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Abstract—Interpolation methods are computationally efficient
and rather effective for magnification from low-resolution images
in order to generate higher resolution images. However, blur and
other undesirable visual artifacts are often produced during the
process. This work evaluates a sharpening filter that enhances
the quality of interpolated images by preserving information from
the original low-resolution images. The novel filter was shown to
achieve statistically significant increments in both the PSNR and
SSIM of magnified RGB images using two image sets from the
literature.

I. INTRODUCTION

Image magnification (or superresolution) is a process where
a higher resolution (HR) image is computed from one or more
low resolution (LR) input images without introducing blur
[1]. It can be considered as a difficult, ill-posed problem [2].
In general, no hints on the real high-resolution ground-truth
signal are available.

Existing solutions to image magnification can roughly be
classified into three classes: (1) reconstruction methods; (2)
learning-based methods; and (3) interpolation methods [1].
The latter category is the most frequently adopted for single
image superresolution [3]. The reconstruction task is based
on prior knowledge about the model that maps the high-
resolution image to the low-resolution one, while learning-
based approached adopt machine learning methods over a set
of examples of low resolution and their ideal high-resolution
patches [1].

Several interpolation methods with improved features have
been proposed in the literature. In [4] the interpolation first
occurs respecting the direction where the second-order deriva-
tive of the image is lower. Then interpolated values are
modified using an iterative refinement maximizing second-
order derivative values and smoothing isolevel curves. In
general, directional image interpolation takes advantage of the
geometric regularity of image structures by performing the
interpolation in a chosen direction along which the image is
locally regular [1]. The adoption of edge detectors and edge
directed models in interpolation algorithms is a relevant topic
of research [5]. Several types of models for the gradient profile
structure can be adopted to locate the edge points [6]. In [7]
the adaptively sharpening of the gradient field is proposed
to be based only on small neighborhoods, which leads to a
computationally efficient approach.

Sparse representations [8], on the other hand, are based on
modeling the low-resolution image as a down-sampled version
of its high-resolution counterpart after blurring [2]. The meth-
ods are shown to effectively reconstruct edge structures and
suppress artifacts from interpolated images. Improved image
interpolation methods also include auto-regression models [9],
multi-surface fitting models [10], among others [6], [11], [3].

The main disadvantage of more sophisticated interpolation
approaches is the need for additional stages of information
processing [12]. Although many alternatives have been pro-
posed, simpler interpolation algorithms still play an important
role in image magnification [3] at least in the initial stages of
the process [11]. Using different neighborhoods and kernels,
classic methods widely applied in image viewers and image
processing tools have been obtained. [13].

However, simpler interpolation algorithms like Nearest
Neighbor (NN) and Bicubic tend to produce visual artifacts
such as ringing, aliasing, and blurring, among others, particu-
larly in edge regions [14], [1], [12]. Among the visual artifacts
resulting from this class of algorithms, blurring is probably the
most prevailing. For instance, a given polynomial algorithm
that interpolates a pixel next to the edge between two objects
of different colors will use pixels from both sides of the edge
in the original image, generating intermediate colors that are
not found in the original image, and producing a less definite
edge [15].

This motivates the adoption of sharpening filters after the
interpolation, which would alleviate or eliminate blurring and
other artifacts that are generated by the interpolation process
and therefore enhance the quality of the images obtained.
Many filters are available in the literature, which can be
applied at this post-interpolation step. This work evaluates
the effect of the application of sharpening filters on RGB
images resulting from magnification by the adoption of simple
interpolation methods. In order to preserve the advantage
of computational efficiency, only simple and fast sharpening
filters were adopted. A novel sharpening filter is evaluated
which was designed specifically for enhancing the quality of
interpolated images by replacing the computed intensity of
interpolated pixels in the HR resulting image by the intensity
of pixels from the LR original image. The idea was already
explored in [15], where a much smaller set with only grayscale
images was adopted for the empirical evaluation.



This paper is organized as follows: Section 2 presents
sharpening filters. Section 3 describes and briefly analyses the
proposed filter. Experimental setup and results are shown in
Section 4 and conclusions are given in the last section.

II. SHARPENING FILTERS

Sharpening filters are widely adopted in image processing.
A sharpening filter aims to provide an image with better-
defined borders when compared to its original. Methods such
as the linear unsharp masking (USM) and Laplacian filter are
among the most widely used for image sharpening. Both are
defined as second-order derivatives and realized as local spatial
filters. Although these image sharpening filters are simple and
work well in many applications, they have drawbacks since
both might be very sensitive to noise, resulting in unpleasant
granularity and they often enhance too much high contrast
areas, resulting in unpleasant overshoot artifacts [16].

Another simple but relatively effective approach for sharp-
ening is the adoption of order statistics. The alpha-trimmed
mean (ATM) filter [17], for instance, operates by removing
the statistically most extreme points and averaging over the
remaining points. Lower-upper-middle (LUM) sharpening fil-
ter [18] is also rank-order-based. It adopts the comparison of
lower and upper-order statistics to the sample in the center
of a filter window at coordinates (i, j). The LUM sharpening
filter is defined as

Îi,j =

 r(l), if r(l) < Ii,j ≤ tl
r(N−l+1), if tl < Ii,j < r(N−l+1)

xi,j , otherwise.

where r(1) ≤ r(2) ≤ · · · ≤ r(N) is a rank-ordered set from
the intensities of the N = (2m + 1)(2m + 1) pixels in the
(2m+ 1)× (2m+ 1) squared filter window centered at (i, j).
tl = (r(l) +r(N−l+1))/2 is the midpoint between the statistics
r(l) and r(N−l+1). l is the parameter of the sharpening filter,
with 1 ≤ l ≤ (N + 1)/2. One can notice that l controls the
amount of sharpening desired, where l at its highest value (N+
1)/2 leads to a simple identity filter and l = 1 corresponds
to the maximum sharpening since I(i,j) is always shifted to
one of the extreme statistics r(1) or r(N). Here in this paper
the parameter l is normalized to l̄ = l

(N+1)/2 , therefore l̄ = 1
corresponds to a identity filter independently of the window
size.

In [19] an adaptive method for sharpening is proposed,
where edge areas are classified into different types with
varying slopes and multiple edge enhancement filters applied
to the respective edge types. Among the drawbacks of the
method are the unclear classification criterion, the blurring
influence around edges, and the computational performance
[16]. Several other approaches should be mentioned. Contrast
limited adaptive histogram equalization (CLAHE) [20] is a
variant of adaptive histogram equalization in which the con-
trast amplification is limited to reduce the problem of noise
amplification. Weighted medians were already shown as rele-
vant approaches [21], [22], [23]. The adoption of wavelets in
the context of image sharpening was proposed by [24], among

others. More sophisticated algorithms for image sharpening are
also available. The edge-directed unsharp masking sharpening
method (EDUMS) [25] is guided by edge-directed information
and was able to reach positive empirical results.

Image sharpening is an active area of research since many
issues remain to be approached. Concerns arise from the
practitioners since this type of filter potentially increases
overshoot artifacts that adversely affect the results, which is
specially critical for some applications [26].

III. PROPOSED SHARPENING FILTER

Each channel of an image is represented by a 2D matrix
I , where Ii,j is the intensity of a pixel in coordinates (i, j).
Let R be the resulting higher-resolution image obtained by
interpolation from a lower-resolution image S by a factor f ×
f .

A magnification from S is the computation of each pixel
Ri,j ∈ R as a function of some pixels in S, which correspond
to the neighborhood adopted by the specific interpolation
algorithm. Let E be the Nearest Neighbor interpolation from
S by the same factor f × f . For each Ri,j , the value of
the closest original pixel from S, in terms of the Euclidean
distance computed from coordinates, can be found in E at
Ei,j . Consider an interpolation algorithm where, at regularly
distributed coordinates (p, q) the pixels in R are just copies of
the original pixels from S at corresponding positions (Rp,q =
Ep,q). The remaining Ri,js are computed as a function of some
neighborhood of original pixels from S. Depending on how
this interpolation is performed, blur will be obtained from this
computation since the interpolation function is often smooth.

The proposed filter stems from the idea that computed in-
tensities for interpolated pixels should be replaced by intensity
values from the original image S, in order to prevent blur. For
a given interpolated pixel Ri,j the closest original pixels, in
terms of the Euclidean distance computed from coordinates,
can be found in image E in a filter window centered at (i, j).
Let G(i, j) be the (d+ 1)× (d+ 1) squared filter window for
image E centered at (i, j). A pixel is chosen from the options
available in G(i, j) which value better represents the computed
pixel Ri,j ; this will be entitled as the “best neighbor” Bi,j of
Ri,j . Let us define Bi,j as the pixel in the filter window G(i, j)
which is the most similar to the value of Ri,j , in terms of color
similarity. Therefore, the expression for Bi,j is:

Bi,j = gbest(i,j) ∈ G(i, j) (1)

where best(i, j) = argminh(|Ri,j − gh|), gh ∈ G(i, j)
indicates the value in G(i, j) which is the most similar to
the intensity of Ri,j for single-channel images. For RGB
images, a distance metric beteen two colors must be assumed.
In our experiments the Euclidean distance, in the RGB color
space, between any two colors (redc1 , greenc1 , bluec1) and
(redc2 , greenc2 , bluec2) was adopted for all RGB images
considered.

Since every Bi,j is selected from pixels in E, therefore the
resulting image B is composed solely by pixels with intensity
values that are already present in the input image S. This same



property is achieved by the nearest neighbor interpolation.
Additionally, if we set the size of the filter window to 1,
the best neighbor Bi,j of every pixel Ri,j is Ei,j , then B
is equivalent to the image E resulting from nearest-neighbor
interpolation. By increasing the window size, diverse behavior
might arise.

A second step can be adopted, optionally. The final resulting
image Î is composed by the linear combination between
filtered image B and the interpolated image R as given by:

Î = βB + (1− β)R (2)

where β is a parameter of the filter. Since the method is based
on the selection of the best neighbor for each pixel, it will be
hereafter called Best Neighbor Filter (BNF). Fig. 1 illustrates
the computation of B from an 8 × 8 image with a filter
window of size 5×5. The computational complexity of sorting

Fig. 1. 4×4 magnification from an illustrative 8×8 image obtained using
Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) method and BNF
as a sharpening filter, with β = 1.

the available options in G(i, j) is O(d log(d)) therefore the
computational complexity of BNF is O(mnd log(d)), where
m and n are the dimensions of the image. In order to guarantee
the computational efficiency of the method, the size of the
filter window should be kept small. Too small window sizes,
however, might not guarantee a diversity of intensity values in
G(i, j). For instance, with a window size smaller than f there
might be a single intensity value available in the respective
neighborhood G(i, j), which is not useful for the purpose of
this filter.
A. Analysis of the Proposed Filter

Despite a broader theoretical analysis of the proposed filter
is out of the scope of this paper, this subsection provides
an illustration of the behavior of the filter under some
specific situations. Consider a one-dimensional image U =
{(x1, y1), (x2, y2), · · · , (xn, yn)} where x1 < x2 < · · · < xn
and each yi ∈ [0, 1] is the pixel intensity corresponding to a
coordinate xi ∈ R. Consider also that U was sampled from a
ground-truth unit step signal s : R→ {0, 1} given by:

s(x, t) =

{
1 if x ≥ t
0 otherwise (3)

where t ∈ [0, 1] is a real-valued thereshold.
Interpolation between any two coordinates xk and xk+1 is

trivial under those assumptions except when xk ≤ t ≤ xk+1.
In this theoretical analisys a simple pairwise linear interpola-
tion between all subsequent pairs of pixels xk,xk+1 is applied
to U prior to the adoption of BNF, resulting an interpolated
image P .

When applied to a pairwise linear interpolation P computed
from a one-dimensional input image U which was sampled
from a ground-truth unit step signal s, the BNF filter is
expected to better resemble the original signal s from which
U was sampled when compared to the resemblance obtained
from the unfiltered interpolation P . Next, we sketch a theo-
retical verification for the statement above.

Without loss of generality, consider the relation between
the parameter t in (3) and the coordinates of two subsequent
pixels x0 and x1 in U is given by x0 ≤ t ≤ x1 where x0 = 0
and x1 = 1. Therefore, assuming an efficient sampling, the
intensity of the input image U at x0 is s(x0, t) = 0 and the
intensity at x1 is s(x1, t) = 1 for any 0 ≤ t ≤ 1. Under
those circumstances, intensities of the interpolated pixels in the
image P at any coordinate x are generated simply as p(x) =
x, x ∈ [0, 1]. The expected squared error E([p(x)− s(x, t)]2)
of any interpolated pixel in [0, 1] is computed by integrating
the squared error over all equally likely possible values for t
and also simultaneously over all equally likely possible values
for x, which leads to:

E([p(x)− s(x, t)]2) =

∫ 1

0

∫ 1

0
[p(x)− s(x, t)]2dtdx∫ 1

0

∫ 1

0
dtdx

(4)

=

∫ 1

0

∫ 1

0
[x− s(x, t)]2dtdx∫ 1

0

∫ 1

0
dtdx

=
1

6
(5)

The application of BNF with β = 1 to the linearly interpolated
image P results in an image where the intensity of each pixel
follows a unit step signal as:

b(x) =

{
1 if x ≥ 1

2
0 otherwise.

Therefore the computation of the expected squared error of the
filtered image E([b(x)−s(x, t)]2) can be more easily obtained
as the average {Et< 1

2 ([b(x) − s(x, t)]2) + Et≥ 1
2 ([b(x) −

s(x, t)]2)}/2 between two equally likely situations which
correspond to t < 1

2 and t ≥ 1
2 respectively. Since both:

Et< 1
2 ([b(x)− s(x, t)]2) =

∫ 1

0

∫ 1

0
[b(x)− s(x, t)]2dtdx∫ 1

0

∫ 1

0
dtdx

(6)

=

∫ 1

0

∫ 1
2

t
[b(x)− s(x, t)]2dxdt∫ 1

0

∫ 1

0
dxdt

(7)
= 0 (8)



and

Et≥ 1
2 ([b(x)− s(x, t)]2) =

∫ 1

0

∫ 1

0
[b(x)− s(x, t)]2dtdx∫ 1

0

∫ 1

0
dtdx

(9)

=

∫ 1

0

∫ t
1
2
[b(x)− s(x, t)]2dxdt∫ 1

0

∫ 1

0
dxdt

(10)

= 0 (11)

then E([b(x) − s(x, t)]2) = 0 < E([p(x) − s(x, t)]2), which
means that BNF is expected to better resemble the original
signal s under the depicted conditions.

The adoption of other simple interpolation algorithms in-
stead of the linear alternative adopted might lead to similar
conclusions, but this aspect should be explored further. The
analysis perfored here covers a very specific situation related
to a simple type of image. Despite that, the general formulation
roughly corresponds to the generation of blur from simple
interpolation methods in places of an image where a sharper
border was expected. This suggests a potencial improvement
of image quality after the adoption of BNF, which is to be
empirically evaluated in the following Section.

IV. EXPERIMENTAL RESULTS

The experimental design stems from the hypothesis that
BNF could improve the quality of images resulting from
interpolation. In order to determine whether that hypothesis
can be confirmed we designed experiments where evaluation
is performed over f × f magnification of LR images which
were generated previously from downscaling the original HR
source images by the same f × f factor. The quality of both
the filtered and the unfiltered images are measured as the
similarity between each reconstructed image and the original
HR source, so the effect of applying the sharpening filter
can be tested. The computation of the similarity between a
reconstructed image and the corresponding HR source image
is performed using the peak signal-to-noise ratio (PSNR)
and the structural similarity (SSIM) [27] independently. Four
interpolation methods were selected for this evaluation. Piece-
wise Cubic Hermite Interpolating Polynomial (PCHIP) is a
widely adopted computationally effective algorithm which rep-
resents a simple polynomial interpolation approach. New edge-
directed interpolation (NEDI) [28] represents the class of edge-
based interpolation algorithms. Interpolated pixels are obtained
as weighted averages of the neighbors, where weights depend
on the edge direction. The iNEDI is a modification from NEDI
which attempts to provide sharper images although with a
high computational cost [29]. Finally, the Iterative Curvature
Based Interpolation algorithm (ICBI) [13] is characterized by
a two-stage process where interpolation first occurs respecting
the direction where the second-order derivative of the image
is lower. Then interpolated values are modified using an
iterative refinement maximizing second-order derivative values
and smoothing isolevel curves [4].

Two sets of evaluations are performed. In the first set
PCHIP algorithm is adopted as the interpolation method and
two image sets are adopted for the evaluation of BNF using

Fig. 2. Examples of images from image sets BSD500 (a) and Morguefile25
(b).

(a) (b)

four magnification factors, while the second set of evaluations
focuses on one image set with varying filters and interpolation
algorithms applied. The BSD500 image set1 is composed by a
total of 500 mostly outdoor RGB images with varying sizes.
The image set was previously adopted for the evaluation of
segmentation algorithms in [30]. A smaller image set denoted
here as Morguefile25 was also adopted which includes 25
RGB 512×512 versions of images from [31]2. The images in
Morguefile25 were selected in [4] where the same 25 images
were adopted for the evaluation of magnification algorithms.
Not only the source images but also the results from diverse
interpolation algorithms adopted in [4] were made availabe3.

Figs.3a and 3b illustrate the sharpening effect resulting from
the BNF filter using the default parameter β = 1 when applied
to small regions of images interpolated using PCHIP. One
image is selected from each set. Corresponding original images
are shown in Fig. 2. The locations corresponding to the small
regions illustrated in Fig. 3 are shown as delimited with red
squares in Fig. 2. For all cases, one can notice that BNF
is able to provide sharper edges for objects which suffered
from blur after interpolation. Staircase-like block artifacts
generated by PCHIP are alleviated after filtered with BNF.
As the magnification factor increases, however, those types of
artifacts from PCHIP become even more evident as a result of
the sharpening effect of the filter.

A. Empirical evaluation using PCHIP as the interpolation
method

The evaluation is performed as follows. A parameter f is
set, which determines the magnification and corresponding
downscaling factor, both denoted as f × f . Source images
from each set are downscaled by the given factor, resulting
in a set with k LR images S = {S1, S2, · · · , Sk} which are
reconstructed by PCHIP. This results in a set of interpolated
images R = {R1, R1, · · · , Rk}. BNF filter is then applied

1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/ re-
sources.html

2All images are subject to the license agreement available at the web page
http://morguefile.com/archive/terms.php.

3http://www.andreagiachetti.it/icbi/



Fig. 3. The sharpening effect resulting from the application of the BNF filter with β = 1 as illustrated by small regions of images interpolated using PCHIP,
which was applied to downscaled versions of images from the BSD500 (a) and Morguefile25 (b) sets. Four magnification factors are considered: 2× 2, 3× 3,
4× 4 and 5× 5. Original images are shown in Fig. 2.

2× 2 3× 3 4× 4 5× 5

PCHIP

(a)

PCHIP
+BNF

PCHIP

(b)

PCHIP
+BNF

to all images in R, by searching for the optimal parameter
value for each image which maximizes the similarity measure
between the source image and the filtered version of the inter-
polated image from R. The search is performed exhaustively
over a discretized parameter space β ∈ [0, 1] with 2 digits
of precision, independently for PSNR and SSIM, for each
interpolated image in R. For each similarity measure, the set of
quality evaluations of the k filtered images is compared to the
respective set of quality evaluations for the unfiltered images
reconstructed using PCHIP only. Wilcoxon signed-rank tests
are performed for evaluating the statistical significance of an
eventual difference, at the α = 0.05 significance level.

The window size for BNF under this evaluation was set as
a function of the magnification factor f as (f + 1)× (f + 1)
which leads to a 3 × 3 window for 2 × 2 magnification and
5× 5 window for 4× 4 magnification. The criterion adopted
here is the minimization of the window size since even smaller
windows would eventually prevent BNF from having a viable
supply of diverse values from the neighbors of an interpolated

pixel. For odd values of f , however, the window size was set
to (f +2)× (f +2) which preserves the center of the window
exactly in the coordinates of the corresponding pixel in (i, j)
since f + 2 is odd. This leads to window sizes of 5 × 5 and
7×7 respectively for 3×3 and 5×5 magnifications. A f ×f
window would not allow for a proper variety for the values in
the neighborhood of a pixel and BNF would behave trivially
like a Nearest Neighbor approach.

Table I shows the results for average optimal PSNR (dB)
and average optimal SSIM ± the respective standard devia-
tions σ obtained from the 2 × 2, 3 × 3, 4 × 4 and 5 × 5
reconstruction of the images from each image set. The BNF
filter was able to achieve statistically significant results for the
increment in both PSNR and SSIM for all image sets and also
all magnification factors considered at the significance level
adopted. P-values from all the comparisons resulted in values
below 0.001 (not shown). The average optimal values obtained
for the BNF parameter β? for each image set, considering
each similarity measure, are also shown in Table I. The



TABLE I
AVERAGE OPTIMAL PSNR AND SSIM ± RESPECTIVE STANDARD DEVIATION σ OBTAINED FROM THE MAGNIFICATION OF THE DOWNSCALED VERSIONS

OF THE IMAGES FROM TWO IMAGE SETS CONSIDERED USING PCHIP AS THE INTERPOLATION METHOD AND BNF AS A FILTER. RESULTS FROM BNF
(BOLD) ARE SIGNIFICANTLY SUPERIOR TO THE RESULTS CORRESPONDING TO THE RESPECTIVE UNFILTERED IMAGES AT THE SIGNIFICANCE LEVEL

α = 0.05, INDEPENDENTLY FROM THE SIMILARITY MEASURE ADOPTED.

Method
Optimal

Parameter
Value

PCHIP (no filter) PCHIP+BNF

Image Set Factor Avg.PSNR±σ Avg.SSIM±σ Avg.PSNR±σ Avg.SSIM±σ
β?

(PSNR)
Avg.±σ

β?

(SSIM)
Avg.±σ

2× 2 33.02±3.5393 0.7928±0.0955 33.10±3.5534 0.7942±0.0952 0.27±0.06 0.21±0.07
BSD500 3× 3 30.93±3.4109 0.7077±0.1255 30.94±3.4122 0.7081±0.1253 0.15±0.07 0.12±0.08

4× 4 29.55±3.2594 0.6553±0.1388 29.57±3.2625 0.6556±0.1387 0.17±0.06 0.10±0.05
5× 5 29.00±3.2359 0.6326±0.1444 29.01±3.2372 0.6328±0.1443 0.15±0.07 0.08±0.05
2× 2 36.21±3.3361 0.8879±0.0694 36.33±3.3340 0.8888±0.0691 0.22±0.05 0.16±0.07

Morguefile25 3× 3 32.44±2.9745 0.8132±0.1002 32.46±2.9726 0.8136±0.1000 0.13±0.06 0.09±0.07
4× 4 31.22±2.9380 0.7763±0.1128 31.26±2.9346 0.7768±0.1126 0.19±0.05 0.09±0.06
5× 5 29.77±2.8498 0.7446±0.1210 29.79±2.8516 0.7449±0.1209 0.15±0.05 0.06±0.04

magnification factor and also the similarity measure adopted
both seem to affect β?. In general, one might observe that
β? is higher for smaller magnification factors, notably for the
2× 2 factor. Also, the variation on the window size resulting
from the oddity of the factor f might be effecting β?. A deeper
study that covers those effects, however, is out of the scope
of this paper.

B. Empirical evaluation with varying interpolation methods
and filters

The second set of evaluations covers a wider range of
sharpening filters besides BNF, including also the Laplacian
filter4 and LUM which are also relatively simple filters.
Similar to the experiments previously described, the filters
are applied to images that were reconstructed by the adoption
of interpolation algorithms.Three interpolation algorithms are
considered in the evaluation: NEDI, iNEDI, and ICBI. A single
image set Morguefile25 was used in this setting. We adopted
the reconstructions obtained from the interpolation algorithms
mentioned which were made available for download by the
authors of [4] along with the respective image set. The
magnification factor for this set of evaluations is set to 4× 4,
with a 5× 5 window size adopted for both BNF and LUM.

For each image and also considering each interpolation
algorithm and filter a search for the optimal parameter value
which maximizes the similarity measure between the source
image and the corresponding interpolated and subsequently
filtered image is performed, independently for PSNR and
SSIM, as adopted in the previous set of evaluations. The
same discretized parameter space [0, 1] with 2-digit precision
is adopted for the single parameter of each filter considered.

Table II shows the results for average optimal PSNR (dB) ±
standard deviation σ and optimal SSIM ± standard deviation
σ obtained from the magnification of the downscaled versions
of the original images using three interpolation methods and,
for each interpolation method, three sharpening filters. LUM

4A numerical approximation for the Laplacian 52 of an image, was
obtained as adopted by [32].

filter was able to achieve a higher average PSNR for the
magnification of the images when compared to BNF for
the images resulting from NEDI interpolation. For the other
two interpolation algorithms, results from BNF are superior.
BNF was able to achieve statistically significant improvements
for all interpolation algorithms considered while LUM could
not improve the PSNR for iNEDI algorithm significantly.
The highest average PSNR considering all cases for this
image set was obtained from BNF, which is 30.9960 and
corresponds to the filtered images which were interpolated
using iNEDI. The highest increment in PSNR, when compared
to the unfiltered version of the image set, is also obtained from
BNF, but corresponds to the images reconstructed using ICBI.
The filtered set of images corresponds to an average PSNR
1.30% higher when compared to the unfiltered corresponding
set. BNF was also the only filter that achieved statistically
significant improvements in SSIM for the magnification of
the RGB images from the image set considered. The weaker
statistical results obtained from LUM results from the fact that
the increment in SSIM obtained from LUM comes from a very
small number of images since, for most of them, the optimal
value of the parameter l̄ is 1 which makes LUM an identity
filter. This makes the SSIM of most of the LUM filtered
images equal to the corresponding values from the unfiltered
counterparts. That differs from BNF which provides a more
consistent increase in the evaluation metrics. BNF was able to
improve both PSNR and SSIM for all images considered in
this evaluation, independently from the interpolation algorithm
adopted. However, the highest average SSIM considering all
cases for this image set was obtained from LUM, which is
0.7654 and corresponds to the filtered images which were
interpolated using ICBI. This also corresponds to the highest
increment in SSIM when compared to the unfiltered version
of the image set.

To provide better guidance for understanding the blur reduc-
tion effect obtained by BNF in the experiment, an illustrative
case is shown in Fig. 4, using the optimal parameter values
obtained. Initially, ICBI is applied to the image shown in



TABLE II
AVERAGE OPTIMAL PSNR AND SSIM ± RESPECTIVE STANDARD DEVIATION σ OBTAINED FROM THE 4× 4 MAGNIFICATION OF THE DOWNSCALED

VERSIONS OF THE RGB IMAGES FROM Morguefile25 SET USING THREE INTERPOLATION METHODS AND, FOR EACH INTERPOLATION METHOD, THREE
SHARPENING FILTERS. FILTERS THAT ACHIEVED STATISTICALLY SIGNIFICANT INCREMENT IN AVERAGE PSNR OR SSIM AT A SIGNIFICANCE LEVEL

α = 0.05 ARE SHOWN IN BOLD.

Similarity Measure
PSNR SSIM

Method Avg. PSNR±σ Variation P-value Method Avg. SSIM±σ Variation P-value
NEDI (no filter) 30.1379±2.866551 NEDI (no filter) 0.7487±0.119265
NEDI+Laplace 29.4592±2.297150 -2.25% <0.001 NEDI+Laplace 0.7205±0.117919 -3.77% <0.001
NEDI+LUM 30.3351±2.795938 +0.654% <0.001 NEDI+LUM 0.7505±0.116610 +0.236% >0.999
NEDI+BNF 30.1648±2.864864 +0.0890% <0.001 NEDI+BNF 0.7491±0.119154 +0.0518% <0.001
iNEDI (no filter) 30.9594±2.901049 iNEDI (no filter) 0.7635±0.115679
iNEDI+Laplace 29.8303±2.268673 -3.65% <0.001 iNEDI+Laplace 0.7199±0.115720 -5.70% <0.001
iNEDI+LUM 30.9773±2.891314 +0.0578% 0.1003 iNEDI+LUM 0.7644±0.114383 +0.125% >0.999
iNEDI+BNF 30.9960±2.899985 +0.118% <0.001 iNEDI+BNF 0.7644±0.115474 +0.117% <0.001
ICBI (no filter) 30.3821±2.666460 ICBI (no filter) 0.7626±0.115997
ICBI+Laplace 29.9133±2.153304 -1.54% 0.03668 ICBI+Laplace 0.7582±0.110864 -0.575% 0.006129
ICBI+LUM 30.7089±2.653119 +1.08% <0.001 ICBI+LUM 0.7654±0.113839 +0.369% 0.009151
ICBI+BNF 30.7757±2.823299 +1.30% <0.001 ICBI+BNF 0.7635±0.115618 +0.121% <0.001

Fig. 2b. The result for a small region of the image is shown in
Fig. 4a. The results from the application of sharpening filters
are shown in Figs. 4b, 4c, and 4d. The optimal parameters
values, with respect to PSNR, adopted for this image are
α? = 1, l̄? = 0.62 and β? = 0.68. The PSNR resulting from
ICBI is 28.56. After each filter is applied, PSNR results are
28.26, 28.81 and 29.20, respectively from Laplace, LUM and
BNF. Fig. 4d, which corresponds to the result from the BNF
filter, shows an image with relatively sharp edges and any
noticeable artifact. The other two filters resulted in images
with visible artifacts. The edges visible in Fig. 4c, which
corresponds to the application of the LUM filter, are very sharp
but evident ringing artifacts exist. The BNF-filtered image
in Fig. 4d is more pleasant to look when compared to the
corresponding result from the 4×4 magnification using PCHIP
and also filtered with BNF shown in Fig. 3b, since ICBI is a
better algorithm and less artifacts were produced.

A note on the computational time of the proposed method
should be mentioned, although a full experiment is out of
the scope of this paper. The computational times of BNF
were similar to the respective times obtained from LUM
and much superior to the computational times obtained from
the Laplacian filter for both magnification factors considered.
LUM took 95.1s and 97.8s for filtering 512×512 RGB images
at 2×2 and 4×4 magnification factors respectively, while BNF
took 116.5s and 222.1s respectively for the same magnification
factors. Laplace filter consumed only 0.016s on both cases5.
The computational times for both LUM and BNF can be
enhanced since our implementation of both methods in Octave
can be much improved, while other programming languages
should also be considered.

V. CONCLUSION

This work evaluates a novel sharpening filter that enhances
the quality of zoomed images by replacing the intensity of in-
terpolated pixels by the closest value of the local neighborhood

5Experiments were performed using GNU Octave version 4.4.0 over an
Intel® Core™ i5-7200U CPU at 2.5GHz.

Fig. 4. The sharpening effect resulting from the application of three filters
with optimal parameter values with respect to PSNR as illustrated by a small
region of an image which was interpolated by a 4×4 factor using ICBI. The
original image from Morguefile25 set is shown in Fig. 2b.

(a) ICBI

(b) ICBI
+Laplace

(c) ICBI
+LUM

(d) ICBI
+BNF



of low-resolution pixels. The filter is designed specifically for
the post-interpolation stage, aiming to enhance the quality
of images that were magnified. The quantitative evaluation
revealed that BNF filter consistently increased both PSNR and
SSIM for RGB images interpolated using four algorithms from
the literature. The results are statistically significant.

Qualitative evaluations show that images obtained from
BNF presented fewer visual artifacts when compared to the
reference upscaled images. Although no explicit edge detec-
tion mechanism is applied, the filter was able to improve
the visual aspect of the edges between objects, in different
situations considered. This feature is worthwhile in many
applications, such as segmentation and computer vision.

The evaluation of the proposed method should be much
extended, including comparison to other sharpening filters
and the adoption of other interpolation algorithms as the
reference, since the filter proposed presents no restrictions for
the adoption of interpolation methods other than those used
here. For instance, the works recently proposed in [7] and
[33] should be considered.

The proposed method is not restricted to the magnification
factors applied, therefore other alternatives could be adopted
in future evaluations. The investigation on how the parameter
d affects the behavior and the results of the filter are also of in-
terest and should be the object of future research. This should
consider the fact that the parameter d affects computational
time, therefore greater values for d are not recommended.
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