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Abstract—The heart is one of the most important organs in
our body and many critical diseases are associated with its
malfunctioning. To assess the risk for heart diseases, Magnetic
Resonance Imaging (MRI) has become the golden standard
imaging technique, as it provides to the clinicians stacks of images
for analyzing the heart structures, such as the ventricles, and thus
to make a diagnosis of the patient’s health. The problem is that
examination of these stacks, often based on the delineation of
heart structures, is tedious and error prone due to inter- and
intra-variability among manual delineations. For this reason,
the investigation of fully automated methods to support heart
segmentation is paramount. Most of the successful methods pro-
posed to solve this problem are based on deep-learning solutions.
Especially, encoder-decoder architectures, such as the U-Net [1],
have demonstrated to be very effective architectures for medical
image segmentation. In this paper, we propose to use long-range
skip connections on the decoder-part to incorporate multi-context
information onto the predicted segmentation masks and also
to improve the generalization of the models. In addition, our
method obtains smoother segmentations through the combination
of feature maps from different stages onto the final prediction
layer. We evaluate our approach in the ACDC [2] and LVSC [3]
heart segmentation challenges. Experiments performed on both
datasets demonstrate that our approach leads to an improvement
on both the total Dice score and the Ejection Fraction Cor-
relation, when combined with state-of-the-art encoder-decoder
architectures.

I. INTRODUCTION

Cardiovacular diseases are one of the leading cause of
death in the world [4]. A way to prevent those diseases to
expand until a critical point relies on early examination. An
imaging technique that is considered the golden standard to
visualize and record the heart is Magnetic Resonance Imaging
(MRI), which gives clinicians a 3D temporal data of the heart
in a cardiac cycle. From these 3D temporal data, clinicians
examine two special phases of the heartbeat cycle – the End-
Diastole (ED) and the End-Systole (ES) – and then segment
the most important structures of the heart: the Left Ventricle
(LV), Right Ventricle (RV), and the Left Ventricle Myocardium
(MYO). For the segmentation of these structures, clinicians
often use semi-automatic methods. However, this task is still

time consuming, and is prone to intra- and inter-observer
variability. The creation of fully automatic heart segmentation
approaches is, therefore, of paramount importance.

Deep learning has been shown to lead state-of-the-art results
on several highly complex computer vision problems [5]. The
same is true for the semantic segmentation problem [6], where
the most common architecture is a fully convolutional network
composed of an encoder and a decoder [7]. The encoder
usually consists of a sequence of convolution, non-linear
activations, and pooling operations that obtain a hierarchical
representation of the input data and that also reduce the
dimensions of the input images. The decoder learns more
complex feature maps that are upsampled in order to obtain
predictions with the same or similar dimensions as the input
data. For medical image segmentation, one of the most popular
architectures is the U-Net [1], which serves as the basis for
several successful solutions [8] [9]. The main characteristic
of the U-Net architecture is that it uses skip connections to
aggregate information from the encoder to the decoder using
concatenation. Also, this approach uses multiple transposed
convolutions to learn how to proper upsample the data, often
leading to improved segmentation results.

In fact, in the context of heart structure segmentation, U-
Net-based approaches have been demonstrated to yield very
effective results [10] [11]. For example, in the recent ACDC
heart segmentation challenge [2], most of the successful com-
peting approaches relied on the use of U-Net-like architec-
tures [12] [13].

In this paper, we introduce the use of long skip connections
on the decoder part of encoder-decoder architectures, such as
the U-Net, as a way to aggregate multi-context information
from different levels onto the final predictions and to refine
them. Additionally, our module acts as a regularizer, adds few
extra parameters onto the final model, and helps the model to
converge faster. Those long skip connections are encapsulated
in a module, referred to as Dense-Decoder skip connections
module (or simply Dense-Decoder module), as it looks similar
to a Dense block [14].



It is worth to mention that skip connections are also a good
way to improve deep learning architectures for many reasons:
(i) they simplify the loss dimensional space making it easier
to find a good minimum which can generalize better [15]; (ii)
they eliminate singularities on the training of the network [16];
(iii) they improve the propagation of the gradients [17]; and
(iv) they reuse previous learned features [14].

We evaluate our “Dense-Decoder skip connections” on
two datasets for cardiac segmentation − the ACDC [2] and
LVSC [3] datasets − using different configurations of U-
Net presented in the ACDC competition. Experimental results
demonstrate that the incorporation of the Dense-Decoder mod-
ule improves the segmentation of U-Net based approaches.

II. RELATED WORK

Cardiac image segmentation has been addressed for a long
time. The first methods relied on image-processing tech-
niques [18], pixel classification methods [19], deformable
models [20], and graph-based approaches [21]. Other initia-
tives were based on strong geometrical priors of the car-
diac structures including shape-based deformable models [22],
active shape and appearance models [23], and atlas-based
methods [24]. Most of these last initiatives required a training
dataset with manual annotations.

More recently, deep learning approaches have shown ef-
fective results on semantic segmentation [25]. Especially for
medical image segmentation, the U-Net is the most popular
approach [1]. For instance, in the recent ACDC cardiac seg-
mentation challenge [2], eight out of the ten participants relied
on U-Nets or modified versions.

Some of these successful initiatives include the methods of
Baumgartner et al. [12] and Isensee et al. [13]. Baumgartner
et al. [12] evaluated different 2D and 3D encoder-decoder
architectures for heart segmentation. Their motivation for
using a 3D architecture relied on the fact that the segmentation
of slices near to the apex and to the base of the heart requires
spatial information. They also explored more compact models
by adapting the upsampling path of the U-Net which lead
to an improvement on their segmentation results. Isensee et
al. [13], in turn, implemented an ensemble of 2D and 3D
U-Net architectures. When combining the predictions of the
2D and 3D architectures, they achieved a better performance
on the Right Ventricle. In both architectures, they created
low resolution segmentations from early upsampled feature
maps and added this information to the final prediction. They
referred to this strategy as Deep supervision.

Another work that tested the suitability of 3D networks over
2D networks was the method of Patravali et al. [26]. In their
experiments, the best performance was obtained using a 2D
U-Net combined with a Dice loss. Finally, the last method
based on a encoder-decoder architecture was the one of Yang
et al. [27]. In their method, they used a 3D U-Net. The weights
of the 3D U-Net’s encoder were initialized with the weights
of a network trained for a video classification task.

In summary, the research initiatives that assessed the use
of 3D networks concluded that such architectures led to

less effective segmentation results when compared with 2D
networks. This is probably caused by the low resolution of
the data in the z-dimension (having between 8 − 10 slices),
which makes it difficult to use a 3D network efficiently without
losing information on z-dimension (see Figure 1) and also by
the fact that less training samples are then available.

Contributions: Previous works for cardiac image segmen-
tation have explored the use of 2D or 3D encoder-decoder
architectures such as the U-Net. One main difference with
previous approaches is that our method obtains smoother
and refined segmentations by combining feature maps from
different stages of the decoder directly onto the final prediction
layer. In addition, the combination of feature maps from
different stages adds implicitly multi-context/scale information
onto the final segmentation. Also, since the feature maps are
added in the form of long-range skip connections from the
decoder layers onto the final prediction layer, the training
process is also benefited as the gradients can flow directly from
the final outputs to the decoder layers during back-propagation.
Finally, since the new module relies on skip-connections, the
size of the model remains constant as practically no extra
parameters are added.

III. DENSE-DECODER SKIP CONNECTION

In this section, we first introduce the U-Net architecture.
Later on, we present our proposed Dense-Decoder skip con-
nection module. Finally, we present the final network archi-
tecture, which takes advantage of this module to achieve state-
of-the-art results.

A. U-Net architecture
The U-Net model consists of an encoder-decoder architec-

ture with skip connections between them. In the encoder part,
the convolutional layers use 3×3 filters and follow two design
rules at each stage: (i) the number of output channels is equal
to the number of input filters and (ii) if the size of the feature
map is halved (e.g., after max pooling), then the number of
filters at that given layer is doubled. In the decoder part, the
convolutional layers also use 3×3 filters and at each stage: (i)
the number of output channels of a given feature map is equal
to the number of input filters and (ii) if the feature map size
is upsampled (e.g., by using 2 × 2 transposed convolutions),
the number of filters is halved. The skip connections are
added symmetrically by concatenating features maps from the
encoder to the decoder path. Figure 2b illustrates the base U-
Net model. Because of the skip connections, a hierarchical
feature representation is obtained by combining the low level
features of the shallow layers with the high level features of the
dense layers. Also as mentioned in [28], the skip connections
play a fundamental role in this model, as they affect the final
prediction by creating a direct flow for feature maps from early
layers (encoder stage) in the network to later ones (decoder
stage).

B. Dense-Decoder Skip Connections
As stated before, skip connections have many advantages

such as: (i) simplifying the loss dimensional space by mak-



Fig. 1. An example of a stack of MRI slices from a patient for the ED phase, containing 9 slices from base to apex. We can see that the shape of the right
ventricle changes more than the other two structures (endocardium, myocardium) and that the area of the myocardium on average is the smallest one.

ing it easier to find a good minimum [15], (ii) eliminat-
ing singularities (gradient ambiguity) during the training of
the network [16], (iii) improving the propagation of gra-
dients [17], and (iv) reusing learned features [14]. Inspired
by those advantages, we propose, in this paper, to use long-
range skip connections on the decoder to both refine the final
segmentation result and also to incorporate multi-scale/context
information into the final prediction.

The proposed module reuses the learned features from the
decoder part and jointly aggregates them directly onto the
final prediction layer (see Figure 2c). To do so, we first select
which feature maps from the decoder should be used. Next, the
selected feature maps are upsampled to the same size as the
final output map. The upsampling process can be done in two
ways: (i) using deconvolutions with nclass filters or (ii) using
convolutions with nclass filters followed by an upsampling
operation to match the final prediction size. Note that the
nclass variable denotes the number of classes to be predicted.
Finally, the upsampled feature maps are combined together
with the last convolutional layer of the decoder either by using
concatenation or addition operations.

By combining feature maps from different feature levels,
multi-scale context information is added onto the final predic-
tion and smoother predictions are obtained. In addition, the
proposed module also helps the model to converge faster be-
cause the gradients are directly propagated across the different
levels of the network onto their corresponding encoder part.
Finally, our multi-context design also makes the decoder part
of the network more adaptable to a specific problem, e.g., if a
network does not need a complex decoder, the network could
learn to use the simplest decoder path to the final prediction;
but if a more complex decoder is needed then the network
could learn to use all of the skip connections.

C. Adapted Network Architecture

By using our proposed module, we can easily extend
the functionality of existing state-of-the-art architectures to
incorporate multi-context information. The proposed Dense-
Decoder U-Net is illustrated in Fig 2. Given an input MRI slice
(Fig. 2a), we use an Encoder-Decoder architecture such as the
U-Net to obtain feature maps at different scales (Fig. 2b). Next,
we plug our Dense-Decoder module (Fig. 2c) to incorporate
the multi-context information. Finally, we combine the upsam-
pled feature maps to obtain the final predictions (Fig. 2d).

To refer to which of the features of the U-Net’s decoder
are used in the Dense-Decoder Module, we use the notation
in Table I.

Name UNet’s features from Figure 2
Dense-Decoder Module1add features(red)
Dense-Decoder Module2add features(red, green)
Dense-Decoder Module3add features(red, green, yellow)
Dense-Decoder Module4add features(red, green, yellow, orange)
Dense-Decoder Module1concat features(red)
Dense-Decoder Module3concat features(red, green, yellow)

TABLE I
SETTINGS FOR THE DENSE-DECODER MODULE.

IV. EVALUATION PROTOCOL

A. Datasets

To validate our experiments, we used two datasets: the
ACDC dataset [2] and the Sunnybrook dataset [3].

a) ACDC Dataset: The ACDC Dataset was first made
publicly available in the Automatic Cardiac Diagnosis Chal-
lenge ACDC (2017). This dataset comprises short-axis cine-
MRIs of 150 patients acquired at the University Hospital
of Dijon. Each cine-MRI was manually annotated by two
medical experts. The patients are classified into five evenly
distributed subgroups (4 pathological plus 1 healthy subject
groups). The considered categories are: Normal (NOR), Di-
lated Cardiomyopathy (DCM), Hypertrophic Cardiomyopathy
(HCM), Myocardial Infarction (MINF), and Right Ventricular
Abnormality (RVA). The cine MRIs were acquired using two
MR scanners of different magnetic strengths (1.5T and 3.0T)
with resolutions ranging from (0.70×0.70mm – 1.92×1.92
mm) in-plane and (5mm-10mm) through-plane. Each time
series is composed of 28 to 40 3D volumes, which partially or
completely cover the cardiac cycle. Each 3D volume covers
the LV from base to the apex. Examples of some images with
their corresponding ground-truth labels are given in Figure 1.
For the partition of the data into training and validation set,
we used the same protocol as in [12] and [13].

b) Sunnybrook Cardiac Dataset: The Sunnybrook Car-
diac Dataset (SCD), also known as the 2009 Cardiac MR Left
Ventricle Segmentation Challenge datasets, consists of 45 cine-
MRI images from a mixed of patients and pathologies: healthy,
hypertrophy, heart failure with infarction and heart failure
without infarction. Each subset contains 15 cases of which
4 heart failure with infraction (HF-I), 4 heart failure without
infraction (HF), 4 LV hypertrophy (HYP) and 3 healthy sub-
jects. In all 45 samples, LV endocardial contours were drawn
by an experienced cardiologist by taking 2D slices at both
the end-systolic (ES) and end-diastolic phase (ED), and then
independently confirmed by a second annotator. Each sequence
has been acquired during a 10-15 second breath-holds, with a
temporal resolution of 20 cardiac phases over thee heart cycle,
starting from the ED cardiac phase, and containing 6 to 12
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Fig. 2. Overview of our proposed Dense-Decoder U-Net. Given an input MRI image (a), an Encoder-Decoder architecture (b) is used to obtain feature maps
at different levels (color blocks) that are upsampled and reduced in size along their depth dimension. The upsampling is done by a transposed convolution
operation with nclass filters or by a bilinear upsampling operation followed with a convolution of nclass filters. The upsampled feature maps are aggregated
together to the final prediction map of the model by adding them or concatenating them (c). A final convolutional operation is used to match the dimensions
of the number of predicted classes (d).

SAX images obtained from the atrioventricular ring to the apex
(thickness= 8mm, gap= 8mm, FOV= 320mm × 320mm,
matrix= 256 × 256, in-plane resolution= 1.3mm − 1.4mm).
This dataset is already divided into training, validation and
online set. The reported results were obtained using the
validation set.

B. Evaluation Measures

To evaluate our results, we considered four different mea-
surements: Dice metric [29], Hausdorff Distance [30], Ejection
Fraction Correlation [31], and Performance Analysis.

a) Dice metric: The dice index measures the overlap
between two areas (2D Dice index) or two volumes (3D Dice
index). More formally, it is defined as:

D(A,B) = 2
A ∩B

A+B

A and B are defined as the two areas or two volumes. The
Dice index varies from 0 (complete mismatch) to 1 (perfect
match).

b) Hausdorff Distance: The Hausdorff distance mea-
sures the distance between two areas (2D Hausdorff distance)
or two volumes (3D Hausdorff distance). It is defined as:

H(A,B) = max(max
a∈A

(min
b∈B

d(a, b)),max
b∈B

(min
a∈A

d(a, b)))

where d denotes the Euclidean distance. A smaller Hausdorff
distance implies a better match. The Hausdorff distance is
computed in millimeter with spatial resolution obtained from
the PixelSpacing DICOM field of the MRI metadata.

c) Ejection Fraction Correlation: The Ejection fraction
is an important metric that it is used by doctors at Hospitals
and measures the quantity of blood pumped out of the heart
in each beat as a percentage. A reduced EF is a common
symptom in many cardio-vascular diseases. It is calculated
using the volumes of two phases of the cardiac cycle, End-
Diastole and End-Systole, and is calculated as:

EF =
(V olED − V olES)

V olED

where:
V olED is the calculated volume for an specific heart

structure at the ED phase;
V olES is the calculated volume for an specific heart

structure at the ES phase.

To measure the similarity of Ejection Fraction between
the ground-truth and the predictions, we use the Pearson
correlation coefficient as in [2] and use this coefficient to report
results.

d) Performance Analysis: For the performance analysis,
we considered the convergence time and total number of
parameters of the models.

V. EXPERIMENTS

To evaluate our Dense-Decoder module, we chose as base-
lines the two best Encoder-Decoder architectures from the last
ACDC competition [2], namely, the methods of Isensee [13]
and Baumgartner [12]. These approaches ranked first and third,
respectively. We further evaluated different configurations for
our Dense-Decoder module combined with different number
of stage feature maps from the decoder. For a fair comparison,
the parameters of the network and the training procedure are
the same as described in both baselines.

A. Pre-processing

The pre-processing procedures are the same as the ones
used in [12] and [13]. All the MRI images are normalized
to zero mean and unit variance. Next, both the MRI images
and their ground-truth masks are re-sampled onto a new in-
plane resolution. Lastly, these images are center-cropped to a
specific size.

1) Training:
a) Baumgarter et al.’s model [12] with Dense-Decoder

skip connection module: Similar to [12], our decoder is
based on transposed convolutions. We trained our model from
scratch by initializing its weights using the method of [32].



We optimize the standard pixel-wise cross entropy, which is
defined as:

Lcrossentropy = −
N∑

n=1

K∑
k=1

yn,klog(pn,k) (1)

where:
K is the number of classes;
N is the number of pixels/voxels;

yn,k is the kth position in a one-hot vector encoding

of the true label for pixel on nth location;

pn,k is the kth position in a softmax output vector

encoding for pixel on nth location.

To minimize the loss function, we used the ADAM op-
timizer [33] with a learning rate of 0.01, B1 = 0.9 and
B2 = 0.999.

b) Isensee et al.’s model [13] with Dense-Decoder skip
connection module: As in the work of [13], our decoder
uses bilinear upsampling operations. To add the dense-decoder
module, we first remove the deep supervision layers in their
model. Next, we attach our module into the corresponding
layers of the decoder. We initialize the model using a He
initialization [32] with a normal distribution. We optimize the
network using a multi-class dice loss [13], defined as:

Ldc = −
2

|K|
∑
k∈K

∑
i u

k
i v

k
i∑

i u
k
i +

∑
i v

k
i

(2)

where:
u is the softmax output of the network;
v denotes a one hot encoding of the ground-truth

segmentation map;
k ∈ K being the classes.

To minimize the loss function, we used the ADAM opti-
mizer with an initial learning rate of 5× 10−4 and a learning
rate decay of 0.98 per epoch. An epoch is set to 100 batches of
5 images each one. Since the training procedure is the same
as in [13], we also used data augmentation for each batch:
mirroring along the x and y axes, random rotations, gamma-
correction, and elastic deformations.

B. Post-processing:

Since spurious predictions of heart structures might appear
in implausible locations, we kept for every cardiac structure
only the largest connected component from their predic-
tions [12]. With this simple technique, we are able to reduce
the number of false-positives.

C. Experiments on the ACDC Dataset

a) Ablation Study for the DenseDecoder U-Net: To
find the best configuration for our DenseDecoder U-Net, we
conducted experiments with different settings, e.g. the number
and which features maps from the decoder, how to upsample

and aggregate the selected feature maps. Combining the model
of Baumgartner with the Dense-Decoder Modul3add (Unet
Baum + Dense-Decoder Modul3add for short) has shown to
produce effective results in terms of Dice metric except for the
Right Ventricle on the End-Systole Phase, where U-Net Baum
+ Dense-Decoder Module1add has the best performance. In
any case, using any configuration of the Dense-Decoder mod-
ule outperforms the proposed architecture of Baumgartner.
In addition, we note that when using concatenation instead
of addition for combining the upsampled feature maps, the
Hausdorff distance is also improved (see Table II). We found
out that the best parameters used the three lowest feature
maps from the decoder, and addition operations to combine
the feature maps onto the final prediction map. From now on,
we fix this configuration and use this setting to report results.

When plugging the Dense-Decoder module onto Isensee’s
model, we first removed the deep supervision part from their
architecture and then add the Dense-Decoder module. The
results are equivalent to Isensee’s model with improvements on
the End-Diastole phase for the Right Ventricle (see Table III).

Visual Analysis: We provide examples were the differences
between the ground-truth and the proposed Dense-Decoder
module on Baumgartner’s model were higher (see Figures 3
and 4). We separate these cases in two types: the first in which
the images are relatively easy to segment using deep learning
(see Figure 3); and the second in which the images are more
difficult to predict because of the size of the heart structure
or the shape of the Right Ventricle (see Figure 4). From these
two cases, we can see that using the Dense-Decoder module
leads to more complete and smoother predictions, especially
for the right ventricle.

Clinical Measurement: We report results on Ejection Frac-
tion Correlation on Table IV. The Ejection Fraction Correla-
tion is improved by our Dense-Decoder Module. Especially,
when the Dense-Decoder Module3Add configuration is used,
the improvement is about 0.9% over Baumgartner et al. [12]
for the left ventricle. A major gain is obtained in the right
ventricle, in which by using the Dense-Decoder Module1Add
configuration, we obtain a gain of 3.9% over Baumgartnert’s
results. In this sense, our proposed Dense-Decoder Module
demonstrates an improvement between 0.9% - 3.9% on clinical
measurements for both ventricles.

D. Experiments on the Sunnybrook Cardiac Dataset

For the Sunnybrook Cardiac Dataset, we considered two
baselines, a Fully Convolutional Network (FCN) with 15
layers from [10] and the Baumgartner’s model, reporting the
results on Table V. The FCN presented in [10] was one of
the best methods for this dataset. From the results, we can
see that the U-Net model outperforms the Fully Convolutional
Network(FCN) in terms of Dice score but is worse in Average
Distance than the FCN from [10]. This behaviour means that
the predictions from the U-Net contain spurious structures
which make the error higher in this metric.



Image/GT Baumgartner et al. [12] Baumgartner et al. +
DenseDecoder3add Isensee et al. [13]

Isensee et al. +
DenseDecoder3add

Fig. 3. Qualitative results on the ACDC [2] dataset for the right ventricle, myocardium and endocardium. Left to right columns: Ground-truth, Baumgartner [12],
Baumgartner [12] + DenseDecoder3add, Isensee [13], Isensee [13] + DenseDecoder3add. Using the DenseDecoder module leads to more accurate predictions.

Image/GT Baumgartner et al. [12] Baumgartner et al. +
DenseDecoder3add Isensee et al. [13]

Isensee et al. +
DenseDecoder3add

Fig. 4. Qualitative results on the ACDC [2] dataset for the right ventricle, myocardium and endocardium. Left to right columns: Ground-truth, Baumgartner [12],
Baumgartner [12] + DenseDecoder3add, Isensee [13], Isensee [13] + DenseDecoder3add. Adding the Dense-Decoder module to Baumgartner’s model improves
the segmentation of the right ventricle.



Models

ED ES
LV RV Myo LV RV Myo

D ↑ dH ↓ D ↑ dH ↓ D ↑ dH ↓ D ↑ dH ↓ D ↑ dH ↓ D ↑ dH ↓
val. mm val. mm val. mm val. mm val. mm val. mm

Baumgartner et al. [12] 0.966 5.735 0.939 12.458 0.888 8.982 0.930 7.286 0.858 14.458 0.905 8.677
Baumgartner et al. [12] + DDM1Concat 0.966 5.053 0.939 11.924 0.886 7.751 0.932 6.895 0.831 15.771 0.901 9.203
Baumgartner et al. [12] + DDM1Add 0.967 5.557 0.939 13.736 0.895 8.002 0.941 7.047 0.858 13.319 0.906 9.605
Baumgartner et al. [12] + DDM2Add 0.964 5.871 0.936 13.353 0.884 9.340 0.940 6.326 0.843 14.064 0.904 10.103
Baumgartner et al. [12] + DDM3Add 0.968 4.855 0.943 11.592 0.891 8.865 0.944 6.254 0.861 14.276 0.907 8.716
Baumgartner et al. [12] + DDM4Add 0.965 5.640 0.939 12.115 0.882 9.029 0.930 6.927 0.847 14.344 0.897 9.188

TABLE II
ANALYSIS OF THE SEGMENTATION RESULTS ON THE ACDC DATASET COMPARING THE U-NET BY BAUMGARTNER ET AL. AND U-NET BAUMGARTNER

ET AL. + DENSE-DECODER SKIP CONNECTION MODULE IN TERMS OF THE DICE COEFFICIENT (D) AND HAUSDORFF DISTANCE (dH ).

Models
ED ES

LV ↑ RV ↑ Myo ↑ Avg. ↑ LV ↑ RV ↑ Myo ↑ Avg. ↑
Isensee et al. [13] 0.961 0.913 0.882 0.958 0.903 0.800 0.896 0.928
Isensee et al. [13] + DDM3Add 0.956 0.921 0.882 0.959 0.884 0.795 0.884 0.924
Isensee et al. [13] + DDM3Concat 0.955 0.919 0.880 0.958 0.895 0.800 0.888 0.928

TABLE III
ANALYSIS OF THE SEGMENTATION RESULTS ON THE ACDC DATASET BY COMPARING THE U-NET BY ISENSEE AND U-NET ISENSEE +

DENSE-DECODER SKIP CONNECTION MODULE IN TERMS OF THE DICE COEFFICIENT.

Models
Correlation

Left Ventri-
cle (EF) ↑

Right Ventri-
cle (EF) ↑

Baumgartner et al. [12] 0.983 0.909

Baumgartner et al. [12] + DDM1Add 0.988 0.948
Baumgartner et al. [12] + DDM3Add 0.992 0.914

TABLE IV
EJECTION FRACTION CORRELATION.

Models Dice ↑ Average Dis-
tance (mm) ↓

Tran’s model [10] 0.904 1.799
Poudel et al.’s model [11] 0.900 2.050

Baumgartner et al.’s model [12] 0.917 1.856

Baumgartner et al. [12] + DDM3Add 0.921 1.879

TABLE V
SEGMENTATION RESULTS FOR LEFT VENTRICLE ENDOCARDIUM ON THE

VALIDATION SET ON THE SUNNYBROOK CARDIAC DATA.

E. Performance Analysis

Besides the analysis of the predicted segmentations, we
also compared the training, convergence, and inference time
among the different models. As we want to facilitate an
automatic analysis of the heart-structures and to measure the
EF for both LV and RV based on the predictions, the methods
need to be fast during inference time. The fastest method in
terms of inference time is Baumgartner’s model. Nonetheless,
as segmentation accuracy is a key factor, clinicians would
also prefer to have a bit slower model but with better EF
correlation, which is in this case the Baumgartner + Dense-
Decoder Module3Add model.

An advantage of the Baumgartner’s model over the standard
U-Net is that the authors used much less feature maps in
the upsampling path of the decoder by reducing the number
of parameters by more than 90%. In addition, their method

Models Parameters Model size
(bytes)

Baumgartner et al. [12] 25.27M 101097888

Baumgartner et al. [12] + DDM1Concat 25.40M 101622400

Baumgartner et al. [12] + DDM1Add 25.40M 101622240

Baumgartner et al. [12] + DDM2Add 25.43M 101753344

Baumgartner et al. [12] + DDM3Add 25.45M 101818912

Baumgartner et al. [12] + DDM4Add 25.46M 101851712

TABLE VI
HARDWARE REQUIREMENTS.

performs better than the standard U-Net for most of the
predicted cardiac structures. Our proposed model performs
better than Baumgartner’s model itself without adding many
additional parameters (See Table VI).

VI. CONCLUSIONS AND FUTURE WORK

In this work, we introduced the Dense-Decoder Module
which can be easily added to state-of-the-art encoder-decoder
architectures. It has been shown that our approach can lead to
an improvement on the total Dice score for the segmentation
of the heart on two challenging datasets, namely the the
ACDC [2] and LVSC [3] heart segmentation challenges.

The main benefits of our approach, include: (i) exploiting
different levels of context from the decoder part by combin-
ing the corresponding feature maps directly onto the final
predictions, (ii) obtaining a smoother loss landscape and
better convergence as the gradients can flow directly from the
final outputs to the decoder layers during back-propagation,
and (iii) finally, the size of the model remains constant as
practically no extra parameters are added. As future work, we
are planning to exploit the geometrical properties of the heart
structures. More precisely, since each heart structure presents
a specific shape, we are planning to add shape information



into our network and train an end-to-end model. Our initial
results have shown that this is a promising strategy.
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