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Abstract—Superpixel segmentation can be defined as an image
partition into connected regions, such that image objects may be
represented by the union of their superpixels.In this context,
multiple iterations of superpixel segmentation from improved
seed sets is a strategy exploited by several algorithms. The
Iterative Spanning Forest (ISF) framework divides this strategy
into three independent components: a seed sampling method,
a superpixel delineation algorithm based on strength of con-
nectedness between seeds and pixels, and a seed recomputation
procedure. A recent work shows that object information can be
added to each component of ISF such that the user can control
the number of seeds inside the objects and so improve superpixel
segmentation. However, it is uncertain how the added information
impacts each component of the pipeline. Therefore, in this work, a
study is conducted to evaluate such inclusion in the seed sampling
procedure, partially elucidating its benefits. Additionally, we
introduce a novel object-based sampling approach, named Object
Saliency Map sampling by Ordered Extraction (OSMOX), and
demonstrate the results for supervised and unsupervised object
information. The experiments show considerable improvements
in under-segmentation error, specially with a low number of
superpixels.

I. INTRODUCTION

Superpixel segmentation is the process of partitioning an im-
age into connected regions of pixels that are similar according
to some predicate (e.g., color). The resulting superpixel-based
image representation can improve efficiency and effectiveness
of applications from many fields: (i) remote sensing [1]; (ii)
pattern recognition [2]; and (iii) medical image analysis [3].

Algorithms for superpixel segmentation have been proposed
and compared according to distinct measures [4]–[12]. Several
algorithms adopt a three-stage pipeline based on seed pix-
els: (i) an initial seed sampling approach; (ii) a superpixel
delineation method based on seed pixels; and (iii) a seed
recomputation procedure. They update superpixel delineation
in (ii) from refined seed sets from (iii) in order to improve ef-
fectiveness, as represented by boundary adherence and under-
segmentation error. In this context, it is desirable that any
object of interest can be precisely defined by the union of its
superpixels. Ideally, a superpixel-based image representation
should provide accurate object delineation with simple object
representation (i.e., minimum number of superpixels per ob-
ject). However, the existing methods do not usually allow the
user to control such a compromise between object delineation
and representation.

(a)

(b) (c)
Fig. 1. (a) Image with the object’s border in green. (b) state-of-the-art
segmentation [10]; (c) our proposal. The number of desired superpixels was
set to 100. Although both have a higher boundary adherence, clearly the latter
offers the most suitable representation for object detection.

Authors in [13] propose a superpixel segmentation frame-
work, named Iterative Spanning Forest (ISF), such that each
stage of the aforementioned pipeline can be defined inde-
pendently with no necessity to perform modifications in the
remaining ones. To the best of our knowledge, this is the only
framework with such flexibility. From a given set of seeds,
ISF uses the Image Foresting Transform (IFT) algorithm [14]
for superpixel delineation. The IFT defines superpixels by
connecting each pixel to the seed which offers a path of lower
cost to it on a given image graph, such that each superpixel is
defined by a spanning tree composed by strongly connected
pixels. Depending on the connectivity function (i.e., path-cost
function), the spanning trees are optimum path trees rooted at
the seed pixels but the most effective results do not depend on
the optimality of the forest [13]. Such flexibility has allowed
the authors in [15] to add object information, as represented
by an object saliency map 1, to each component of the ISF
pipeline, providing user control over the number of superpixels
per object.

1A map that assigns to each pixel a value proportional to its likelihood of
belonging to a given object of interest.
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Fig. 2. Iterative Spanning Forest algorithm with the proposed modification (colored box) for the purpose of this work.

However, no study has been conducted to evaluate the
importance of object information in each component of the
ISF pipeline. In this work, we fulfill this gap with respect
to the seed sampling strategy of ISF. It is worth mentioning
that the understanding of such impact is beneficial to many
applications. Figure 1 illustrates, for instance, how object-
based seed sampling might impact the segmentation results
and consequently object detection. We also propose a new
seed sampling strategy, named Object Saliency Map sampling
by Ordered Extraction (OSMOX) and evaluate ISF with object-
based seed sampling on different types of object saliency
maps: (i) supervised, (ii) unsupervised, and (iii) ideal. In (i), a
classifier is trained from user-drawn markers in one image to
estimate object saliency maps for the remaining images [16].
This is recommended when the object of interest appears in
several images. In (ii), we use an object saliency algorithm
suitable for natural images [17] and, in (iii), the gold standard
segmentation is used as surrogate of a “perfect” saliency map.
Thus, our contributions are two-fold: (i) a thorough study
of how object-based seed sampling strategies impacts the
segmentation results; and (ii) propose a novel object-based
seed sampling approach.

In Section II, we present the state-of-the-art superpixel
segmentation algorithms related to this work. In Section III,
we describe the used methods for object saliency estimation
and object-based seed sampling. The experimental setup and
results are presented in Section IV. Finally, in Section V, we
draw conclusions and discuss future work.

II. RELATED WORKS

Superpixel segmentation algorithms may minimize an en-
ergy function such that a graph partitioning problem is solved.
In this graph, the pixels are the nodes and the arcs between
pixels are weighted by a dissimilarity function. Superpixels are
obtained by splitting (arc removal) the graph into parts [8],
[10]. Among methods that follow this strategy, the Entropy
Rate Superpixel (ERS) algorithm usually presents the best
performance [10].

Another common strategy for superpixel segmentation is
more closely related to the methods proposed in this work.
These methods start from an initial seed set with the number
of seeds equal to the number of desired superpixels. The

dissimilarity between seeds and the remaining pixels is usually
used to assign each pixel to the region of its most similar
seed (as in a clustering approach based on the k-means
algorithm). Each region is one superpixel and the seeds are
recomputed to improve the seed set, repeating the process
for a few iterations. Note that, this strategy cannot guarantee
connected regions, except by some post-processing that might
affect the number of desired superpixels. Examples are the
popular Simple Linear Iterative Clustering (SLIC) [4], which
can produce a fast superpixel segmentation, and its variants,
such as the Linear Spectral Clustering (LSC) [7], the Manifold
SLIC (MSLIC) [6], and the Intrinsic MSLIC (IMSLIC) [5].

Differently from the above clustering-based methods, but
yet based on seeds, the Iterative Spanning Forest (ISF) frame-
work [13] uses the dissimilarity between adjacent pixels as
arc weights of an image graph to compute connectivity values
between seeds and pixels. From an initial seed set, ISF uses
the Image Foresting Transform (IFT) algorithm to obtain a
spanning forest rooted at the seed set [14]. The seeds are
recomputed to refine the results along multiple iterations of the
IFT algorithm. The seeds compete among themselves such that
each pixel is connected to the seed that reaches it with a path of
cost lower than the cost offered by a previous seed. Each seed
defines one connected superpixel as a spanning tree composed
by strongly connected pixels. The superpixels are optimum-
path trees depending on the connectivity function, but the most
effective ISF-based methods do not require this condition [13].
In [15], the authors show the advantages of including object
information in each component of ISF. Here, we evaluate the
impact of object-based seed sampling in ISF-based superpixel
segmentation using supervised and unsupervised methods for
object saliency estimation (Figure 2). Therefore, we are fo-
cused on the first step of the pipeline. The methods for object-
based seed sampling are described next.

III. OBJECT-BASED SEED SAMPLING

In this section, we first describe supervised and unsuper-
vised methods for object saliency estimation. We then describe
two different object-based seed sampling strategies: the one
proposed in [15] and a new approach.
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Fig. 3. Examples of unsupervised and supervised object saliency estimation. (a) and (c) Image with the object’s border in green. Object saliency maps as
obtained based on (b) DSR for the image in (a), and (d) SUP for the image in (c).

A. Object Saliency Maps

Visual saliency is a property that makes objects stand out
from their surroundings in images, capturing our attention.
This property can be represented by an object saliency map
— a map that assigns to each pixel its probability to be part
of an object of interest. Object saliency maps are often seen
as grayscale images, in which brighter pixels are those with
higher saliency values. Moreover, such maps can be obtained
through supervised or unsupervised learning algorithms.

In the context of unsupervised algorithms, the Dense and
Sparse Reconstruction (DSR) [17], [18] is one of the state-of-
the-art methods for natural images. It starts by performing a
SLIC-based superpixel segmentation [4] and then estimates an
object saliency map based on the dissimilarity between super-
pixels. It assumes that superpixels close to the center of the
image are more likely to represent the object than superpixels
connected to the image’s border. Figure 3b illustrates the result
of DSR for the natural image in Figure 3a.

In the context of supervised algorithms for applications
where the object of interest appears in several images, the
authors in [16] propose an object saliency map (hereafter
denoted as SUP) that uses an IFT-based pixel classifier [19]
as intermediate step. First, the user selects samples from the
object and from the background, which will be divided into
training and evaluation sets. Then, the method finds the most
representative training samples such that a classifier is obtained
based on one optimum-path forest rooted at representative
object samples and one optimum-path forest rooted at rep-
resentative background samples. An object saliency map is
finally obtained by normalizing the minimum cost of a pixel
to be conquered by the background roots using the sum of that
cost from object and background roots. Figure 3d illustrates
the result of SUP for the parasite image in Figure 3c. The
classifier can then be applied to new images in which the
object appears.

B. Object Geodesic Grid Sampling

For a given image with I pixels, a desired number N of
seeds, and a desired percentage p ∈ (0, 1) of seeds per object,
the method Object Geodesic Grid Sampling (OGRID) aims
to return a seed set S with pN object seeds and (1 − p)N
background seeds [15]. For that, a threshold T at 50% of

the maximum saliency value is applied to the object saliency
map O by assuming that object pixels s have saliency values
O(s) ≥ T and background pixels have values O(s) < T .
The following algorithm is then applied separately to the
foreground and background components that result from this
thresholding operation.

The seeds are distributed per foreground component such
that each component ci ⊆ I, i = 1, . . . , n, should contain
Ni =

pN |ci|∑n
i=1 |ci|

seeds. Such a distribution favors large compo-
nents (probable objects), whereas it assigns a few or no seeds
to smaller components. The seeds per component ci should
also be separated by a distance d > 0 from each other. The
algorithm uses two adjacent sets of a pixel s — B(s) is defined
by a disk of radius d and center at s, and B∗(s) is defined as
the border of that disk. Starting at a node s ∈ ci, the algorithm
inserts s to a seed set Si and inserts the pixels in B∗(s) to
a candidate seed set C. While |Si| < Ni and C 6= ∅, the
following steps are executed in order. A pixel t is removed
from C and inserted to Si; every pixel u ∈ B∗(t) is inserted to
C; and every pixel u ∈

⋃
s∈Si B(s)\B

∗(s) is removed from C.
At the end, S ← S∪Si, i = 1, 2, . . . , n. Similarly, it works for
the background components. However, the minimum distance
d between seeds inside each component might result S with
|S| < N . We then optimize d such that the number of sampled
seeds in each ci better approximates Ni.

In order to avoid the parameter T , fix d as a function of I,
p, and N , but not using it as a constraint, and make |S| = N ,
we propose the seed sampling approach presented next.

C. Object Saliency Map Sampling By Ordered Extraction

In Object Saliency Map Sampling By Ordered Extrac-
tion (OSMOX), by considering a percentage p of object seeds,
we first fix d =

√
|I|
Np for foreground seed estimation and

d =
√

|I|
N(1−p) for background seed estimation, by following

the idea of grid seed sampling from [4]. Similarly to OGRID,
an adjacent set B(s) is defined with radius d and center at
s. For speeding purposes, let C(s) ⊆ B(s) in which the
distance of s to any adjacent pixel is no more than

√
d.

Thus, the priority value P (s) of a pixel s be selected as
seed is a function of the object saliency map O, defined as
P (s) =

∑
∀t∈C(s)O(t). Using a priority queue Q, each pixel
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Fig. 4. Examples of seed sampling using each object-based approach. (a) and (c) OGRID. (b) and (d) OSMOX. Both considering the saliency maps in
Figure 3, with N = 20 and p = 0.9. Note that OGRID is unable to select the number N of desired seeds.

(a) (b)

Fig. 5. OSMOX using different percentages of object seeds for N = 100.
(a) p = 0.01 and (b) p = 0.99. In both cases, it can guarantee the desired
ratio between the numbers of object and background seeds.

s ∈ I is inserted to Q with priority P (s). A first pixel s with
the highest priority is removed from Q and inserted to the
seed set S. At this moment, all pixels t ∈ B(s) have their
priority values reduced by P (t)← (1− exp −‖s,t‖

2

2σ2 )P (t) and
their position in the priority queue updated accordingly. For
a suitable dispersion of the seeds, we recommend σ = d

0.6 .
The removal of a next seed pixel from Q and the priority
reduction process are repeated until the desired number of
seeds is reached or Q = ∅. Similarly, this algorithm is applied
to the complement of O for background seed selection.

Figure 4 illustrates the sampling behaviors of OGRID
and OSMOX, considering unsupervised and supervised object
saliency maps. OGRID selects seeds within components of
higher saliency values, while OSMOX also selects seeds in
regions of less confidence in the map. Additionally, OSMOX
guarantees the number N of desired seeds. For a suitable
object saliency map and by choice of p, OSMOX allows better
user control over the proportion of seeds inside and outside
the object (Figure 5).

Regarding the execution time, GRID outperforms both
object-based approaches due to the absence of pre-processing
steps. Comparing OSMOX and OGRID, the former is not
affected by the number of connected salient regions, while
OGRID excels in unusual situations — large images, with a
few small salient objects. On average, the speed-up achieved
by GRID over OSMOX ranges from 65 to 13, whereas
OSMOX over OGRID ranges from 6 to 2, when the amount

of superpixels varies in [10, 1000].

IV. EXPERIMENTAL RESULTS

In this section, we describe our experimental setup, such
as parameter selection, datasets, and evaluation metrics. Then,
we present the results obtained when considering a supervised,
an unsupervised, and an ideal object saliency map through
quantitative and qualitative analysis.

A. Experimental Setup

The experiments use three datasets as follows.
MSRA1K [20] is a dataset with natural images and a
single unambiguously-salient object per image. Birds [21]
is a dataset of natural images of birds — objects with thin
and elongated parts. Both datasets are suitable to use DSR
for unsupervised object saliency estimation. We also use
Parasites [15] — a dataset suitable for supervised object
saliency estimation. This dataset contains optical microscopy
images of human intestinal parasites.

For comparison, we adopt the regular grid seed sampling
(GRID) and the following baselines: (i) ERS [10] — the most
competitive method in MSRA1K; (ii) LSC [7]; (iii) SLIC [4];
and (iv) ISF-GRID-ROOT [13] (ISF-GRID, for simplicity)
— the most competitive method in Birds. The ISF variants
based on OGRID and OSMOX are denoted as ISF-OGRID and
ISF-OSMOX, respectively. In Parasites, it was not possible to
perform the segmentation using the ERS algorithm, since its
implementation (available online) considers only 8-bit images
(the parasite images have 16 bits).

The methods are evaluated by the popular measures Bound-
ary Recall (BR) [4] and Under-segmentation Error (UE) [22]
in an interval from 10 to 100 superpixels. BR measures the
adherence of the borders of the superpixels to the object’s
border. UE detects when a superpixel mostly inside the object
contains background pixels and when a superpixel mostly
inside the background contains object pixels. Thus, we aim
higher BR and lower UE.

In all experiments, the parameters of the baselines are fixed
as suggested in their original works. In ISF-OGRID and ISF-
OSMOX, we also fix the parameters of the ISF algorithm. The
remaining parameter p (percentage of object seeds) is then
optimized based on BR and UE for OGRID and OSMOX, as
shown in Table I where D1 is Birds, D2 is MSRA1K, and D3



Fig. 6. Results obtained in Parasites dataset for BR and UE, respectively, by
using the SUP object saliency estimator.

is Parasites. For this optimization, we use 10% of each dataset.
Therefore, the tests are executed on the remaining 90% of each
dataset.

Method DSR SUP GT
D1 D2 D3 D1 D2 D3

ISF-OGRID 0.3 0.9 0.9 0.8 0.9 0.9
ISF-OSMOX 0.7 0.9 0.9 0.7 0.9 0.6

TABLE I
OBJECT PERCENTAGE PARAMETER p FOR OGRID AND OSMOX ON EACH
DATASET, WHERE D1 IS BIRDS, D2 IS MSRA1K, AND D3 IS PARASITES.

B. Experiments using Supervised Saliency Maps

In Parasites, we use the SUP saliency estimator to show
that both object-based seed sampling strategies outperform
the baselines due to the quality of the object saliency map
(Figure 6). For higher number of superpixels, ISF-OGRID
and ISF-OSMOX tend to be equivalent. For lower number of
superpixels, ISF-OSMOX can significantly outperform ISF-
OGRID since it approximates better the number of desired
seeds. Moreover, the number of objects of interest per image
is never greater than 5 in Parasites. Therefore, we are mostly
interested in a few superpixels (as depicted by a dashed

(a) (b)

(c) BR = 0.913 (d) BR= 0.922
UE = 0.100 UE = 0.100

(e) BR = 0.971 (f) BR = 0.975
UE = 0.003 UE = 0.002

Fig. 7. (a) Image with the object’s border in green. (b) Object saliency map
by SUP. Segmentation with N = 10 by (c) SLIC, (d) ISF-GRID, (e) ISF-
OGRID, and (f) ISF-OSMOX. For OGRID and OSMOX, p = 0.9 (Table I)
on the map (b).

rectangle in the charts). This conclusion is also valid for both
BR and UE.

Figure 7 illustrate a qualitative comparison among the meth-
ods. Although SLIC and ISF-GRID present good delineation
and representation of the object, both ISF-OGRID and ISF-
OSMOX can better separate the parasite egg from the impurity.
When comparing ISF-OGRID and ISF-OSMOX, it is worth
noticing that ISF-OSMOX is the only one that guarantees the
exact number of desired superpixels.

C. Experiments using Unsupervised Saliency Maps

Figure 8 presents the BR and UE curves of the methods
for Birds and MSRA1K, using DSR for unsupervised object



Fig. 8. Results obtained in Birds and MSRA1K for BR and UE, respectively, and using DSR as object saliency estimator.

saliency estimation. In this case, the quality of the saliency
map is lower, but ISF-OGRID and ISF-OSMOX are able to
achieve similar good performance to the most competitive
baselines for each dataset: ERS in MSRA1K and ISF-GRID
in Birds. Indeed for lower number of superpixels (dashed
rectangle), the proposed methods provide better UE than these
baselines, being ISF-OSMOX the best approach. Similar to
Parasites, the images in both datasets do not contain more
than 10 objects of interest.

Figures 9 and 10 present a qualitative comparison between
ERS and the ISF-based methods. ISF-based methods present
good delineation performance, but the best results are clearly
obtained by those that use object-based seed sampling. More-
over, ISF-OSMOX shows good results on both, boundary
adherence and under-segmentation error.

D. Experiments using Ideal Saliency Maps

Figure 11 shows the BR and UE curves for the ISF-based
approaches with object-based seed sampling on the three
datasets and using DSR and GT (the ”ideal” object saliency
map, as represented by the gold standard segmentations). One
can see that ISF-OGRID and ISF-OSMOX using GT present
a significant improvement as compared to their versions with

DSR. This is a clear indication that improvements in unsu-
pervised object saliency estimation can positively affect those
ISF-based methods. In Parasites, on the other hand, since SUP
already provides a good object saliency map, the use of GT
does not improve the results of ISF-OGRID and ISF-OSMOX.
In this case, the uncertainties of the saliency map have a
positive influence on the seed sampling approaches.

V. CONCLUSION

We have evaluated the impact of object-based seed sampling
methods in ISF-based superpixel segmentation algorithms. In
this context, we presented two approaches, ISF-OGRID and
ISF-OSMOX, being the latter a relevant contribution for the
case of a low number of superpixels.

Our findings show that the inclusion of object information
in the initial seed sampling strategy can significantly improve
the segmentation results, specially the under-segmentation
error. Moreover, possible improvements in unsupervised object
saliency estimation can positively affect the performance of
ISF-OGRID and ISF-OSMOX, being this a subject for future
investigation.



(a) (b)

(c) BR = 0.390 (d) BR = 0.604
UE = 0.098 UE = 0.032

(e) BR = 0.741 (f) BR = 0.946
UE = 0.017 UE = 0.013

Fig. 9. (a) Image with the object’s border in green. (b) Object saliency
map by DSR. Segmentation with N = 10 by (c) ERS, (d) ISF-GRID, (e)
ISF-OGRID, and (f) ISF-OSMOX. For OGRID and OSMOX, p = 0.3 and
p = 0.7 (Table I), respectively, on the map (b).
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