on the initial conditions of the block. In
the next section, we will explore possible heuristics for this
situation.



B. Estimating the error by using non-zero initial conditions

We explore the case where we approximate g−L instead of
assuming g−L = 0. We do this by assuming instead that the
input is constant outside the extended block.

Since we are computing a Gaussian filter in a transformed
domain (Eq. (1)), the final filtered value (given by the sum of
the subfilters {g+

0 , g
+
1 } defined by Eq. (4)), is

g(−L) =
1√

2πσ2

∫ −Lt
−∞

f(t−1(s)) e−
(−Lt−s)2

2σ2 ds . (10)

where −Lt := t−1(−L) is a shorthand notation. We now ap-
proximate g(−L) by assuming f is constant below t−1(−L).
That is, f(s) = β for all s < t−1(L). The approximated value
is given by g̃(−L) where:

g̃(−L) =
1√

2πσ2

∫ −Lt
−∞

β · e−
(−Lt−s)2

2σ2 ds =
β

2
. (11)

As such, the filtering error at the n-th output sample of the
block is given by

|εσ(n+ L, n)| ≤ e
−1.72
σ (d(tn,t0)+d(t0,t−L)) · E(−L) (12)

where

E(−L) = |g̃(−L)− g(−L)|

=
∣∣∣ 1√

2πσ2

∫ −Lt
−∞

(f(t−1(s))− β) e−
(−L−s)2

2σ2 ds
∣∣∣.
(13)

Compared to Eq. (8), Eq. (12) is an improved error bound
which can guide our selection of the approximation constant β.

Recall that 95% of the mass of the Gaussian in the integral
of Eq. (13) resides within two standard deviations of its mean
µ = −Lt. This indicates that choosing β to be as similar as
possible to the neighbouring samples of f(−L) should reduce
the error E(−L), in the process also reducing the filtering error
εσ for all output samples. Note that this error decays at least
exponentially within the block, since neighbouring samples are
separated by at least a distance of ∆ = 1 transformed-domain
units (see Eq. (2)). Most commonly for edge-aware filtering,
∆� 1, and the error decays even faster.

C. Selecting approximation parameters to minimize the error

Eqs. (12–13) show that we can decrease the filtering error
by (i) increasing the block width extension L until d(t0, tL)
is reasonably large and (ii) choosing a good value for β.

A good choice for L is the value that makes d(t0, tL) ≥ 2σ.
This guarantees a worst-case error |εσ| of 9 RGB units, which
is just 3.5% of the full 8-bit range [0, 255]. Furthermore, if one
makes a proper selection of β such that E(−L) < 30, the error
|εσ| becomes smaller than 1 unit. This is a negligible error
since it will be rounded-off when quantized to 8-bit pixels.

A good choice for β is β = f [−L]. This is the best possible
choice that can be made considering that each block does
not have direct access to input samples f [n] with n < −L.
This choice results in small filtering errors for two reasons:
first, if the image has strong color variations around f [−L],
then the distance d(t0, tL) is expected to be very large (since

the spacings in Eq. (2) are directly proportional to color
variations). This minimizes the error regardless of β, due to
the exponentials in Eq. (12). Second, if the image has low
color variability around f [−L], then by definition β = f [−L]
is a good representative value for the colors in this region. As
such, E(−L) in Eq. (13) is expected to be small, also reducing
the filtering error.

D. Theoretical global error

Suppose the image is fully divided in blocks of w×h pixels,
and that we are performing horizontal filtering (thus, the 1D
block sizes are B = w). Assume that we extend each block
by L samples, such that d(t0, tL) = κ · σ for a fixed κ. Given
an upper bound M for the errors E(−L) of all blocks, one
can derive the worst-case mean squared error bound when
comparing the exact filtered image with the approximated
filtered image as:

MSE(w, κ, σ) ≤ M2 · e−κ·3.44

w
· 1− e−3.44·w

σ

1− e−3.44
σ

. (14)

Note that in practice M depends on σ and σr, and also on
individual features of the image’s content (in particular, on
the ocurrence of high-contrast edges). However, this expres-
sion indicates that such features become less relevant as κ
increases. Features of the image will affect the error at most
quadratically, while κ reduces it exponentially.

IV. METHODS AND TOOLS

We begin by stating the approach to which we compare our
results in the following sections.

A. Standard approach

In the GPU we obtain the best results by reading the image
block into the shared memory of an SM. The author has
experimented with a GTX 1050 Ti GPU which is equipped
with 6 SM cards with 48kb of shared memory each with 128
processing cores. To achieve the best performance we ought
to choose to filter the image in blocks with height and width
such that we achieve as many active warps as possible while
allowing to read the image with most of the available cores.

For filtering in horizontal direction, we chose dimensions
h = 128 and w = 24. Further increasing the width reduced the
performance, this is due to the hardware as seen in Figure 2.

We will restrict ourselves to discussing the implementation
of the horizontal filtering. The case for vertical filtering is
analogous. We present the straightforward approach to filtering
on GPU when assigning each SM a horizontal stripe of height
h allows using all of the SM cards available.

Algorithm A (Figure 3):
• Horizontally partition the image in stripes of height h;
• Each SM processes one horizontal stripe, starting with a

window of dimensions w×h on the left side of the stripe;
• Store the image window inside shared memory, perform

the causal filtering operations and write to the output.
Move the window to the right by a distance of w. Repeat
until the window reaches the right side of the image;



w
h

Fig. 3: Illustration of the subdivision used in Algorithm A.

• Now, traveling the window to the left side of the image,
analogously compute the anticausal filtering;

• After the horizontal filtering is done, perform the vertical
filtering operations, this time with vertical stripes, and
choosing block dimensions accordingly (in our case,
w = 128 and h = 24).

In this standard approach, since each SM is assigned a whole
stripe, with a fixed image size we have bounded performance
that cannot be improved by increasing the number of available
SM cards (the stripes sizes are fixed, and tied to the available
shared memory in the SMs). We will address this issue next,
justifying our approach with our error analysis.

Before delving deeper into the subject, let us also remark
that when doing convolution operations, the filters’ variances
add up (this is considered in standard probability theory
textbooks such as [7]), and as a result, when we decompose
the original filter into a sequence of alternated horizontal
and vertical passes we should account for this. Therefore
we choose variances for each iteration such that their total
sum adds up to the original σs (an “iteration” of the filter is
defined as performing a horizontal pass followed by a vertical
pass). As noted in [4], it is desirable as well to decrease the
variance on each pass by a constant factor, and we choose it
to be halved. This means that the i-th iteration has a deviation
of σi = σs ·

√
3 · 2N−i/

√
4N − 1, where N is the number

of iterations chosen. Now our algorithm is a composition of
row passes and column passes with decreasing variance. As
observed in [4], 3 iterations suffice, in our experiments we
choose the number of iterations to be 2 unless stated otherwise.

B. Improving the algorithm’s performance

Our approach is focused at improving performance when the
number of SMs exceeds the number of horizontal or vertical
stripes. As an example, let us take the number of SM cards as 9
(but note that the algorithm can be easily generalized for more
SMs). We divide our image into 9 equal-sized domains, each of
which will be attributed to a single SM card (Figure 4). Notice
that this domain partition is not directly adequate to filtering in
parallel, for example, SM2 should wait for SM1 to compute its
boundary conditions so that it could start filtering. Now instead
of waiting for the output of the SM1, we follow the scheme
of extending the domain size as to obtain approximations for
the boundary conditions of SM2 before SM1 computes its
output. Notice that then SM2 must extrapolate its boundaries
to approximate its left boundary conditions.

Algorithm B is applied to a boundary block to approximate
its causal initial (boundary) conditions. In this boundary block,

SM1 SM2 SM3

SM4 SM5 SM6

SM7 SM8 SM9

Fig. 4: Example of domain division with 9 SMs. With more
SMs, one could place more blocks per stripe similarly.

say B, we assume that generically, a thread is assigned points
Bi,j = tj , and we also choose an error threshold κ as an input.

Algorithm B:
• Starting from the initial point t0, compute backwards the

values ∆tk , k = 0,−1,−2, ... until
∑L−1
i=0 ∆t−i ≥ κ · σ;

• Filter the rows starting from t−L until t0 using the
initial condition g+

i [−L] = ai
1−bi f [−L + 1]. Output the

approximated boundary condition g+
i [0].

We can now compute the filter in parallel for all the SM
domains. On boundary blocks, we apply Algorithm B (and
its anticausal/vertical variants) to obtain the initial conditions,
and filtering is performed in each domain using Algorithm A.
This allows more resource usage of the GPU. Our proposed
approach (Algorithm C) thus uses Algorithm B in conjunction
with Algorithm A.

Algorithm C:
• Partition the image in SM domains (Figure 4);
• Compute the initial conditions for the boundary blocks

with Algorithm B;
• For each SM domain, filter analogously to Algorithm A,

using the approximated initial conditions.

C. Practical details of our implementation

Our approach was to read an RGB image by padding it. We
stored each pixel as a uchar4, a structure provided by CUDA.
By doing this, we can extract groups of pixels in a single
instruction. With w = 24 and using a padsize of 5 in shared
memory, we had no bank conflicts in the algorithm.

Recall that the Gaussian filter we are using requires that
we compute the complex powers b

∆tk
i . To work with complex

numbers we used the Thrust library, which allows us to easily
express complex arithmetic. However, when computing those
powers, we chose not to use Thrust’s pow function, since it
makes use of double-precision values, and we prefer to restrict
ourselves to single-precision values as this yields superior per-
formance and is sufficient to capture the necessary precision.

So, to compute the complex powers we refer to Moivre’s
theorem. If z is a complex number and we want to compute
zx where x is real, then we first write z in its polar form as
r · eiθ. So zx = rx · eixθ = rx · (cos(xθ) + i · sin(xθ)). Now
the power rx (which is a real value) and the trigonometric
functions can be computed using CUDA’s math library, which
only uses single-precision arithmetic.

Also note that filtering uses a lot of complex constants,
for instance bi, ri,j , ai. We precompute those along with the
polar form of the values bi to compute complex powers. These



constants should not be stored as local variables in registers
since this will potentially reduce performance. Our approach
was to use these constants as global device variables, and since
every thread requests these values simultaneously, they can be
broadcasted. This approach provided superior performance.

In our implementation, we compute the filter’s causal and
anticausal components in parallel and then sum them [5]. We
filter horizontally and then vertically for better filtering quality.

V. PERFORMANCE AND ERROR EVALUATION

In this section we show the experimental aspects of our
work, presenting and discussing our results.

A. Experimental Design: Software and Hardware Platform

We developed our code in CUDA/C, using NVIDIA CUDA
Compiler version 10.2, and experimented with the GPU cards
GTX 1050 Ti and RTX 2080 Ti. The code is available at
the companion artifact. We run experiments for both filtering
quality and for execution time in the following subsections.

B. Control variables and observed outcomes

Our controllable variables in the experiments are σ, σr, κ,
the filtering window dimensions w × h, and the number of
CUDA blocks per stripe used. The number of blocks controls
the number of SM domains chosen as per Figure 4. It is
expected that larger values for σ and σr should cause execu-
tions to last longer and to be more prone to numerical errors
due to boundary approximation. In this section we investigate
these effects. The variable σr is expected to interfere more in
the results since it controls the mixing of the colors on the
RGB range. Good choices for window dimensions depend on
the hardware involved, and we restricted ourselves to values
h = 128 and w = 24 as this was the proper choice for filtering
in the GTX 1050 Ti. This choice also performed well for the
RTX 2080 Ti. We also investigate how the execution time
behaves by changing the filtered image dimensions.

Increasing the number of blocks per stripe should have the
following effects: if we have spare SMs to assign to each
block we expect to get a speedup. If we have more blocks
than SMs, we could have either improved or worse results: it
might be the case that a single SM could execute more than
one block simultaneously (given it has the necessary memory
resources) and this allows better resource utilization. Further,
more block granularity might have slower blocks interfere less
in the execution. However, having too many blocks might
cause the approximation phase of the algorithm to overtake
the execution time, since proportionally more blocks would
be classified as boundary blocks.

In the experiments, we measured the total execution time of
filtering rows and columns twice (two iterations). We do not
consider the cost of loading the image into the GPU. We mea-
sure the approximation effects by computing the mean squared
error between the approximated output and the desired output.

(a) Ground truth (b) κ = 0 (c) κ = 1.5

Fig. 5: Under the same conditions of Figure 1 we highlight
with red arrows the artifacts introduced by Algorithm D with
κ = 0 (b), that is, not extending the blocks. Compare to the
desired output from Algorithm A (a), which generated the cor-
rect filtering output but is slower (less parallelism). Algorithm
D with κ = 1.5 (c) uses our boundary approximation, and
with this value for κ the visual artifacts disappear.

C. Approximation of boundary conditions and impact on
filtering quality

We explore how our proposed boundary condition approx-
imation impacts the quality of the filter in practice. For this
end, we use an implementation of the filter which computes the
approximation for each block in the image in every direction
(this is, we treat each block as a boundary block in every
direction, and approximate every initial condition: upward,
downward, forward, backward). Let’s call this Algorithm D,
which represents the worst-case scenario (in terms of filtering
quality) since it requires the most approximations possible.
This is only done to better understand the behavior of Algo-
rithm C, which also uses boundary approximation but only in
boundary blocks.

Figure 1 shows the correct filtering output. Figure 5(b)
shows the result of Algorithm D with κ = 0 (i.e., no
boundary approximation). This causes the filtering to only
occur within the blocks and introduces strong visual artifacts.
These artifacts reduce as we set κ to larger values such as
κ = 1.5 (Figure 5(c)). Figure 6 plots the filtering error versus
the values of κ. We notice that the error decreases rapidly
with κ = 0.5, and increasing κ beyond 2 does not provide
better results in general. A good choice of κ depends on the
inputs σs and σr as well. But notice that Algorithm C (our
proposed implementation) will have much less visual artifacts
than Algorithm D since it only requires approximating the
boundary conditions in some regions (boundary blocks). By
experimenting with 20 distinct images from Kodak Lossless
True Color dataset, we saw little variability on the results,
which seem to indicate that κ = 2.0 is a good choice.
Furthermore, Figure 6 shows that there is very low variability
on the MSE when κ ≥ 0.5, indicating that individual features
of the images contribute less to the overall error as κ increases.
To understand this behavior, refer to Eq. (14), where the
individual features of the image affect the error at most
quadratically, while κ affects it exponentially.
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Fig. 6: With a set of 20 images from Kodak, we plot the
mean squared error by comparing the approximated image
from Algorithm D, and the desired output (Algorithm A) as
a function of κ. We also plot the 95% confidence interval for
each graph. Each graph in the form MSE(a, b) is the plot for
the MSE when (σ, σr) = (a, b).

Fig. 7: Comparison between original image (left) and filtered
image with Algorithm C (right), for σ = 70 and σr = 150.
With two row passes and two column passes. The image has
dimensions 1024× 768.

We recall that Algorithm A is the standard approach (high
filtering quality but low parallelism), while Algorithm C
requires approximating the image on SM domain boundaries,
but allows for higher parallelism. In the next subsection, we
show the gains obtained by allowing the use of more SM cards
in the filtering process by making use of Algorithm C.

D. Comparing Algorithm A with Algorithm C

Our performance results can be seen in Figure 8. Our
implementation of Algorithm C partitions each stripe (of
height 128 pixels) in the image in a given number of sections,
each section is filtered by a CUDA block. Comparing Figures
8a and 8c to Figures 8b and 8d we see that larger values
for σ and σr introduce more variability in the timing results,
although Algorithm C still performs better on average. We
point out that the filtering parameters σ = 200 and σr = 150
used in the latter figures are exaggerated in order to stress the
computational performance of our boundary approximation.

Notice that with the GTX 1050 Ti, Algorithm C outperforms
Algorithm A for a 2048×2048 image. To explain this, observe
that since each stripe has height 128, we have more stripes than
SM cards (here we have 6 SM cards). Algorithm C performs

better because an SM can run more than one CUDA block if
it has the necessary resources, so having more blocks allows
better resource management. This also allows slower SMs to
not impact so much the execution time.

From Figure 8a we see that having more blocks per row
yielded worse results. We reason this behavior might be due
to the fact that the increased amount of blocks per stripe causes
the boundary approximation phase to be more computationally
demanding, and so more blocks per stripe slow down the
algorithm. However, this scenario seems to change, on average,
in Figure 8b. This behavior remains to be explained. Despite
the increased costs in the approximation phase, Algorithm C
performed better on average even with 6 blocks per stripe.

The RTX 2080 Ti has 68 SM cards each with 64 processing
cores. This makes it clear that increasing the number of
blocks per stripe should improve the performance because
we have spare SM cards for the filtering process. Because
of this, we got much better results for Algorithm C than with
Algorithm A, as can be seen from Figure 8c and Figure 8d.
We executed the filtering process with the same window
dimensions 128× 24, which means in this case that we are
assigning more lines to each window than the number of
processing cores in the SM. To better match the architecture of
the RTX 2080 Ti, we experimented with window dimensions
64 × 64 as well, but this change did not offer considerable
improvement. For comparison, we ran a CPU version of filter
on a 3.2 GHz i7-8700, with 12 threads, and it took roughly
6 seconds to filter the image with dimensions 20482 (versus
around 0.01 seconds on the RTX 2080 Ti).

E. Discussion

We discuss scenarios that might arise when attempting an
implementation by using the algorithm proposed by Nehab
et al. [8]. Their algorithm reads an entire block into shared
memory and performs all filtering operations in a single kernel.
The best choice is equal block dimensions B×B for B equal
to the number of cores in the SM cards. We note, however,
that for some GPUs this choice would not allow us to properly
use all cores in the SM. For example, the GTX 1050 Ti has
48Kb of shared memory and 128 cores per SM, so a block
with dimensions 128 × 128 would require 49Kb of memory
for an RGB image. This problem becomes worse when dealing
with RGBA images. Therefore, either for horizontal or vertical
filtering, we would have to use fewer cores than available. A
possibility would be to implement their algorithm by using one
kernel for horizontal filtering and another for vertical filtering,
but this would require more than two image reads. The algo-
rithm and implementation we propose in this paper address
these limitations, but we have not compared the two algorithms
in practical situations since the algorithm of Nehab et al. would
require changes to be applied to edge-aware recursive filters.

VI. CONCLUSION

We presented an implementation for edge-aware Gaussian
GPU filtering. Our approach is simple and allows us to
properly scale the computations with the number of SM
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(a) GTX 1050 Ti with σ = 50 and σr = 50
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2562 5122 7682 10242 12802 15362 17922 20482

image size (pixels)

0

5

10

15

20

tim
e 

(m
illi

se
co

nd
s)

Algorithm A
Algorithm C (3 blocks)
Algorithm C (6 blocks)

(c) RTX 2080 Ti with σ = 50 and σr = 50
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(d) RTX 2080 Ti with σ = 200 and σr = 150

Fig. 8: Results on the RTX 2080 Ti and the GTX 1050 Ti. Measured by filtering on 5 diferent images, changing the size of
the filtered area to dimensions W ×W for W = 256 up to W = 2048. Each sample is an average of 50 measurements (each
of the 5 images was filtered 10 times) with a 99% confidence interval around each average.

cards available on the GPU. When resources are properly
available, execution time can be reduced by 50%, as indicated
in Section V, Figure 8. And even when resources are not
available, we reduced the execution time by the increased
granularity in the domain. We managed to get good speedups
while bounding the numerical errors by using our proposed
Algorithm C. For future work, we believe that a comparison
should be done to other approaches adapted for edge-aware
recursive filtering [8]. We would also like to explore similar
ideas to improve the quality and/or performance of space-
frequency analysis methods [6].

SOFTWARE AND DATA AVAILABILITY

We endeavor to make our analysis reproducible. All the code
used to generate the results can be found in the link below,
including the images used and instructions:

https://github.com/hermes-hf/-edgeaware gaussian filter.
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APPENDIX: MATHEMATICAL CONSTANTS

α0 = 1.6800 + 3.7350j, λ0 = 1.783 + 0.6318j,

α1 = −0.6803 + 0.2598j, λ1 = 1.723 + 1.9970j,

ai = αi/γ, bi = e−λi/σ ,

ri,0 =
(bi − 1)2

aibi
, ri,1 =

ai

bi − 1
,

γ = Re
{
α0 ·

1 + b0

1− b0
+ α1 ·

1 + b1

1− b1

}
.

https://github.com/hermes-hf/-edgeaware_gaussian_filter
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