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Abstract—Automated visual face recognition involves acquiring
descriptive features from the image. Local Binary Patterns (LBP)
is a powerful method to that end, capably characterizing local
features. An crucial limitation of LBP, however, is that the feature
vector’s size becomes unmanageable when the method employed
on even moderately large regions. In order to describe larger scale
features, this work proposes a descriptor based on applying the
LBP histogram applied to an image transformation based on node
degree data derived from a complex network representation of
the original image. The complex network generation heuristic and
parameters are discussed. The complex network representation
is shown to be able to condense larger scale image patterns into
a local value that can be handled by LBP. LBP applied to this
image transformation yields results that outperform LBP. We
validate our proposed approach by applying our method to a
face recognition task using three challenging databases. Results
demonstrate that, for a large enough complex network generation
radius, our method consistently outperforms LBP, while using a
feature vector of the same size.

I. INTRODUCTION

Characterization of facial features is an important challenge
in Computer Vision, and a necessary step to enable tasks such
as face detection and recognition. As computers approaches
human performance levels, more complex and demanding
data sets have emerged, and with many modern applications,
interest in the face characterization problem remains high, and
it is tackled through a variety of approaches.

Statistical methods are a class of image description methods
that focus on the distribution and statistical behavior of image
features for characterization [1]. Local binary patterns (LBP)
are a category of statistical methods for image description
that consist of describing local patterns in the neighborhood
surrounding a pixel. This category of method has been popular
as it has been successfully applied to a variety of computer
vision applications, such as texture [2] and facial analysis and
recognition [3] [4], often outperforming similar methods while
using a comparatively small feature vector and computational
time. Due to the success of LBP, many variants to the
method have been developed [5]. Despite being very effective
at describing a pixel in terms of the relation between the
pixel’s value and the values of its neighboring pixels, local
binary patterns are not an easily scalable method; applying

LBP to a larger neighborhood radius increases feature vectors
exponentially and becomes unmanageable even for radii values
as small as 2, not to mention the increased processing time,
such that it is not an adequate method to describe larger scale
patterns. Scaling in LBP, therefore, has been done mostly by
multi-scale methods which increase the feature vector size,
and incurs interpolation or loss of information [6].

One other popular statistical approach for image description
has been the use of complex networks, which can be defined
as graphs with non-trivial topology. Complex networks can
be used to organize a variety of information and describe
many different types of data configurations and relationships.
Arranging data as a complex network can make evident under-
lying patterns in the data, and allow for unique metrics both
for local and global topological analysis. A comprehensive and
domain-independent review of these metrics can be found in
Costa et al. [7]. Other works employ agents and heuristics
such as graph crawlers to statistically sample and characterize
paths in the complex network applied to texture classification
[8] [9] [10], [11]. In Computer Vision, specifically, complex
networks have been employed to describe image textures [12]
and geometrical shapes [13] [14], for example.

This work proposed a novel approach to face recognition
using a combination of complex networks and local binary
patterns for face recognition. Our method uses a complex
network node degree metric to describe a larger pixel region
and allow for LBP to be performed on data descriptive
of a larger pixel patterns without the impracticable need
to increase the LBP radius. We validate our proposal in
three different challenging data sets. Results show that our
approach outperforms the LBP results obtained without the
complex network under the same classification parameters,
while maintaining the same size of feature vector. Sections II
and III outline, respectively, past approaches to LBP applied
to image characterization, as well as state-of-the-art complex
network-based approaches to Computer Vision. Section IV
presents our approach for combining complex networks and
LBP into a descriptor with the same dimensionality as LBP
that potentially accounts for larger pixel patterns. After that,
Section V presents experimental parameters and results for



three challenging data sets that are widely used in correlated
literature. Finally, in Section VI we discuss our proposed
method and possible future research following the findings
in this work.

II. LOCAL BINARY PATTERNS

Local binary patterns are a statistical local image descriptor
[15]. There are many variants to LBP, but the original form
of the method still holds up as a very well performing
descriptor. The method is based on sliding a window (usually
3x3) across a gray-scale image I and at each step evaluating
each respective region in relation to the window’s center
pixel p = I(xp, yp) in coordinate (xp, yp). The evaluation
consists of simply comparing the value of every neighboring
pixel to that of the center pixel on a fixed order, effectively
thresholding the neighboring pixels using the center pixel’s
value, and assigning a binary value to the neighbors depending
on whether their value is lower than that of the center
pixel, or higher or equal to the center pixel. Considering the
typical 3x3 window, the pixel p would be compared each
of the 8 pixels in the set of neighbors N, with coordinates
S = {(xp−1, yp), (xp−1, yp+1), (xp, yp+1), (xp+1, yp+1),
(xp+1, yp), (xp+1, yp−1), (xp, yp−1), (xp−1, yp−1)}. This re-
sults in 8 comparisons, which yield an LBP codification with 8
binary values in total, that can be thought of as the 8 bits from
a byte. The value of the resulting byte is a number between
000000002 and 111111112, or 0 and 255 in decimal. This
values are then used to replace the original image’s pixel
values, generating an LBP transform ILBP with the same
dimensions as the original image I . In ILBP , the value of
every pixel describes the gray-scale pattern around the pixel
of same coordinate from I .

Typically, the gray levels histogram from ILBP is used as
a feature vector for I . Considering 256 possible gray levels
from the 8 bits LBP value, the resulting feature vector has
256 dimensions, which is a reasonable amount in comparison
to competing methods. LBP is relatively fast to compute, with
complexity O(N×(W −1)), where N = |I| is the cardinality
of I , that is, the number of pixels in the image, and W is the
size of the sliding window in pixels, which, as mentioned, is
much smaller than N , resulting in complexity O(N). The LBP
histogram is robust against monotonic changes in brightness
and contrast.

Figure 1 provides an example of the method as it is applied
to a single pixel inside a 3x3 sliding window.

Due to LBP’s sensitivity to noise and low scalability, several
preprocessing techniques and filters have been proposed in the
past, specially regarding face recognition [16] [17] [18]. How-
ever, no complex network degree based transformations have
been found in published literature, despite complex network
degrees’ descriptive capabilities relative to local patterns.

III. COMPLEX NETWORK REPRESENTATION OF IMAGES

When using complex networks in Computer Vision and
Image Processing applications, a particular challenge lies
in the decision of how to represent an image or a video
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Fig. 1. Example of LBP codification from the original image’s pixel and its
neighborhood within the sliding window (a), forming a binary sequence (b)
that is converted to its decimal equivalent (c).

as a graph. The work by Backes et al. [19] achieves this
representation by corresponding each pixel p = I(x, y) in a
gray-scale image I to a vertex (or node) vx,y ∈ V in a graph
G = (V,E). So we have that V has as many nodes as there
are pixels in the image. The most important decision, however,
is how to assign edges between pairs of nodes, forming the
set of edges E. Considering the desire to use this complex
network as a local image descriptor, it is important to preserve
local pixel relations in the graph representation. The proposed
graph, therefore, has geographical properties: the closer the
vertices are, the more likely their are to be paired. The first step
toward achieving this is to establish a maximum connection
radius, effectively a circular kernel signifying the maximum
possible distance between pixels for the pair to be eligible for
an edge. This preliminary set of edges E′ is given by equation
(1).

E′ = {(vx,y, vx′,y′) ∈ I × I | d((x, y), (x′, y′)) ≤ rG} (1)

Where d((x, y), (x′, y′)) is the Euclidian distance between
the coordinates:

d((x, y), (x′, y′)) =
√
(x− x′)2 + (y − y′)2 (2)

Another purpose of the maximum radius rG is to improve
performance, since distant pixels are unlikely to be paired.
Also, in the case of this work’s face recognition application,
this keeps the method scalable to images with arbitrarily large
resolution.

Notice G′ = (V,E′) does not fit the definition of a complex
network, as its topology is regular. The next step is to prune
edges from E′ in order to achieve a set of edges E that is
in some way descriptive of the underlying visual data. In
complex networks, similarity is a commonly used criterion



to determine edges. In the case of this network, a given vertex
v has an edge to vertex v′ (that is to say, (v, v′) ∈ E) based
w(v, v′), a measure of dissimilarity between the pixels and
the vertices they represent, given by equation (3). Similarity
between pixels is based on pixels’ two explicit attributes: their
(x, y) coordinate and their intensity I(x, y), a value in the
[0, 255] interval, considering a gray-scale image. The closer a
pair of pixels are to each other and the closer their intensities,
the lower the dissimilarity value will be. So for all pairs of
edges in the preliminary set of edges E′, w(v, v′) is computed.

w(vx,y, vx′,y′) = ((x− x′)2 + (y − y′)2)+

+ (r2G
|I(x, y)− I(x′, y′)|

255
)

(3)

One of the most important attributes of a node in a graph is
its degree [20]. The degree of a given vertex v is defined as the
vertices connected directly to it by an edge, that is, the number
of pairs in E that include v. Different thresholds values for t
provide different graphs with different vertex degrees. Backes
et al. [19] experiments with a range of values for t, settling on
an optimal interval of thresholds t ∈ [0.005, 0.053]. A higher
threshold is more judicious and results in lower degrees for
nodes, while lower thresholds are less selective and result in
higher degrees. Threshold values above or below the interval
were shown to be too permissive or too strict, respectively, and
do not cause significant changes in the network. Unweighted
edges are attributed to pairs of vertices whose dissimilarity
is below the chosen threshold value t, forming the set of
edges E, finally forming the complex network G = (V,E).
Considering ∂(vt) the sub-set of E that denotes the neighbors
of a vertex vx,y for a chosen t, the degree deg(vx,y) is given
by the number of elements in ∂(vx,y), as shown in equation
(5):

deg(vx,y) = |∂(vx,y)| (4)

Where ∂vx,y , the set of vx,y’s neighboring vertices, is:

∂vx,y
= {v′ ∈ V |(vx,y, v′) ∈ E and w(vx,y, v

′) ≤ t} (5)

From the graph G we can, therefore, obtain the transformed
image ICN . In ICN , the intensity value of a pixel I(x, y)
is given by the degree deg(vx,y of the corresponding vertex
vx,y ∈ G. Note that ICN has the same resolution as the
original image I .

The degree highlights neighborhood features, which makes
is capable of expressing high level taxonomic properties of an
image such as period, anisotropy (direction), regularity, gran-
ularity, contrast, roughness, among others [21]–[23]. In the
complex network formulation presented above, in the context
of images, a high degree value means a high homogeneity
between the sliding window’s center pixel’s intensity value
and its neighbors’. Complex network degrees have been used
as basis for crawler based image descriptors [12] to describe
paths in networks.

IV. PROPOSED APPROACH

This work proposes to acquire the complex network degree-
based transformation as a preprocessing operation before
applying LBP. LBP is then applied to the network degree
values in transformed image ICN . The goal in doing this
is, considering the complex network degree transformation’s
capacity to highlight in a single value (the network degree) the
similarity between a pixel and its neighbors in a radius in the
original image, that LBP can be applied to data that already
intrinsically describes a pixel region. The major difference
in this case is that in the complex network degrees’ case,
much larger radii are viable in comparison with LBP radii.
For example, a radius of 15 yields 706 neighbors, which is
manageable for the complex network degree calculation and
does not change the resulting feature vector size, but for LBP
would yield a feature vector with size 2707, far beyond what
is computationally feasible.

LBP can be applied to the complex network-based image
transform ICN without modification, and the resulting feature
vector is the same size as it would be applied to a regular
image. The complex network radius affects the maximum
number of gray-scale levels the transformed image might have,
since the radius determines the maximum degree possible for
each node. This carries the caveat that, especially for small
radii, the number of possible degrees might be rather small
(12 for radius 2, for example). This will inevitably lead to a
high number of ties in the values between neighbors. This is
undesirable because when pixel values are the same in LBP,
the decision between attributing value 0 or 1 to that position in
the LBP descriptor is arbitrary. Therefore, we opted to perform
the complex network transformation for the same range of
threshold t values as in Backes et al. [19] and finally taking
the average of the degree values for each threshold, which
makes ties much less likely. Applying LBP to ICN results in
the image I’s feature vector φ.

We also experimented with adding histogram measurements
to the resulting feature vector, topological attributes to further
characterize the histogram. These histogram attributes are
seven in total: energy, entropy, skewness, contrast, mean,
variance and kurtosis [7] [1]. They are computed for the
feature vector φ and appended to it.

Figure 2 summarizes the proposed method with a real
example (except in complex network G’s case) generated with
one of the images from the JAFFE database [24].

V. EXPERIMENTS AND RESULTS

We applied the proposed descriptor for the task of classify-
ing individual faces in three different data sets: the Japanese
Female Facial Expression (JAFFE) Database [24], with 214
images divided into 10 classes, the Yale Faces Data Base,
with 165 samples divided into 15 classes [25], and the Faces
Data Set 1, with 2500 images divided into 125 classes.
All three data sets present individuals photographed posing
with different facial expressions, and often changes in light

1https://www.kaggle.com/c/face-recognition2, accessed in June 13th, 2019
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Fig. 2. Summary of the proposed descriptor. The original image I is converted to a complex network G (a), then the degrees of the network’s vertices
are used as the piuxel values for a transformed image ICN (b). Then, the LBP opeartor is applied to eadh pixel in ICN to generate ILBP . A gray-scale
histogram of ILBP is the feature vector φ, which will be used for classification.

direction, presence or absence of glasses and other challenging
conditions.

In all these experiments, we use the MATLAB imple-
mentation of LBP made available by the method’s authors.
The LBP sliding window size, a crucial parameter, is set at
the recommended 3x3 value, yielding 8 neighboring pixels
and feature vector of dimension 28 = 256. Furthermore,
the complex network radius parameter has been evaluated
using all integer values in the [1, 15] range. Complex network
generation was also performed with a variety of thresholds
in the [0.005, 0.53] range, with increments of 0.015, before
averaging the resulting degrees for each pixel. Classification
has been performed using the Linear Discriminant Analysis
(LDA) classifier, with the same leave-one-out cross-validation
setup in all cases.

Figures 3, 4 and 5 present face recognition success rates for
each data set, for the range of complex network radius values.
In each figure, the original LBP classification performance
is denoted as a horizontal dashed line. It can be clearly
seen that our proposed method outperforms LBP from a
certain rG radius and upwards, which suggests the hypothesis
that the larger radius would be helpful in describing larger
neighborhoods is accurate. This improvement in performance
is true in all cases, but specially noticeable in the JAFFE
database from rG = 5 and upwards. However, from we
observe a performance peak for radii around 12 or 13, and
then again for radius rG = 17, reaching a classification rate
of 97.65%, while LBP achieved 91.55%. Further increasing
the radius in JAFFE yielded worse or similar results.

Notably, the Yale Faces database yielded the worst results
both for the proposed method and for LBP. This is likely due
to the fact that this data set presents the starkest disparities
in illumination direction and pose. Still, the proposed method
consistently achieved higher correct classification rates than
LBP for rG ≥ 8. Is also worth noting that further increases
in rG continued to yield better results up to rG = 20,
a parameter which yielded 81.21% correct classifications,
to LBP’s 68.48%. At this point, however, processing time
might be an issue. In practice, an application’s performance
requirements would help decide if computing larger radii
would be worthwhile.

The difference in behavior of the correct classification rate
curves for the JAFFE and Yale Faces databases is interesting,
given the similarity between both data sets. Both have images

Fig. 3. Recognition results for JAFFE database. As the complex network
radius is increased, the proposed method’s performance tends to improve,
surpassing LBP.

Fig. 4. Recognition results for Yale Faces database.

and faces in a very similar resolution (JAFFE’s faces being
on average 8 pixels larger). It is natural to anticipate that, for
faces in similar scales, the best performing radii rG would be
similar, being indicative of the type of facial feature that is
captured by the complex network data, but that was not the
case between these two databases. We posit that the disparity is
due to texture. Images in the Yale Faces database are slightly



Fig. 5. Recognition results for Faces Data database.

more blurred in comparison to images in JAFFE, meaning
that smaller scale patterns, highlighted by smaller radii, are
missing. This could also account for the worse classification
performance on the Yale Faces database.

Figures 6 e 7 show confusion matrices for the proposed
method and for LBP for the JAFFE and Yale Faces databases.
Below the confusion matrices there are samples of mistakenly
classified faces from the most confused classes. In the case
of these two databases, it is noticeable that facial expressions
likely do account for the confusion to a certain degree.

Results for the Faces Data database were high, despite Faces
Data being the data set with the most samples and classes in
it. The proposed method achieved 99.88% for rG = 9, 10
and 16 to LBP’s also high classification rate of 99.64%. This
is likely due to the Faces Data database’s more stable poses
and lighting conditions than in the other tested databases.
When classification rates are very high, as is the case, the
confusion matrix is predictable, but it is still interesting to
observe the error cases. Figure 8 showcases the only two
incorrect classification results for rG = 10 in Faces Data, as
two images from class 12 were incorrectly classified as class
70 and 104. It is worth noting that LBP also had trouble with
these exact same classes.

Finally, we analysed the influence of histogram attributes
appended to the feature vector. Table I compares results for
the JAFFE database with and without histogram attributes for
the range of rG that yielded the best results across the three
databases. It is noticeable that the attributes generally improve
classification rates, but improvements are small and inconsis-
tent. Yet, it is a simple to compute and small addition to the
feature vector (7 dimensions). The use of histogram attributes,
therefore, should be dependant on the desired application, and
whether the marginal improvements are desired.

VI. ANALYSIS AND CONCLUSIONS

This work proposed a novel descriptor based on an complex
network degrees-based image transformation followed by the
use of the LBP operator. LBP is a powerful method, but
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Fig. 6. Above is the confusion matrix for rG = 17 in the JAFFE database.
Beneath it is the confusion matrix for LBP. Beneath the matrices, there is a
sample of each class from the most confused pair of classes.

it also that has a critical limitation in terms of scalability,
being viable only on very small local regions. Our complex
network-based image transformation condenses information
about a wider region into the LBP sliding window, allowing
for the description of larger scale patterns in the same amount
of data. Experiments have demonstrated the effectiveness of
this approach when employed to face recognition, one of
the seminal and most popular LBP applications in literature.
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Fig. 7. Above is the confusion matrix for rG = 20 in the Yale Faces database.
Beneath it is the confusion matrix for LBP. Beneath the matrices, there is a
sample of each class from the most confused pair of classes.

The proposed method has significantly outperformed LBP for
complex network radii larger than a certain value. For the
sake of a fair comparison, we also did not take into account
concatenations of our complex network-based LBP feature
vectors for multiple radii, as that would yield a larger, but still
manageable, feature vector. Assuming that various radii for the
complex network highlight facial features in different scales,
combining several radii would be a useful step in composing

Fig. 8. Two images from class 12 (the left-most person) were the only ones
incorrectly classified out of all 125 classes, being classified as classes 70 and
104 (the middle and right-most persons, respectively).

TABLE I
RECOGNITION RESULTS COMPARING THE USE AND ABSENCE OF

HISTOGRAM ATTRIBUTES FOR THE JAFFE DATABASE.

Success rate per rG (%)
Attribs. 10 11 12 13 14 15
Absent 92.02 92.02 95.31 96.24 94.37 94.37
Present 92.49 91.08 96.24 97.65 94.84 96.71

a comprehensive descriptor.
Regarding future developments of this work, it would be

useful to explore the application of the method alongside
some of the more recent LBP variants, such as Median Local
Ternary Patterns [18] [26]. Division of the face into sub-
regions is also a common approach with face recognition
methods such as LBP, which despite yielding a much larger
feature vector imbues the descriptor with useful visual-word
information. Automated threshold t selection would lead to
faster network computation. The solution could also be applied
to discover larger patterns in texture. A deeper exploration of
complex network statistics other than node degree, such as
local clustering coefficient, transitivity, betweeness centrality
[7], random paths [27] and ”network motifs” (as proposed by
Milo et al. [28] and applied to image recognition by de Lima
et al. [29]), could help further characterize the image’s local
regions.
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