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Abstract—Pose estimation is a challenging task in computer
vision that has many applications, as for example: in motion
capture, in medical analysis, in human posture monitoring,
and in robotics. In other words, it is a main tool to enable
machines do understand human patterns in videos or images.
Performing this task in real-time while maintaining accuracy and
precision is critical for many of these applications. Several papers
propose real time approaches considering deep neural networks
for pose estimation. However, in most cases they fail when
considering run-time performance or do not achieve the precision
needed. In this work, we propose a new model for real-time
pose estimation considering attention modules for convolutional
neural networks (CNNs). We introduce a two-dimensional relative
attention mechanism for feature extraction in pose machines
leading to improvements in accuracy. We create a single shot
architecture where both operations to infer keypoints and part
affinity fields share the information. Also, for each stage, we
use tensor decompositions to not only reduce dimensionality, but
also to improve performance. This allows us to factorize each
convolution and drastically reduce the number of parameters in
our network. Our experiments show that, with this factorized
approach, it is possible to achieve state-of-art performance in
terms of run-time while we have a small reduction in accuracy.

I. INTRODUCTION

Pose estimation is a challenging problem in computer vision
with many real applications. Usually, the problem to be
addressed involves estimating the 2D human pose, i.e., the
anatomical keypoints or body “parts” of persons in images or
videos [1]. Inferring the pose of multiple people in images
presents a unique set of challenges, considering the number
of people appearing in different scales, occlusion and also run-
time complexity tends to grow with the number of people in
the image [2]. If we find a way to leverage the performance for
this task in real-time, it would be hugely beneficial for a large
range of applications, such as motion capture for animation,
robotics, understanding sign language, and many others.

The state-of-art OpenPose [2] presents an evolution of pose
machines with a bottom-up approach for pose detection and
a huge reduction in computational cost. However, it does not
achieve the desired performance in terms of frames per second
in real time, considering both versions of its architecture in
limited hardware [1].Thus raising the need for a more efficient
architecture or technique to reduce the processing time.

Convolutional Pose Machines are fully convolutional neural
networks and there is evidence that a key feature behind the
success of these methods is over-parameterization. It could

help in finding a good local minimum, however it also leads
to a large amount of redundancy [3]. Furthermore, models with
a larger number of parameters have increased storage and are
computationally intensive. Several papers focus on improving
the efficiency of CNNs using tensor decompositions. Most of
them consider each layer independently, where the kernel of
a convolutional layer can be seen as a 4-dimensional matrix
and decomposed in a set of low-rank approximations. On
the other hand, we have hand-crafted decomposition methods
that use pointwise and depthwise convolutions to improve
performance, such as the Mobilenets [4], [5].

Another weakness of convolutional neural networks is that
convolution operations consider only local neighborhoods thus
missing global information [6]. Recently several papers pro-
pose the use of attention modules to leverage this problem,
for example, the use of Squeeze-and-Excitation networks [7],
Gather-Excite for feature analysis [8], and convolutional block
attention modules (CBAM) [9]. They show consistent im-
provements in the result for image classification on Ima-
geNet [10] and in the COCO dataset [11] across many different
models and scales, proving the potential of this approach.

This paper focuses on techniques for leveraging the re-
dundancy in the parameters of Convolutional Pose Machines
following tensor decomposition models and introducing a new
architecture with attention mechanisms, not only improving
performance but also reducing redundancy for pose estimation
tasks.

The paper is organized as follow. Section II discuss the
related work. Section III describes our new method for 2D
pose estimation. Section IV shows our results. Finally, Section
V concludes the work and proposes future works.

II. RELATED WORK

In this section, we present some of the works directly related
to ours, divided in three categories: Pose Estimation; Tensor
Decomposition; and Attention in Neural Networks.

A. Pose estimation

The problem of pose estimation is challenging, due to the
enormous variation of color and shape combinations of people
and environment in input images. The classical approach
employs pictorial models, where each object in an image is
modeled as a collection of individual parts in a deformable



configuration [12]. These models, however, presented prob-
lems when presented with unusual part configurations and
occlusion. Recently, Ramakrishna et al. [13] proposed to use
an inference machine framework for pose estimation, named
Pose Machine. Their method consists on training a series of
multi-class predictors for each part. Each predictor consists of
multiple stages that receive the input image and the output of
the previous stage as input, and results in a confidence map for
the presence of a target body-part. Their approach allows for
reliable interconnection between body-parts even for unusual
configurations (if present in the training data), but still suffers
when occlusions are present.

More recently, Wei et al. [14] proposed Convolutional
Pose Machines (CPMs), leveraging the power of convolutional
deep neural networks for the pose estimation task. This new
approach benefits from learning long-range dependencies be-
tween image and multi-part cues of the original pose machines,
while gaining the ability to learn features directly from the
data [14]. CPMs are composed of a sequence of convolutional
networks, each producing a bidimensional belief map of the
location of each part. One of the issues raised by the authors
is the handling of multiple people in close proximity. Since
their work was focused on images, they did not consider cases
of sequential video frames, where we can exploit temporal co-
herence to improve accuracy and computational performance.

Cao et al. [15] extended CPMs using Part Affinity
Fields (PAFs) to encode the location and orientation of limbs
on the image domain. This representation allows for the
accurate association between parts even in the presence of
multiple people. However, their approach is computationally
demanding, where it is not possible to use in low power
devices.

Recently, the work of Silva et al. [1] proposed an ar-
chitecture for pose estimation based on the developments
of OpenPose [15]. They factorized the hidden convolution
layers of their CPM, where they modeled each convolution
kernel as a single high-order tensor, and employ high-order
singular value decomposition (HOSVD) to simplify the layers.
They also propose a temporal coherence model to extrapolate
the results between sequential video frames. Their results
indicate a significant computational performance increase
while maintaining accuracy and recall measures comparable
to OpenPose. However, similar to OpenPose, the use of their
model considering low power devices is impractical, due the
computational demand and the model size. Also, they achieve
a high performance due post processing steps with the use of
Optical Flow and Kalman Filters.

Further, Papandreou et al. [16] propose a new botom-up
model for pose estimation with a fully-convolutional architec-
ture and a part-induced geometric embedding descriptor which
associate semantic person pixels with their corresponding per-
son instance. This model presents outstanding performance in
real time considering the pose net, however, it has limitations
considering accuracy, where problems as flicking and missing
keypoints are not uncommon.

B. Tensor Decomposition

Tensor decomposition, analogously to matrix decomposi-
tion, is a way to express a tensor as a product of simpler,
usually smaller tensors. There is a rising interest in exploring
efficient architectures for Neural Networks, either for use in
embedded device applications or their use in ubiquitous com-
puting [4]. Hand-crafted methods can be considered analogous
to tensor decomposition, for example, the MobileNet [4],
[5] and Xception [17] which decompose convolutions using
efficient depthwise and pointwise convolutions. On the other
hand, several works have been dedicated to leveraging tensor
decompositions to speed up computation or to reduce the
number of parameters of convolutional neural networks. Most
cases are focused on applying layer-wise decompositions,
considering the kernel of each layer. A kernel of a 2D
convolutional layer of a neural network can be described as
a 4-dimensional tensor, where its dimensions are defined by
the number of columns and rows, the number of channels
of the input, for example, the RGB channels of an image,
and the number of output channels. Kim et al. [18] propose
using HOSVD to split a regular convolution into three others,
drastically reducing the computation and model size.

1) Tensor Notation: A tensor can be seen as a high-
dimensional matrix, i.e, with three or more dimensions. The
order of a tensor T is the number of its dimensions [19]. As
matrices’ rows and columns, tensors have fibers, for example,
a matrix column is a mode-1 fiber and a matrix row is a mode-
2 fiber [19], [20].

2) Unfolding: Similar to matrix flattening we also have the
Unfolding operation, where we stack the fibers of a tensor in
a given way to obtain a matrix representation [19], [21]–[23].

3) Tensor Rank: A rank of a tensor T is the smallest
number of rank-one tensors that generate T by computing their
sum [19]. A rank-one tensor is a mode-N tensor where it can
be seen as the outer product of N vectors [19], [20]. In other
words, each element of T ∈ RI1×I2×...IN is the product of the
corresponding element-wise operation defined by Equation 1.

ti1i2...in = v
(1)
i1
v
(2)
i2
...v

(N)
iN

(1)

4) Mode-n multiplication: A multiplication of a matrix M
by a tensor T is defined by Equation 2.

X = (T ×M)(I1×I2×...×In−1×Jn×In+1×...×IN ) =
∑
in

ti1....iNmjnin

(2)
5) Tensor Decompositon: The SVD decomposition can be

generalized to High Order Tensors. It considers the orthonor-
mal spaces associated with the different modes of a tensor [18].
The High Order SVD is defined in Equation 3 as follows:

M = C × U1 × U2 × U3 (3)

where U1, U2, U3 contains the 1-mode, 2-mode, and 3-mode
singular vectors, respectively, related to the column space of
Mmode−1,Mmode−2, and Mmode−3 matrix unfoldings. C is a
core tensor with orthogonality property [24].



C. Attention in Neural Networks

In recent years, there has been an increasing interest by the
machine learning community in attention models, especially
due to their success in capturing long-distance interactions.
It was introduced by for the encoder-decoder in a neural
sequence translation model by Bahdanau et. al [25]. In special,
self-attentional Transformer architecture achieved state-of-the-
art results applied to natural language process tasks as machine
translation [26]. This architecture shows to be suitable for
capturing long-distance relations between entities.

Considering feed-forward convolutional neural networks,
Woo et al. [9] presented an attention module where, given an
intermediate feature map, the module tries to infer attention
maps along the color channel and spatial dimensions, and after
the attention maps are multiplied by the input feature map for
adaptive feature refinement.

More recently, Bello et al. [6] proposed 2D self-attention as
a replacement for convolutions for image classification tasks,
since self-attention captures global behavior more appropri-
ately than convolutional layers, which are inherently local.
Their results indicate that even though self-attention layers
are successful in replacing convolutional layers for image
classification, a combination of both techniques yields better
results in a controlled environment [6]. However, this global
form attends to all spatial locations of an input, limiting its
usage to small inputs which typically require significant down
sampling of the original image [27].

On the other hand, Squeeze-and-Excitation Networks (SE-
Net) introduce an attention block for CNNs that improves
channel interdependencies, not limiting the input size and
presenting huge performance boost in accuracy when applied
to existing architectures. Also there is almost no extra com-
putational cost when using this kind of architecture. With its
simple but effective idea of weight, each channel adaptively
allows us to better interpret its outputs compared with other
models, which do not have formal proof; for example, the
transformer-based model presented by Bello et al. [6].

III. METHOD

Our method can be seen as an improvement for pose ma-
chines. The system takes, as input, a color image of size w×h
and produces the 2D locations of anatomical keypoints for
each person in the image considering a bottom up approach.
As output we have the set of 2D confidence maps S of
body part locations and a set of 2D vector fields L [2]. We
developed a new architecture for the data refinement using SE-
Net blocks between intermediary layers. With this approach
we improve the model accuracy and after, we decompose
convolutional layers aiming to reduce redundancy and improve
processing time. Figure 1 represents the architecture of our
model following the convolutional pose machines [14], where
we refine the predictions over successive stages. We built
a sequential model for the first 6 convolutional blocks of
each stage, adding after each pair of convolutions, attention
modules. The outputs of two consecutive convolutional blocks
are concatenated, following an approach similar to DenseNet.

The last 6 convolutional layers form 2 branches with 3 layers
each, where the first is responsible for the 38 maps for part
affinity fields and the second, for 18 feature maps for body
keypoints. The output of the first branch is used as input to
the second in a sequential approach.

After all stages, we have a post-processing stage similar
to Openpose [15]. With N candidates for each body part
generated, we create for each pair a bipartite graph. We have
two outputs from our neural network: the heatmaps for key-
points candidates and affinity fields. We use a technique called
Non-maximum suppression to identify the optimal position
of each keypoint and reduce the space of search considering
the heatmaps [1], [15]. With all possible candidates (points)
obtained, finding the real connections between them is neces-
sary. To find the right relationship, we use the affinity fields
that were generated by the network. Affinity fields are nothing
more than vector fields that we use to weight the connections
between part candidates. An integral line is computed along
the segment described by each pair of candidates given its
weights [1], [15]. After following a matrix interpretation, the
results are analyzed following an assignment problem. We
use a variation of the Hungarian algorithm called the Jonker-
Volgenant algorithm [28] to create a connection between two
parts. This process is performed in each frame.

In the next subsections, we first briefly review the structure
of the Attention block, the factorized convolutions, and then
the detailed descriptions of our proposed modules and methods
are presented.

A. Attention block

The original SE-Net proposed a “Squeeze-and-Excitation”
block to adaptively highlight the channel-wise feature maps
by modeling weights applied to each channel. It was proved
that SE blocks bring significant improvements in performance
for existing state-of-the-art CNNs at slight additional compu-
tational cost.

In the excitation step, we fully capture channel-wise de-
pendencies. A simple gating mechanism with a sigmoid ac-
tivation (S) is applied. Consider an input with ch channels.
This mechanism is composed by two fully connected layers
(FCL) where the first has ch

r neurons and a LeakyReLU
activation, and the second, ch neurons. Finally, the second FCL
is followed by the sigmoid activation. The hyper parameter
ratio r allows us to vary the capacity and computational cost of
the SE blocks in the network and can be evaluated empirically.
In the sequence, to generate the output, an element-wise
multiplication between the result of the gating mechanism and
data input is performed.

In a formal way, let X ∈ RH×W×ch be the tensor corre-
sponding to the input of attention block and X ′ ∈ RH×W×ch

its output. In the squeeze operation, a global average pooling
is performed on the input to generate the weights z, where
each element of z is computed according to the Equation 4:

zc =
1

H ×W

H∑
i=0

W∑
j=0

Xc(i, j), (4)



Fig. 1. In our CNN model, we have 3 blocks containing two convolutional layers and an attention block

where Xc corresponds to each channel of X . After that,
it is applied the excitation step, on which the information
aggregated in the squeeze operation, is used in a operation
which aims to fully capture channel-wise dependencies. A
simple gatting mechanism with a sigmoid activation is applied
as according to this Equation 5:

α = sigmoid(W2(β(W1(z)))). (5)

Here, W1 ∈ R
ch
r ×ch and W2 ∈ Rch× ch

r represent two
fully connected layers and β a LeakyRelu activation. The
hyperparameter ratio r allows us to vary the capacity and
computational cost of the SE blocks in the network and can
be evaluated empirically.

In the sequence, the weights α are re-scaled on the input
X , generating the output. To do that, a Hadamard product is
computed, i.e., an element-wise multiplication between α and
X as described in Equation 6:

X
′
= α ◦ X (6)

Similarly to Su et al. [29], we use spatial attention mech-
anism to adaptively highlight the task-related regions in the
feature maps in addition to the channel-wise. Different from
paying attention to the entire image, which can lead to focus
on irrelevant features, spatial attention can enhance the overall
results [29]. With the spatial input X ∈ RH×W×ch and
its output X ′ with same dimensions, the spatial attention is
generated by a pointwise convolution followed by a sigmoid
activation. The spatial attention is represented by Equation 7:

β = sigmoid(WX ), (7)

where W represents the pointwise convolution. Finally, the
output is also re-scaled to achieve X ′ according to Equation
8 [29]:

x
′

i,j = βi,j ∗ xi,j , (8)

which is an element-wise multiplication between the spatial
elements of β and X . In our architecture, each attention
block is composed of spatial attention modules followed by
channelwise SE-Net blocks, as we can see in figure 2.

Fig. 2. The attention block used in our architecture. Here we first process
spatial attention operations before the channel-wise.

B. Factorized Convolutions

Similarly to TensorPose [1], we apply tensor decomposi-
tions to neural networks aiming to factorize their kernels,
creating approximations and improving the processing time for
inference. We use this strategy as an exploratory way to model
a factorized architecture, formed by pointwise convolutions
combined with a regular convolution with reduced size. We
aim to create a low rank approximation, where we model our
architecture following an one-shot whole network compression
scheme [18]. It consists of two steps: rank selection and tensor
decomposition. We analyze the unfolding mode-3 and mode-4



of each layer’s kernel tensor with global analytic variational
Bayesian matrix factorization (VBMF) [18]. Our experiments
show that an approximation of 1/3 or 1/4 of mode-3 and
mode-4 of a tensor already presented effective results. We
consider just the mode-3 and mode-4 due the fact that the
mode-1 and mode-2 represent just the spatial dimension of
kernel and they are quite small. The VBMF tries to infer a
optimal low rank selection and with these values, after, we
apply the Tucker decomposition on each kernel.

Let us consider a regular convolution which maps an input
tensor into another with different size by successive operations
as one can see in Equation 9:

conv(x, y, z) =
∑
i

∑
j

∑
k

T(i,j,k,z)W(x−i,y−j,k), (9)

where T is a kernel of size IJKZ andW an input tensor with
size XYK, as we refer typically as an image, for example,
with X and Y the image dimensions and K the number of
channels. The mode-4 kernel tensor T can be seen as a kernel
in a convolution layer. All operations for its decomposition
can be written in the form described in Equation 10 [18]:

Tx,y,z,k =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

Cr1,r2,r3,r4U
1
x,r1U

2
y,r2U

3
z,r3U

4
k,r4 ,

(10)
where C is a core tensor of size (R1×R2×R3×R4) and the
U∗ matrices are factor matrices of sizes X×R1,Y ×R2,Z×R3,
and K ×R4, respectively.

We rewrite the Equation 10 to consider just the mode-3 and
mode-4:

T
′
=

R3∑
r=1

R4∑
r=1

Ci,j,r3,r4U
k
r3(k)U

z
r4(z), (11)

where Uk,r3 and Uz,r4 are the factor matrices of sizes K×R3

and Z × R4, respectively, and C is a core tensor of size
(I, J,R3, R4). As a final result, we have 2 pointwise convolu-
tions represented by the matrices U and 1 regular convolution
with reduced space represented by the core tensor. This leads
us to the convolutional block used in our architecture. Even
using the VBMF, it was empirically verified that an approxi-
mation of 1/3 or 1/4 of original output size of the convolution
operations already presented effective results considering the
performance of our network.

C. Proposed Architecture and Experimental details

1) Architecture: As said before, our architecture is based on
the concepts of convolutional pose machines and in this section
we present the modifications in the architecture for feature
extraction and refinements stages. For feature extraction, we
remove the 12 blocks of convolution of a VGG-19 used in the
original and replace by a modified architecture of a Mobilenet
v2. This architecture has the advantages of being a state-of-
the art mobile constrained network with a huge improvement
in performance while maintaining the accuracy. Also we set a

number of 6 stages for intermediary refinement in the iterative
prediction.

2) Training: We trained our model over 120 epochs using
Adam optimizer with learning rate varying from 8e−5 to
7.38e−6. Also we use as activation function LeakyRelu instead
of Relu. Our cost function considers a gaussian kernel distance
between the annotations and the inferred data for each body
part and the affinty fields, which can be written as in equation
14.

f ikey =

nkeys∑
k=1

∑
p

1− e−w(p)‖keyi
k−key∗k‖2 , (12)

f ipaf =

paf∑
k=1

∑
p

1− e−w(p)‖pafi
k−paf∗k‖2 , (13)

loss =

6∑
i=0

f ikey + f ipaf (14)

The kernel distances in our functions were similar to the
ones proposed by Cao et al. [2]. We weight the loss functions
spatially to address a practical issue that some datasets do
not completely label all people. Here, key and paf represents
the inferred maps for each keypoints and part affinty field
respectively and the w is a binary mask were w(p) = 0 when
the annotation is missing at pixel p.

3) Human Pose estimation: In training and validation
stages, we used 110000 and 5000 images respectively, with
a maximum of 200 iterations per epoch. In COCO dataset
[11], approximately 150000 people and 1.7 million labeled
keypoints are available. Considering the inference, we used
the COCO validation dataset to compare our modified model
and the OpenPose. We use the official COCO evaluation metric
called Object Keypoint Similarity (OKS), which measures of
how close the predicted Keypoint is to the ground truth an-
notation. These measures metrics like Precision and Recall at
50% and 75% OKS (AP-50, AP-75, AR-50, AR-75) consider
how close a prediction is to annotated data considering the
Gaussian standard deviation.

IV. RESULTS

In terms of runtime performance comparisons, we began
with the test of the CNN processing. Considering just one
image with 23 people, we compared our approach with Open-
Pose. The tests were performed in a GPU Nvidia RTX 2060
with 6GB of memory, where we vary the scale of the image
tested by a factor of 0.5 and repeat each test 1000 times.
Our network achieves a performance of almost 20 frames per
second when a network resolution of 656× 368. We also test
a non factorized version of our network. In general, for the
same resolution, it has achieved a performance of almost 12
frames per second. As we can see in Table I, in average, our
approach has a better performance when compared with the
OpenPose, considering our factorized version.

We also perform tests in CPU. As we can see in Table II, in
average, our approach has a better performance, considering



Image Resolution OpenPose Ours
328 x 193 ∼55,08 ms ∼ 45 ms
656 x 368 ∼120.224 ms ∼ 51.26 ms
984 x 579 ∼174,75 ms ∼ 80.72 ms
1312 x 772 ∼320,18 ms ∼ 112 ms

TABLE I
CNN PROCESSING TIME FOR OPENPOSE AND OUR MODEL. WE VARY THE
SCALE OF THE INPUT TESTED BY A FACTOR OF 0.5 CONSIDERING 4 IMAGE
SCALES. WE DO THIS ONLY FOR THE NETWORK INPUT, THE FINAL RESULT

IS SCALED IN THE ORIGINAL IMAGE SIZE.

frames per second, while the original OpenPose is unpractical
to be used.

Device OpenPose Ours
AMD Ryzen 7 1700 3.5GHZ 0.3 FPS 13 FPS
Mac Pro Intel Core I7 2.7GHZ 0.1 FPS 6 FPS

TABLE II
CNN PROCESSING TIME FOR OPENPOSE AND OUR MODEL IN CPU.

Table III shows our results in contrast to OpenPose [2],
[15] and AlphaPose [30]. In terms of precision and Recall,
Alphapose has the best results; however, it has a different
approach that uses a top-down strategy. It also is impractical
to run this model in modest hardware systems. In a High-
end GPU, the AlphaPose runs over only 20 FPS. Since our
model is highly based on OpenPose and a bottom-up strategy,
performance tests with AlphaPose are out of scope. Figure
3 shows a visual comparison between the OpenPose and our
technique. We consider the original architecture of OpenPose
proposed by Cao et al. [15]. Here, higher OKS means higher
overlap between predicted Keypoints and the ground truth. As
we can see, our model has a lower accuracy than OpenPose,
which is mainly caused by our proposed simplification on the
convolutional layers. However, this simplification promotes
the advantage of having 9.3 times less operations [1] in
these layers than the original OpenPose [1]. We have focused
on real-time application and our model’s use in low power
devices, so this accuracy loss does not represent significant
problems. In Figure 3, we can see that OpenPose presents
a confusion between semantically similar parts of different
persons in this frame, while our method does not find this
pattern.

Model AP 0.50 AP 0.75 AR 0.50 AR 0.75
AlphaPose 0.84 0.715 0.895 0.775
OpenPose 0.782 0.594 0.807 0.650
Ours 0.743 0.501 0.702 0.580

TABLE III
PRECISION AND RECALL FOR ALPHAPOSE, OPENPOSE AND OUR MODEL.

V. CONCLUSIONS

In this work, we proposed a novel deep neural network
with a lightweight architecture, attention blocks, and tensor
decomposition for pose estimation with improved processing
time. We show in our experiments that we have significant
improvements in performance, a requirement for real-time
applications. We provided an efficient optimization in the CNN

model when considering its use in modest GPU hardware and
CPU. This is a result of our factorized convolutions involving
the Tensor decomposition theory. In parallel to handcrafted
approaches for factorized models, this can be considered a
technique with great potential. Due to the factorized con-
volutions, our accuracy of the keypoints detection shows to
be slightly smaller. However, our primary objective was the
performance gain when considering FPS, maintaining a similar
accuracy, which has been achieved. We explored the weakness
of convolutional neural networks using attention mechanisms
as an auxiliary method to focus on global information for our
applications besides the local neighborhood. The redundancy
in the parameters of Convolutional Pose Machines following
tensor decompositions and attention mechanisms was signif-
icantly reduced. For the future, we plan to explore different
attention module architectures and increase the accuracy. We
also want to extend our work for 3D pose estimation.
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Fig. 4. Results containing viewpoint variation and occlusion, which are common characteristics in images. Images from COCO dataset.


