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Abstract—Explainability has become one of the most discussed
topics in machine learning research in recent years, and although
a lot of methodologies that try to provide explanations to black-
box models have been proposed to address such an issue, little
discussion has been made on the pre-processing steps involving
the pipeline of development of machine learning solutions, such
as feature selection. In this work, we evaluate a game-theoretic
approach used to explain the output of any machine learning
model, SHAP, as a feature selection mechanism. In the experi-
ments, we show that besides being able to explain the decisions
of a model, it achieves better results than three commonly used
feature selection algorithms.

I. INTRODUCTION

Working with high-dimensional datasets has become a com-
mon task for anyone working with data. While offering great
opportunities to discover patterns and tendencies, dealing with
high-dimensional data can be complicated due to the so-called
curse of dimensionality. Essentially, the redundancy of the
dataset increases as its dimensionality increases, which can
impair the performance of various techniques. To overcome
such issues, dimensionality reduction techniques, such as t-
SNE [3] or UMAP [4] can be applied to reduce dimensionality
while maintaining as much of information as possible. One
problem of such algorithms is that they remove the inter-
pretability of the features (if they were interpretable at first)
by applying series of non-linear equations and may introduce
artifacts that were not perceived in the high-dimensional space.
Other approaches to deal with high dimensionality is to use
feature selection algorithms, which select a subset of variables
that can describe the input data while proving good results in
prediction [5]. In this case, it is necessary to define a metric
(or selection criteria) in which the feature selection will be
based [6], for example, the correlation among features. Feature
selection methods are commonly divided into three categories:
filter, wrapper, and embedded.

One problem with traditional feature selection algorithms
is related to their explainability issues. For example, when
working with clinical data, how to explain that a few features
were simply removed from the provided dataset? Each cate-
gory of feature selection algorithm has its weakness on how to
explain why certain features were chosen without diving into
the mathematical formulation. That is, filter methods do not
leverage a model’s characteristic to filter the features; wrapper
methods do leverage a model’s prediction, however, to choose
a subset of feature only based on accuracy or another scoring

technique has the same problem of trying to choose a model
for a task (e.g., in finance or clinical) only based on these
metrics; finally, although calculated as a part of the training
process, embedded methods have to be incorporated based on
each model particularity, which could be difficult and tedious
to provide explanations for every different model.

In this work, we provide a methodology and assessment
for feature selection based on model agnostic explanations,
produced by a novel approach know as SHAP [1]. The
approach assigns SHAP values, which are contribution values
for a model’s output, for each feature of each data point. These
SHAP values encode the importance that a model gives for a
feature, so that, we use the contribution information of each
feature to order the features based on its importance. In this
case, selecting a subset of d features based on SHAP values
means to select the first d features after ordering them based
on the feature contributions to the model’s prediction. We
validate our methodology on classification and regression tasks
upon eight publicly available datasets. Experiments against
three common feature selection algorithms show that feature
selection based on SHAP values presents the best results.
Summarily, the contributions of this work are:

• Assessment of SHAP as feature selection mechanism;
• A library with Python implementation of the methodol-

ogy1.
This paper is organized as follows: in Section II we describe

the related works; in Section III we provide a brief explanation
of SHAP and delineate the methodology to perform feature
selection based on it; experiments are provided in Section IV;
we discuss the results in Section V; the work is concluded in
Section VI.

II. RELATED WORKS

As the dimensionality of datasets grows, the redundancy of
the data becomes a problem since with too many dimensions,
every data point in a dataset appears equidistant from the
others [7]. To reduce problems like these, or simply to filter out
features that are not useful for a machine learning problem and
can introduce artifacts to the dataset while demanding higher
time execution, the number of features must be reduced.

Feature selection algorithms are usually classified into three
groups: filter, wrapper, and embedded [6], [8], [9]. Filter

1https://github.com/wilsonjr/SHAP FSelection



Fig. 1. Explanation generated by SHAP [1] visualized with force plot [2] - x axis: data points; y axis: SHAP values/model’s output. A. The explanation for
one single data point of the dataset – see the arrow coming from a specific index. The SHAP values encode the feature’s contribution to the model’s prediction
according to the base value, i.e., summing all the SHAP values for a data point to the base value will result in the model’s prediction. B. The explanation for
the whole Boston dataset using a force plot. B .

methods select a subset of the most important features from
a dataset as a pre-processing step independently from the
classifier [10], e.g., one could look the correlation among
features to filter out the ones with higher correlation. Wrapper
methods act like surrogate models where subsets of features
are evaluated upon their predictive power [11], [12], for
example, features whose changing does not imply significant
changes in the model’s output could be removed from the
subset of important features. Finally, embedded methods per-
form the feature selection during training, which makes them
specific to a model itself [12], [13], e.g., one of the most
common strategies for network pruning is to remove neurons
whose weights are very close to zero [14] since they do not
contribute to the model’s prediction.

In the group of filter methods, the correlation criteria that
use Pearson correlation coefficient [5] and Mutual Information
(MI) [15], [16] are usually the most employed feature selection
mechanisms. However, the problem with these approaches
is that the correlation ranking can only detect linear depen-
dencies between a feature and the model’s output [6] while
for MI-based ranking, the inter-feature MI is not taken into
account [17]. From the perspective of wrapper methods, care
must be taken since evaluating the 2m subsets of features
is an NP-hard problem. So that, heuristics are usually em-
ployed to find sub-optimal subsets such as using tree struc-
tures to evaluate different subsets in the Branch and Bound

method [18]–[20], or evolutionary algorithms, such as Genetic
Algorithms [21]–[24] or Particle Swarm Optimization [25]–
[28] to compute solutions with computational feasibility. Fi-
nally, embedded methods try to remove the time required for
refitting the models as seen in the wrapper methods. In this
case, the selection is held during the training process. Such
methods use the different incremental estimation of Mutual
Information [16], [29], [30] or classifiers’ weights [31] to
classify features based on importance and perform feature
selection. For example, the concept of weights is used to
rank features and applied to SVM classifier [30] to perform
Recursive Feature Selection. Finally, a multi-layer perceptron
network could have its nodes pruned after a penalty is applied
to node connections whose weights are closer to zero.

Differently from the methods discussed above, here we
proposed to use SHAP, the state-of-the-art method for model-
agnostic interpretation, as a feature selection mechanism. The
motivation to use such an approach as feature selection is
based on the need for model interpretation that has been
growing in the past years. In this case, we justify that an
important pre-processing of constructing machine learning
solutions could also be interpreted, and machine learning
practitioners would be able to explain all of their decisions
when building machine learning solutions.



III. BACKGROUND AND METHODOLOGY

In this section, we provide a brief background on SHAP
values and then show how to use them to explain machine
learning models based on predictions. Finally, we discuss how
to employ SHAP values as a feature selection mechanism.

A. Background

SHAP values [1] is a model addictive explanation approach,
in which each prediction is explained by the contribution of the
features of the dataset to the model’s output. More specifically,
SHAP approximate Shapley values [32], a concept from game
theory that is the solution for the problem of computing the
contribution to a model’s prediction of every subset of features
given a dataset with m features. While computing the exact
solution of Shapley values would be infeasible – due to the
exponential nature of the problem – SHAP approximate the
solution through special weighted linear regression [1] for
any model or throughout different assumptions about feature
dependence for ensemble tree models [33].

In linear regression models, the coefficients used to weight
the features are used to explain the predictions for all data
points, however, it does not account for the heterogeneity of
individual data observations. In most of the cases, however,
the effect of a feature for a data point could be different
from another data point. This is consistent with the fact that
local explanations are more accurate than global explanations.
This is similar to the idea to approximate global similarities
throughout a series of local similarities, as done by non-linear
dimensionality reduction methods. SHAP explores and uses
the property of local explainability to build surrogate models
to black-box machine learning models. In this case, SHAP
slightly changes the input and test the changes in prediction,
if the model prediction does not change much by slightly
changing the input value for a feature, that feature for that
particular data point may not be an important predictor.

The sum of the contributions, or SHAP values, of each
feature, is equal to the final prediction. In this case, a SHAP
value is not the difference between the prediction with and
without a feature, but it is a contribution of a feature to
the difference between the actual prediction and the mean
prediction. Fig. 1 shows how SHAP values can be used to
provide understanding about the model’s functionality for a
single data point and the whole Boston dataset after training
with XGBoost Regressor [34]. The figure shows negative (in
blue) and positive (in red) SHAP values that decrease and
increase the model’s prediction. These forces balance each
other at the actual prediction (output value) of the data instance
starting from the average of all predictions (base value). In the
explanation for the whole dataset (see Fig. 1B), a matrix with
the same dimension of the dataset is generated, where every
entry i, j contains a SHAP value of feature j for the data point
i. Such a matrix is used in the following section in the feature
selection methodology.

B. Methodology

To evaluate SHAP as a feature selection approach, we
simply use the feature contribution information as delineated
in Fig. 2. First, a SHAP values matrix (Ec

n×m) is generated
for each class (c) of the dataset – the matrix encodes the
feature contributions for each data point –, then, the mean
of the columns of each matrix is calculated. The vectors of
mean SHAP values for each class are summed and ordered
in a decreasing way. The first position of the resulting vector
contains the most import feature, the second position contains
the second most important, and so on. Note that in Fig. 2 blue
and red colors indicate SHAP values, however, the semantic
meaning is different since red colors depict real numbers and
blue colors depict importance.

Fig. 2. Calculating the importance of the features based on SHAP con-
tributions. The mean of each feature is retrieved for each SHAP matrix.
which corresponds to each class. Then, the resulting vectors are summed. The
summed vectors are ordered in a decreasing way to encode feature importance.

We reason that since SHAP can provide means of inter-
pretability of a model’s decisions by indicating the importance
of the dataset features, a feature selection algorithm based on
the most important features according to the absolute SHAP
values would provide good results.

IV. EXPERIMENTS

This section presents the application of SHAP values as
a feature selection method. Thus, we tested SHAP against
three common feature selection approaches: Mutual Infor-
mation [35]–[37], Recursive Feature Elimination [31], and
ANOVA [38]. The algorithms were evaluated upon eight pub-
licly available datasets, described in Table I, and based on the
Keep Absolute metric [33], which computes a model score on
varying number of features kept for classification/regression.
For example, the F1-Score could be used to evaluate a classi-
fication model with 10%, 20%, or 30% of the features, which
are previously ordered according to their importance – i.e.,
with 10% of the features, the model would be evaluated with
10% most important features. The remaining of the features
are masked, that is, all of its values are changed to their



respective column mean. Fig. 3 shows a schematic view of
the metric.

Fig. 3. The Keep Absolute metric. To evaluate how well a feature selection
technique can select important features, the model is retrained with d features
kept for classification and m− d features masked, where d is the number of
features to select and m is the dimensionality of the dataset.

The experiments were performed in a computer with the
following configuration: Intel(R) Core(TM) i7-8700 CPU @
3.20GHz, 32GB RAM, Windows 10 64 bits. Here, we used
the same XGBoost [34] Classifier and Regressor (an imple-
mentation of gradient boosted decision trees) for performing
the tasks with hyper-parameters tuned by grid-search, also
indicated in Table I, where α stands for learning rate, β
stands for max. depth, and ω stands for number of estimators.
Moreover, since we are using boosted trees, we picked the
version of SHAP designed to work with tree methods (Tree
SHAP), which produce explanations in a reduced amount of
time if compared with the model-agnostic version of SHAP.

A. Classification

We used 5-fold cross-validation with F1-score as scoring to
evaluate the feature selection methods according to the Keep
Absolute metric. Table II shows the Area Under the Curve
(AUC) for each combination of dataset and feature selection
technique. Note that higher values mean that the technique
was able to retrieve the best combination of features that
would increase the score (F1-score, in this case). We can
see that using SHAP as a mechanism to feature selection
yielded the higher scores (highlighted in bold), besides being
very consistent among the results. Taking the RFE technique
as example, it presented the second-best results for Wine,
Vertebral Column, and Breast Cancer datasets, however, it
also presented the worst results for the Indian Liver Disease
and Heart Disease datasets. The good results of the SHAP
technique could be explained by the fact that besides informing
the importance of the features, as the other techniques do, it
adds a certain rigor to the importance of the features by trying
to explain why certain decisions were made by the model
throughout the feature contributions, that can be different for
each data point.

To take a closer look at the decision made by the feature
selection algorithms, it is possible to look at the curves of
F1-scores generated by the Keep Absolute metric, i.e., the
curves used to generate the values of Table II. These curves
are shown in Fig. 4 for each feature selection technique, where
the mean of 5-fold cross-validation is indicated by the lines,
and the standard deviation is indicated by the areas with the
same color.

The curves give hints about the importance of ordering
chose by the algorithms. While most algorithms present similar
results for subsets with only a few features or with nearly
all of the features of the datasets, for some parts of the
curves, selecting feature with SHAP values is better due to
its intrinsical capability to understand the dataset and classi-
fier characteristics – see, for example, the pattern presented
between 20% and 50% for curves of Vertebral dataset in
Fig. 4d. In this case, selecting and assigning importance to
the features with SHAP values has the advantage to capture
complex characteristics of the features in a separately way
(for each class at a time), then, the joint importance of the
feature is likely to be different if the importance was calculated
globally. The result is that the ordering for critical positions –
the ordering of features that contribute nearly the same for a
model – could reveal better importance, as seen in the middle
parts of the curves in Fig. 4.

To better understand the attribution of importance for
feature selection based on SHAP values, Fig. 5 shows the
feature explanations for one single class of the Vertebral
dataset, which consists of patients described by six features
derived from the shape and orientation of the pelvis and lum-
bar spine: pelvic incidence, pelvic tilt, lumbar
lordosis angle, sacral slope, pelvic radius,
and grade of spondylolisthesis. Such class corre-
sponds to patients with Spondylolisthesis, a disturbance of the
spine in which a bone (vertebra) slides forward over the bone
below it. In the figure, the SHAP values are represented in
the x axis, meaning that values distant from zero impose
more influence on the model’s prediction – note that the
most important features are on top. Since positive SHAP
values means that the probability of class prediction is in-
creased, patients presenting higher values for degree of
spondylolisthesis, pelvic incidence, sacral
slope, and pelvic tilt are more likely to present prob-
lems in their spine. Besides, see how higher values of degree
of spondylolisthesis, which essentially measures how much
a vertebra bone slid over a bone below it, contribute to
defining this class. This result is also consistent with the
literature on Spondylolisthesis, in which pelvic incidence,
sacral slope, pelvic tilt are found to be greater in patients with
developmental spondylolisthesis [39].

B. Regression

Similarly as performed for the classification datasets of
the previous section, we evaluated the same techniques for
regression tasks. In this case, we used the Mean Squared
Error as score, and the Keep Absolute metric was applying
as for the classification task, yielding the AUC Table III. Note
that the values are negative since we used the negative Mean
Squared Error metric of the sklearn [40] library, used for
minimization of Mean Squared Error.

In this case, SHAP as feature selection was not able to
provide the best result for Boston dataset – although the
difference is lower than 0.02. However, it is important to
know that sacrificing a bit of accuracy could be beneficial
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(a) F1-Score curves for varying feature subsets’ sizes - Indian Liver
Disease dataset.

0 20 40 60 80 100
% of feature kept for classification

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

 S
co

re

Keep Absolute - Heart dataset

TreeSHAP
ANOVA
Mutual Information
RFE

(b) F1-Score curves for varying feature subsets’ sizes - Heart disease
dataset.
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(c) F1-Score curves for varying feature subsets’ sizes - Wine dataset.
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(d) F1-Score curves for varying feature subsets’ sizes - Vertebral column
dataset.
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(e) F1-Score curves for varying feature subsets’ sizes - Breast cancer
dataset.

Fig. 4. F1-Scores (mean and standard deviation) in a 5-fold cross-validation setting when different subset sizes are selected from all features of each dataset.



TABLE I
DESCRIPTION OF THE DATASETS USED IN EXPERIMENTATION.

Dataset # data points Dimensionality Task Params
Indian Liver Disease 583 10 Classification α : 0.05;β : 3, ω : 1000
Heart Disease 303 13 Classification α : 0.05;β : 2, ω : 100
Wine 178 13 Classification α : 0.05;β : 3, ω : 1000
Vertebral Column 310 6 Classification α : 0.05;β : 2, ω : 100
Breast Cancer 569 30 Classification α : 0.05;β : 3, ω : 1000
Boston 506 13 Regression α : 0.05;β : 10, ω : 1000
Diabetes 442 10 Regression α : 0.05;β : 2, ω : 100
NHANESI [33] 9932 19 Regression α : 0.05;β : 3, ω : 1000

TABLE II
AREA UNDER THE CURVE (AUC) FOR EACH ONE OF THE CURVES OF FIG. 4.

Technique Indian L. Heart disease Wine Vertebral C. Breast cancer
Tree SHAP 0.665840 0.819581 0.935631 0.801384 0.963747
ANOVA 0.663182 0.793923 0.918693 0.784878 0.950952
Mutual Inf. 0.662554 0.798282 0.923603 0.793256 0.950482
RFE 0.658528 0.779519 0.924560 0.795961 0.961747

Fig. 5. SHAP values for the class of patients with Spondylolisthesis of
the Vertebral dataset. Colors encode feature values and the x axis shows
information about SHAP values. For this class, in particular, higher values
of the feature “degree of Spondylolisthesis” are determinant to increase the
probability of classification.

TABLE III
AREA UNDER THE CURVE (AUC) FOR THE REGRESSION TASK. VALUES

CLOSER TO ZERO ENCODE BETTER RESULTS.

Technique Diabetes Boston NHANESI
Tree SHAP -46.424751 -3.460678 -10.916105
ANOVA -48.673970 -3.442648 -13.058894
Mutual Inf. -51.315229 -4.396497 -11.577051
RFE -47.739208 -3.536853 -10.990975

in situations where interpretability could be more useful than
model fitness, such as in medical applications [33]. Further
that, Fig. 6 shows that a percentage of features can be chosen
to provide results as good as if all the features were used, i.e.,
selecting features with SHAP values where the percentage is
between approx. 42% and 80% would provide better results
than if selecting these percentages of features with the ANOVA
technique. For instance, inspecting Fig. 6, we can notice that
ANOVA received greater AUC due to its higher values when
selecting approx. between 15% and 20% of the features,
however, it corresponds to lower scores when using SHAP
values for selecting more than 40% of the features.
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Fig. 6. Curves of Keep Absolute metric for regression applied to the Boston
dataset. The Neg. Mean Squared Error was used for evaluating the techniques.
Although ANOVA presented the best AUC (see Table III), selecting using
SHAP yielded the best results for only 40% of features kept for regression.

C. Run-time execution

In this section, we aim to investigate the run-time execution
of the feature selection algorithms on the classification and
regression tasks discussed in the previous sections. Table IV
shows that the ANOVA algorithm is scalable according to the
number of data points and dimensionality of the datasets –
bold numbers indicate the best results. Mutual Information
and RFE algorithms follow the complexity of the dataset
(size and dimensionality) by increasing the run-time execution,
where RFE takes an unreasonable amount of time. Lastly,
TreeSHAP shows a relationship with the depth of the tree
boosted algorithms, that is, it takes longer run-time execution
for deeper models.

Table V also shows such a relationship between the depth
of the boosted tree models and the TreeSHAP’s run-time
execution. That is, although the NHANESI dataset has a higher



TABLE IV
RUN-TIME EXECUTION (IN MILLISECONDS) FOR FEATURE SELECTION ON

THE CLASSIFICATION TASK.

Technique Liver Heart Wine Vertebral Breast
TreeSHAP 232.374 16.955 274.294 45.878 132.669
ANOVA 2.010 0.0 0.0 0.996 1.011
Mutual Inf. 21.926 19.947 17.952 9.947 54.817
RFE 16614.61 2570.12 44214.8 1118.04 132937.5

dimensionality and greater number of data points, the run-time
execution of the Boston dataset took a considerably greater
amount of time. Such a characteristic could be explained by
the depth of the models trained for each dataset, for instance,
depth three for NHANESI and depth ten for Boston.

TABLE V
RUN-TIME EXECUTION (IN MILLISECONDS) FOR FEATURE SELECTION ON

THE CLASSIFICATION TASK.

Technique Boston Diabetes NHANESI
TreeSHAP 10894.861 2565.136 62.809
ANOVA 1.010 0.999 4.959
Mutual Inf. 25.896 19.917 403.947
RFE 251591.223 21728.887 33322.885

V. DISCUSSIONS

Using SHAP values for model explainability has proven to
be a useful tool for discovering patterns in data and to interpret
model decisions in earlier works [33], [41]–[43]. Interestingly,
as shown in this work, the concept of importance given to
features by the absolute of SHAP values can be extrapolated
to be used as a feature selection mechanism. Although many
other feature selection methods are present in the literature,
to the best of our knowledge, none of them take great rigor
as SHAP. So that, feature selection – as a widely used pre-
processing step in machine learning – could be benefited from
explainable characteristics. We believe that feature selection
based on SHAP values will turn to be a common approach for
machine learning practitioners. For the matter of classification,
SHAP values could be defined as a wrapper method since its
definition consists of a surrogate model.

Although other model agnostic explainability approaches,
such as LIME [44] could also be used similarly as we
showed in this work, we chose SHAP due to its mathematical
guarantees [1] and other aspects that have demonstrated its
compatibility to the human thinking [1], [33].

Finally, the main difficulty of applying SHAP is the execu-
tion time needed for computing explanations for KernelSHAP,
which is the model-agnostic approach to compute SHAP
values that use weighted linear regression – notice that we used
the Tree SHAP approach since boosted trees were used for
classification and regression. The Kernel SHAP approach takes
a quadratic amount of time in both dimensionality and size of
the dataset, which could be prohibitively for even moderate
datasets. This problem could be decreased by selecting features
based on correlation before feeding SHAP.

VI. CONCLUSION

Model explainability has been a very discussed topic due
to its necessity in risk applications where ethical issues can
be a problem for the adoption of black-box machine learning
solutions. Although a lot of strategies to explain complex
models have been proposed in the literature in recent years,
few works focus their attention on the pre-processing steps of
the machine learning pipeline.

In this work, we proposed and analyzed SHAP as a feature
selection mechanism. SHAP is a model agnostic approach that
assigns the importance of features based on their contribution
to the model’s output. Here, we used these contributions to
order features according to their importance and used them
as a feature selection strategy. In our experimentation, SHAP
demonstrated to be superior to other common feature selection
mechanisms, which can be a useful approach when developing
machine learning solutions with interpretability in mind.

As future works, we plan to further analyze SHAP to com-
pare the ordering imposed by the feature selection methods to
inspect where are the critical parts that decrease or increase a
model’s score.
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