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Abstract—Alzheimer’s disease (AD) is a common neurodegen-
erative dementia that affects older people. Changes in behavior
and cognition are the most common characteristics of this disease
and are associated with changes in brain structure. Techniques
focusing on brain shape have been recently proposed to quantify
and understand these changes. One challenge when examining
AD is that each anatomical region may have a unique role
in and time course for brain deterioration, requiring a whole-
brain method that is capable of individual (or regional) analyses
at different disease stages. We propose to apply the scale-
invariant heat kernel signature descriptor to magnetic resonance
brain images in order to evaluate regional shape features across
different brain regions. We measured the shape feature similarity
in 500 subjects, equally divided across five progressive, disease-
based stages. The shape analysis provided a complementary
perspective to whole-brain analysis, due to the capability of
identifying how different structures degenerate at different rates
in the brain. In total, a group of 99 distinct brain regions
belonging to cortical and deep gray matter were analyzed across
the five disease stages. Preliminary assessment of shape-based
analysis of key brain regions demonstrated that SIHKS was
predictive of disease stage and disease progression.

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative dementia
that affects about half of the global population (>85 years).
This disease compromises both brain structure and function,
leading to deleterious affects on behavior and cognition. Mild
cognitive impairment (MCI) is proposed as an intermediate
(or prodromal) stage of AD. Even in the absence of a proven
treatment for AD, accurately predicting early signs of AD is
important, for it may improve patient management and allow
appropriate use of emerging disease-modifying therapies. The
Alzheimer’s Disease Neuroimaging Initiative (ADNI) divided
progression into five disease stages, ranging from normal
control (CN), early MCI (eMCI), MCI, late MCI (lMCI), to
AD.

Previous imaging studies have demonstrated that the shape
of brain structures is altered with AD progression. For ex-
ample, a number of brain structures consistently shrink in
neurodegeneration. Hippocampal volume loss, as one example,
can begin early in AD patients and typically ranges from -4%
to -6% volume change per year [1]. Other brain structures have
differing onset times and rates of changes. The rate of regional
change may vary across the different AD stages. Fig. 1

illustrates the shape of some brain structures in representative
CN and AD subjects.

(a) (b)
Fig. 1. Segmented T1-weighted magnetic resonance (MR) images (using
Freesurfer) for (a) CN and (b) AD subjects. The red circle on the right side
of each image highlights changes in shape and reductions in volume for gray
and white matter (as expected in AD). AD = Alzheimer’s disease, CN =
normal control.

One analysis approach is to apply feature-based techniques
to create a bag-of-features and then use these results either
with conventional image processing or, more recently, ma-
chine learning approaches. There are many different types of
descriptors that target specific features including color, texture
and, the focus of this work, shape.

Brain imaging is used to aid the assessment of AD by
identifying regional anatomical brain changes and correlating
them to the five AD stages. Imaging is a common examination
for understanding brain disease. The efficacy of combining
different examinations has been previously highlighted. Our
focus was to develop a method capable of identifying shape
variations and to differentiate the stages of AD progression.

In this paper, we present a method based on estimating the
similarity among AD-related stages by applying shape descrip-
tion techniques to each anatomical brain region. These esti-
mates use the scale-invariant heat kernel signature (SIHKS),
clustering geometric words using k-means, and similarity
measurements based on covariance.

The main contributions of this work can be summarized as
follows: 1) Implementation of a 3D-mesh scale-invariant shape
descriptor for brain region description; and 2) Testing of an



approach for classification based on shape feature extraction,
clustering, and similarity measurements.

The remainder of this work is organized in the following
sections: In Section II we summarize related work. The
proposed method and details of each step is addressed in
Section III. Section IV presents and interprets the results and
Section V discusses our findings. We summarize this work and
present our conclusions in Section VI.

II. RELATED WORK

Shape analysis has a variety of applications in image
processing. Liu et al. [2] proposed a slice-by-slice putamen
segmentation method that combines wavelets and a neural
network. Their approach was to: 1) crop a proton density-
weighted MR image (including the putamen), and extract
the features using 1D wavelet decomposition; 2) classify the
putamen and find its location using a neural network; 3)
segment the object with contrast-limited adaptive histogram
equalization. The image was then classified into two clus-
ters using fuzzy C-means; and 4) finally, the classification
of putamen shape was performed using a neural network
using features extracted within the putamen region of interest.
Their work highlighted that shapes can be described by their
moments and they demonstrated accurate detection of the
putamen shape.

Jia-Lin et al. [3] introduced a region growing algorithm for
computerized tomography (CT) images that considers shape
features. They proposed a chart-transferring tree that took into
account different adjacent regions in the brain. Their method
considered shape roundness based on perimeter and normal-
ized moment of inertia. They demonstrated their method by
identifying normal and abnormal cerebral hemorrhage images
and obtained an accuracy of 88.3%.

Zhu et al. [4] presented a method to distinguish subjects
based on their brain shape differences. Their approach relies
on an optimal hierarchical feature matching approach. They
used spatial pyramid matching, which was divided into four
steps: 1) Image Preprocessing, carrying out edge preservation
filtering; 2) Feature Extraction based on Canny edge detection;
3) Feature Labelling using definitions from a codebook; and
4) Evaluation of image pairs based on multilevel feature
histograms. For feature labelling, they captured the anatomical
shape and then used SPM [5] to perform matching using a set
of feature maps. Their key idea was to avoid mismatching
along near edges. Each edge was clustered using k-means and
some artifacts are removed using fuzzy-C-means.

Addressing the difficult task of detecting brain tumors based
on their irregular shape, Ghanavati et al. [6] proposed a
multi-modality framework for tumor detection. They used MR
images as input due to their structural characteristics. Their
framework had two key phases: 1) Training: MR images (e.g.,
T1, T2, gadolinium contrast enhanced) were pre-processed
to reduce the intensity bias and remove non-brain tissue.
They subsequently extracted signal intensity, symmetry, shape,
and texture features from these images. Shape features were
extracted using 3D non-rigid Demons registration. They then

used these features in AdaBoost to select the most discrimina-
tive features and thus generated a set of selected and trained
features. 2) Detection: Images were preprocessed using the
same workflow as in the training phase. Selected features were
used for feature extraction. After classification, the trained
features were used to segment the tumor.

They developed a multi-modal framework capable of reach-
ing an accuracy of nearly 90%, demonstrating that shape
features can improve segmentation procedures.

Chaddad et al. [7] highlighted the importance of identifying
how the brain is affected in AD by analyzing distinct regions.
Their analysis used 235 individuals selected from the OASIS
dataset [8] and took into account texture and shape changes in
CN subjects and AD patients using a four-stepped approach: 1)
Segmentation: Using Freesurfer [9], they obtained a segmenta-
tion of the brain that labeled 41 subcortical regions of interest;
2) Feature Extraction: Radiomic features of heterogeneity and
shape of subcortical regions were extracted. Other features
characterizing properties, such as contrast, texture strength
and complexity were also extracted. Combining all extracted
features, they obtained a 35-element texture-feature vector. In
addition, they extracted four shape features to characterize the
surface of each region; and 3) Analysis and Classification: A
five-layer 3D convolutional neural network (CNN) was applied
to classify these features and produce 21 distinct feature
maps. Wilcoxon tests were applied to identify significant
differences in subcortical brain regions. The authors found
that the two regions (the hippocampus and amygdala) had
significant differences between CN and AD patients.

Rajendran and Madheswaran [10] proposed a system to
combine low-level features (images) and high-level knowledge
(specialists). They used CT images as input in order to identify
benign and malignant tissue. Their system had four steps:
1) Training, which performs the histogram equalization, seg-
mentation using curve evolution and shape correction, feature
extraction, and feature vectors; 2) Testing, which performs the
same procedures described in the training phase but on the test
data; 3) Mining, which uses a transactional database (obtained
in the first step) to perform association rule mining (obtained in
the second step) and to generate a set of association rules; and
4) Classification, which applies these rules to classify whether
a subject is normal or abnormal. In case of abnormality, they
are further classified as benign or malignant subjects. Their
results showed 97% sensitivity, 91% specificity, and 98.5%
accuracy. They concluded this approach can support physicians
for classification of malignant tissue.

Shape features in image analysis have been well studied
in the literature. Bu et al. [11], for example, proposed a
multi-level 3D shape feature extraction approach for image
retrieval tasks. Their approach sequentially combined shape
feature extraction and deep learning in order to classify general
shapes. This four-step approach is composed of: 1) Low-
level Feature Extraction: HKS [12], SIHKS [13] and average
geodesic distance were calculated in order to convert each
shape into a representative shape feature matrix. 2) Mid-level
Features: bag-of-features were computed in order to represent



features as geometric words, with the generation of geometric
words are obtained by using k-means. 3) High-level Features:
firstly, a restricted Boltzmann machine (RBM) is applied to
learn the middle-level features, and secondly, those RBM are
stacked and learned using a deep belief network (DBN). They
calculated an accuracy of 70% for twenty types of shapes, they
also highlighted the need of using more data to improve the
fitting during the training phase.

Zhou et al. [14] suggested another approach that performs
segmentation using shape information. In order to capture
shape information, they used a shape-learning network that
incorporates affine-invariant transformations. Their approach
included: 1) Shape Learning: where the shape information
is compared and affine pair examinations from a subject are
trained, thus making the approach shape-aware; and 2) Shape-
guided Segmentation: Training of the segmentation network
in order to generate the segmentation label map. The authors
examined the left and right hippocampus and caudate, and
used Dice and Hausdorff distance metrics to show that the
proposed approach performed accurate segmentation.

Our work differs from these summarized approaches in that:
1) We aim to identify distinct region changes over the full

range of AD progression, and not only in late stages;
2) We developed software to aid the identification of the

best image for each patient, thus possibly reducing the
influence of artifacts; and

3) We applied the SIHKS algorithm [13] in the context for
3D shape description of region meshes.

III. PROPOSED METHOD

Our method consists of four major steps:
1) Data Acquisition and Selection: Obtaining data and

selecting the best examination per patient;
2) Brain Segmentation and Meshing Conversion: Using

Freesurfer segmentation of the brain into regions [9] and
conversion of each region into a mesh;

3) Feature Extraction: Applying SIHKS [13] to the meshes
and extracting shape information (i.e., heat diffusion);

4) Similarity Measurement: Comparing the co-variance
among patterns from specific regions.

The proposed analysis pipeline is illustrated in Fig. 2 and each
step is discussed in detail in the following sub-sections.

A. Data Acquisition and Selection

Data Acquisition. Data used in the preparation of this article
were obtained from the ADNI database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial
magnetic resonance imaging, positron emission tomography,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
MCI and early AD. The following information was provided
by the initiative: Image Data ID, Subject ID, AD Stage, i.e.,
one of {CN, eMCI, MCI, lMCI, AD}, Sex, Age, Description,
and Acquisition Date.

Two constraints were applied in the ADNI search query: 1)
only T1-weighted (T1w) MR images were selected; and 2) the
Description field had to include “*Rage*” or “*FSPGR*”. The
search query outcome retrieved 16, 273 entries (examinations)
in 1, 556 subjects. There was an average of 10.5± 6.3 (mean
± standard deviation) examinations per subject.

The search results were next filtered by acquisition
date, in order to retrieve the most recent examination per
patient. Because the ADNI acquisition protocol repeated T1w
scanning, many subjects had repeated examinations on the
same day, this step identified 3, 326 examinations grouped
over the 1, 556 subjects. After this step, there was an average
of 2.1± 0.5 same-day examinations per subject.

Patient Volume Selection (PVS) Tool. In order to select the
“best” of the same-day MR examinations per patient, we
developed an interactive software program (Patient Volume
Selection Tool) to allow visual selection of the images. The
tool was a grid-interactive tool and designed to facilitate
selection of the “best” image volume. The key idea behind
this tool was to interactively facilitate selection of the image
volume with the least amount of image artifact. Such artifacts
can arise from voluntary and involuntary patient motion.

The tool interface is straightforward. consisting of a grid
of entries. Each displayed column consists of one subject and
each row contains different scans (Fig. 2.1). In some cases,
a column might have just one selected cell; though per the
ADNI acquisition protocol, most columns contained at least
two cells. (The software is publicly available at [15]).

We selected a set of 500 T1-w MR volumes (100 for
each of five disease stages: CN = normal control, eMCI =
early mild cognitive impairment, MCI, lMCI = late MCI, and
AD). The demographic information for the selected subjects
is summarized in Table I.

B. Brain Segmentation and Mesh Conversion

Brain segmentation. Freesurfer was used to segment the brain
[9], the pipeline can be grouped into the following three steps:
1) image normalization and skull stripping; 2) smoothing
and inflation of the surface; and 3) registration and cortical
parcellation. We used the DKT [16] parcellation provided
by Freesurfer. We restricted the Freesurfer output to 99
gray matter regions. The assigned region ID is standardized,
allowing structures in different subjects to be compared by
region IDs. Each region was turned into binary volume,
where voxel intensity was set to 1 inside the region and 0

TABLE I
DEMOGRAPHIC INFORMATION OF THE SELECTED SUBJECTS.

Attribute CN
(N=100)

eMCI
(N=100)

MCI
(N=100)

lMCI
(N=100)

AD
(N=100)

Age (years)
median
(range)

79
(61 to 95)

73
(56 to 87)

80
(55 to 92)

74
(57 to 93)

77
(57 to 89)

Gender
% male 54% 47% 70% 50% 55%
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Fig. 2. Overview of the proposed method for shape feature extraction.

otherwise.

Mesh Conversion. To provide the input required by the shape
descriptor, we generated meshes for each region. Meshes are
structures that represent information as a set of points (nodes)
and faces (surfaces defined by the connected points). We
used the marching cubes algorithm [17] to convert regions
to meshes. This algorithm extracts polygonal meshes from a
three-dimensional volume.

Mesh conversion followed these steps: 1) The marching
cubes algorithm was applied; 2) The resulting mesh was
smoothed using a 3×3 Laplacian kernel; 3) The largest
connected-component was selected (i.e., the outer shape),
thus avoiding small inner holes that may cause the feature
identification to fail; and 4) As necessary, the face normal
vectors were inverted so they faced outward with respect to
the region.

C. Feature Extraction and Clustering

Feature Extraction. Assuming that regional shape varies with
AD stage, we chose a shape descriptor that was sensitive
to these changes. SIHKS is considered a robust local shape
descriptor and insensitive to scale deformations. [13]

The related HKS is invariant to isometric deformation, but
not invariant to scale. Given a manifold mesh X, its heat
diffusion equation is defined as:(

∆ +
∂

∂t

)
u(x, t) = 0 (1)

where ∆ is the negative Laplace-Beltrami operator, and u(x, t)
is the heat distribution of a given point x at time t.

Sun et al. [18] adopted the main diagonal of the heat kernel
as a feature descriptor. Each point x on the surface has a
specific feature vector that represents its HKS, as calculated
by:

HKS(x) = c(x)(Kt1(x, x), ...,Ktn(x, x)) (2)

where c(x) satisfies ‖HKS(x)‖2 = 1. Eq. 2 gives the quantity
of heat at a given point x after a given time t. The calculation
of HKS considers the first eigenvalues and eigenfunctions of
the Laplace-Beltrami operator.

One drawback of HKS is that it is very sensitive to scaling.
To suppress this limitation, Bronstein et al. [13] proposed the
SIHKS, described in the following equations:

hdiff(x) = (logKατ2(x, x)− logKατ1(x, x),

..., logKατm(x, x)− logKατm−1(x, x)) (3)

SIHKS(x) =
∥∥(Fhdiff(x)

)
(ω1, ..., ω6)

∥∥ (4)

where F is the discrete Fourier Transform, and ω is a given
frequency.

Clustering. The next step was to generate the bag-of-features
in order to represent the occurrences of geometric words.
Geometric words are defined as transitions that occur in a
specific shape. In order to generate a geometric vocabulary,
we used the k-means technique, a clustering algorithm that
automatically partitions data into a set of k clusters.

k-means is performed independently in each brain region.
Thus, each region has a set of 500 meshes. The clustering
procedure occurs in three steps:

1) For each region, we defined a matrix A of size N ×M ,
where N is equal to the number of patients multiplied
by the number of mesh points belonging to that patient,
and M is equal to the number of descriptors (i.e., 6).
This matrix is clustered using k-means, thus generating
a matrix B(N×1). In our experiments, we used k = 100,
which provided robust convergence for the clustering.

2) The matrix B was inserted back into the original matrix,
in order to return the same labeled point to the patients.

3) Each set of labeled points was then stored as a his-
togram. Thus, each patient has 99 histograms, one per
region.



D. Similarity Measurement

The similarity measurement step regards the comparison
among all subjects. The covariance (cov) is calculated using:

cov(x, y) =
1

n

n∑
i=1

(xi − xj)(yi − yj) (5)

A 500×500 matrix stored the similarity values for all subjects.

E. Evaluation Metrics

We adopted four metrics to evaluate our method: 1) Sensitiv-
ity (Se) also know as Recall (R), 2) Specificity (Sp), 3) F-score
(F), and 4) Accuracy (Acc). These metrics were calculated
from the false-positive (FP), true-positive (TP), false-negative
(FN), and true-negative (TN) rates in the 2×2 confusion
matrices. The evaluated metrics were obtained using:

Se = R =
TP

TP + FN
, Sp =

TN

FP + TN
,

F = 2× P ∗R
P +R

, and Acc =
TP + TN

TP + TN + FP + FN
.

where the precision is defined as P = TP
TP+FP .

F. Implementation

Our method was entirely implemented using the following
freely-available packages:

1) Demographic data was processed using Python 2.7
Jupyter Notebook. Our Patient Volume Selection soft-
ware was developed in Python 2.7 using PyQt;

2) Segmentation of the brain used Freesurfer [9]. The
binary volumes were obtained using Python 2.7, and
the marching cubes algorithm and mesh smoothing and
correction were implemented using VTK;

3) The feature shape extraction and the clustering were
implemented in Matlab (version r2018a) using the Image
Processing Toolbox; and

4) The similarity matrices and the other evaluation metrics
were obtained using Python 2.7.

Detailed information about our method, including the subjects
used and processed, the processing specifications, the imple-
mentation of the patient selection software, and our result
evaluation algorithm are available on the GitHub platform
[15].

IV. RESULTS

In this section, we describe how to interpret the similarity
matrices obtained in the last step of our method and the results
of applying well-known evaluation metrics. Note that ground-
truth was not available and, thus, we could not comprehen-
sively assess information on statistical region shape. Finally,
while AD is known to simultaneously affect multiple brain
regions, in this work, we have independently analyzed these
regions.

Our method generated a similarity matrix for each region
(e.g., Fig. 3(a)). Theses matrices corresponds to the similarity
of the features estimated on a subject-pair basis across the 500

subjects. These matrices can be described as: 1) the similarity
value shows how similar two subjects are based on similarities
in the covariance of their histograms; 2) the subjects were
grouped based on their AD stage (i.e., 100 subjects per stage as
shown in Fig. 3(b)); and 3) higher covariances were displayed
in red and lower covariances, in blue.

The confusion matrix and the evaluation metrics were not
directly computed from the similarity matrix. Instead, addi-
tional processing was performed to better highlight changes
across the AD stages. Stages temporally near the stage under
investigation were grouped to make an expected positive
group. Conversely, more temporally distant stages formed an
expected negative group. The result dichotomized the stage
data into expected positive and negative groups. We assumed
that temporally neighboring stages should have higher cor-
relation than more distant stages in the disease progression.
Table II shows how stages were grouped to perform binary
comparisons.

Once the positive and negative groups were identified,
the confusion matrices were generated using Algorithm 1 to
analyze how accurate the “prediction” of AD stages was, based
on the shape of the regions. This algorithm was divided into
two parts: 1) Prediction: The prediction is positive if the mean
covariance of positive group is greater than or equal to the
mean covariance of the negative subjects. 2) Confusion matrix:
In order to estimate FN, FP, TN, and TP, the prediction is
compared to patient ground-truth classification. Importantly,
this algorithm is performed on a per region and per stage
basis, following the details provided in Fig. 3. In Fig. 4, the
evaluation metric results are shown for each stage and region.

V. DISCUSSION

Image processing has been frequently applied to AD di-
agnosis and/or prognosis. Many studies are described in the
literature and numerous computational methods have been de-
veloped to aid the understanding of underlying brain changes.
Generally, these methods perform distinct assessments in order
to classify AD (or MCI). Some methods use demographic
data, familiar history, and cognitive testing in addition to brain
imaging.

In this work we focus on how the shapes of individual brain
regions vary with AD progression through the five ADNI-
defined stages. The ventricles, cortical and deep gray matter
structures were studied. Performing an analysis across multiple
disease stages is non-trivial due to subtle overlap between
temporally adjacent stages (i.e., eMCI and lMCI with respect
to MCI). We showed that shape descriptors that describe brain

TABLE II
GROUPING OF AD STAGES INTO POSITIVE AND NEGATIVE GROUPS.

Stage Assessed Positive Group Negative Group
CN CN, eMCI MCI, lMCI, AD
eMCI CN, eMCI, MCI lMCI, AD
MCI eMCI, MCI, lMCI CN, AD
lMCI MCI, lMCI, AD CN, eMCI
AD lMCI, AD CN, eMCI, MCI



(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 3. Experiment overview: (a) outcome of the proposed method, where each row and column corresponds to one of the 500 subjects; (b) grouping of the
subjects by stage (each 100 × 100 square denotes a distinct stage); (c) e.g., template of the confusion values for CN stage; (d to h) division of subjects in
two stages (positive [black] and negative [white]). The bar in (c-g) represents the ideal outcome. Shown are divisions for stages of interest (d) CN; (e) eMCI;
(f) MCI; (g) lMCI; and (h) AD.

(a)

(b)

(c)

(d)

(e)
Fig. 4. Outcome of the assessment of each region by stage according to several metrics for: (a) CN, (b) eMCI, (c) MCI, (d) lMCI, and (e) AD analyses.
Regions at each stage are sorted by F-score so that those with the highest association for change are to the right. The color bar ranges from blue (value = 0)
to red (value = 1)



Data: vector gt[500], matrix simMatrix[500,500]
Result: integer TP, FP, TN, FN
initialization: pred[500] = null;
for i from 1 to 500 do

if mean(simMatrix[i,Positive]) ≥
mean(simMatrix[i,Negative]) then

pred[i] ← Positive;
else

pred[i] ← Negative;
end

end
for i from 1 to 500 do

if pred[i] is Positive and gt[i] is Positive then
TP ← TP + 1;

else
if pred[i] is Positive and gt[i] is Negative then

FN ← FN + 1;
else

if pred[i] is Negative and gt[i] is Positive
then

FP ← FP + 1;
else

TN ← TN + 1;
end

end
end

end
Algorithm 1: Confusion matrix values per region and
stage. See Fig. 3(d to h) for positive and negative groups.
See description in text.

regions, when invariant to scaling, are sensitive to identifying
change (Fig. 4).

For further analysis, We grouped the gray matter results
shown in Fig. 4 into 1) cortical regions and 2) deep regions.
Cortical regions are assigned to every region label starting
with “ctx”, otherwise they were considered deep regions. The
ventricles were also considered to be deep brain structures.
After sorting by F-score, we obtained the first twenty regions
at each stage (corresponding to highest F-score associated
with ≈ 20% of our regions). On a stage basis, we found
that for gray matter: 1) CN: 75% were cortical and 25%,
were deep regions; 2) eMCI: 55% were cortical and 45%
were deep regions; 3) MCI: 55% were cortical and 45% were
deep regions; 4) lMCI: 85% were cortical and 15% were
deep regions; and 5) AD: 20% were cortical and 80% were
deep regions. These interesting findings suggest a balance of
regional change and cortical regions early in disease to deep
structures by lMCI and more deep changes in the final AD
stage of the disease. This suggests that examining cortical
regions may lead to a better prediction in early stages (e.g., CN
→ eMCI). Conversely, in later stage of the disease (i.e., AD),
examining the deep structures maybe more more predictive.

There are two significant limitations in our study: First, only
cross-sectional data were used. Longitudinal data is available

in the ADNI and other data sets and would potentially provide
statistically more powerful results.

Second, Freesurfer segmentation separates white matter by
hemisphere, rather than by lobe or tract. As a result the
white matter regions were essentially global brain measures.
Attempting to compute geometric words for large hemispheric
white matter regions failed due to insufficient computer mem-
ory (results not shown). However, the process described in
III.C successfully concluded when performing it on fewer
subjects (N = 25). For reference, white matter corresponds
to ≈ 40% of the brain volume.

VI. SUMMARY AND CONCLUSION

In this work we presented a shape analysis method for
selecting distinct brain regions related to AD progression. Our
method is composed of four major steps:

1) Data Acquisition and Selection, which consists of ob-
taining T1-weighted MR volumetric T1w scans of 500
subjects (100 for each of five AD stages), after selecting
the “best” scan per subject;

2) Brain Segmentation and Mesh Conversion, which con-
sists of the brain segmentation using Freesurfer, and the
conversion of each brain region onto a single mesh;

3) Feature Extraction and Clustering, which derives the
3D shape features from the meshes, and clusters these
features into geometric words;

4) Similarity Measurement, where the covariance among
different stages is measured.

The SIHKS provided 3D shape analysis for each brain region.
We assumed that, regardless of region size, the shape played
a key role in understanding AD progression. Indeed, our
results show that shape features are potentially important for
understanding AD progression.

We used the covariance between different stages to assess
distinct regions. Some regions were found to predict specific
AD stages. Ideally, regions which change more between stages
of AD should present higher covariance. In contrast, lower
covariance values should be obtained when comparing subjects
from distinct stages.

In future studies, we intend to focus on incorporating the
brain regions that provide the best discrimination between AD
stages into an image retrieval technique, in order to accurately
predict AD stages. Additionally, 3D shape features can also be
adapted to machine learning approaches. Moreover, different
brain regions are simultaneously affected in specific stages.
Thus, a multi-region analysis could be a promising extension
to single-region analysis.
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