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Abstract—In this paper, we present our novel energy embedded
Gauss-Seidel iteration to simulate soft objects. Our algorithm
is inspired by the equality of the kinetic and potential energy
changes, and employs the extended Position-Based Dynamics
algorithm (XPBD) as the base algorithm. The proposed method
does not aim to conserve the total energy of the system, only alters
the position constraints based on the kinetic and potential energy
balances within the Gauss-Seidel process of the XPBD algorithm.
Our algorithm provides an implicit solution for relatively better
visual results during the simulation of soft bodies. Since we
apply our solution within the Gauss-Seidel iteration, it is not
dependent to both simulation step-size and integration methods.
We demonstrate the benefits of our method with many position
constraints such as geometric deformation constraints, strain
based constraints and continuous materials.

I. INTRODUCTION

In recent years, Position-Based Dynamics (PBD) [1] has
been a widely used method in games, movies and medical
applications. This can be explained with its simplicity, stability
and performance. Traditional techniques formulate the phys-
ical phenomena by using forces and velocities based on the
mass-spring systems. On the other hand, PBD method is based
on the projected constraints which provide a large spectrum to
simulate dynamic behaviors from simple stretch to nonlinear
continuous materials.

PBD generalizes the Verlet integration approach of [2] with
velocity updates. The core of the algorithm is a constraint pro-
jection schema for updating the vertex positions by employing
a non-linear Gauss-Seidel type iteration. Furthermore, a recent
extension to PBD, which is called XPBD [3], improves the
original algorithm by applying a total Lagrange multiplier for
general material stiffness. Unfortunately, XPBD based simula-
tion of deformable objects suffers from extreme soft material
behavior and unintended mesh degeneration while the Gauss-
Seidel iterations are too few. This is more obvious during the
simulation of continuous materials. Since the stiffness of the
materials is dependent on the number of iterations and the
compliance matrix entries, altering those values is not practical
during the interactive simulations.

The proposed algorithm is inspired by the idea of conserved
energy differences from [4], and utilizes it within the Gauss-
Seidel iterations by assuming the projected constraints as
the potential energy functions of the materials. Furthermore,

the velocities are kept in their implicit state similar to [2].
Therefore the position updates do not suffer from the possible
extreme values of velocities due to the step-size division.
During the interactive simulations, XPBD may produce non-
smooth mesh degeneration either under constant force (such as
gravity) or direct user interaction. In our algorithm, we address
this unintended effect, and provide relatively smoother results
during the simulations.

The proposed algorithm is inspired from the total energy
conservation principle. However, the simulation scheme dis-
sipates the overall energy of the system. This is due to the
fact that PBD/XPBD algorithms employ the Verlet integration
scheme with the known energy dissipation properties. Our
algorithm works in the same direction as XPBD, nevertheless
Gauss-Seidel loop takes advantage of the overall energy of
the system. In order to test our method, we have implemented
many different constraint types such as stretching, shearing,
bending, area and volume preservations, strain based dynamics
constraints [5] and many continuous material constraints [6].
Since our algorithm is based on XPBD method, they share
the common features. However, our version of Gauss-Seidel
algorithm have more computation steps than XPBD; therefore,
a slight overhead can be observed. We keep the proposed al-
gorithm as generic as possible, it is straightforward, and it can
be easily adapted to the existing position-based frameworks.

II. RELATED WORK

Foundations of Position-Based Dynamics can be seen in [7]
for rigid body animation and in [8] for deformable objects. Af-
ter, Jakobsen [2] described the Verlet integration scheme with
direct position manipulation by using projected constraints for
rigid and deformable body dynamics. After Müller et. al. [1]
generalized the idea with corrected velocities, and introduced
the formal PBD algorithm. Goldenthal et al. [9] also used
constraints and offered a fast projection algorithm. Besides, in
a different framework, Stam [10] introduced Nucleus which is
a unified constrained based solver for Autodesk Maya. More
recently, Tournier et al. [11] addressed the instabilities by
applying second order derivatives on the constraints. Recently,
based on [12], Macklin et al. [3] improved the PBD algorithm
with a total Lagrange multiplier to address the iteration count
and simulation step-size dependencies. In this paper, we use



Fig. 1. A piece of cloth hangs under constant gravitational force. Left column is stretch and shear constraints attached together. Middle column is 2D Green
strain tensor constraint. Right column is the 2D anisotropic continuous material constraint. All simulations are executed under the same conditions, such as
α = 0.0001, iteration count = 20, damping coef = 0.3, step-size = 1/24. Top row: Our method. Bottom row: XPBD.

the same base algorithm. For more detailed information on
PBD, we refer the reader to [13].

Due to simplicity and efficiency of PBD algorithm, many
researchers used PBD method for solid, fluid, rigid body, cloth
and skinning simulations. Müller and Chentanez introduced
wrinkle meshes [14] for cloth and skin deformations, and later
on they proposed oriented particles [15] for rapid simulation
of various solid objects. Kim et al. [16] offered long range
attachments to simulate inextensible clothing. Kelager et al.
[17] presented a novel triangle bending algorithm as an alter-
native to dihedral bending constraint for better performance
in cloth simulations. Müller et al. [18] simulate hair and fur,
after Macklin and Müller [19] simulate fluids with position-
based approach. Furthermore, Müller et al. [5] and Bender et
al. [6] used PBD to simulate continuous material models. PBD
algorithm also incorporates with facial animation frameworks.
Fratarcangeli [20] offered a facial dynamics model includ-
ing muscle and skinning system based on a PBD method.
Cetinaslan and Orválho [21] proposed a framework for local
contact deformations on facial models that has employed the
constrained dynamics. The character skinning and plausible
skin deformations have been handled by using PBD. Deul
and Bender [22] employed constrained projections for col-
lision handling during simulating the elastic behavior of the
skin. Abu Rumman and Fratarcangeli [23] incorporated the
constraint projections and linear blend skinning for the articu-
lated characters. Elastic rod simulations have been taking the
advantage of the PBD method. Umetani et al. [24] proposed
a novel algorithm to simulate complex bending and twisting
behavior of elastic rods. Recently, Deul et al. [25] presented
a novel direct solver for stiff rod simulations with a modified
constraint solver. Their technique provides a notable speed-up
during the simulations.

Energy conservation (or Hamiltonian system) is studied
along with the symplectic numerical integrators which is the
subtopic of geometric numerical integrators [26]. Several pa-
pers such as [27], [28] studied symplectic integration systems
for long-time energy conservation. Bathe [29] proposed a
direct implicit time integration which conserves energy and
momentum. Their algorithm has provided the large deforma-
tions in long time durations. Recent work by Dinev et al. [30]
presented a hybrid integration method by blending implicit and
explicit Euler integrators to obtain high stability and energy
conservation properties. Similar to the Projective Dynamics
method, their method provides a local/global solution. On the
other hand, Su et al. [4] applied the energy conservation to the
mass-spring systems independent from the integration method.
They took the advantage of energy conservation approach and
presented an energy budgeting method.

Although, the proposed method inspired from the similar
concepts of the conserved total energy principles, we have
computed the energy differences equality concept within the
implicit formulation of the Gauss-Seidel algorithm without
violating the original position-based dynamics method. There-
fore, our algorithm does not provide the total energy con-
servation, but embeds the energy differences to Gauss-Seidel
iteration to enhance the existing XPBD algorithm.

III. BACKGROUND

This section briefly reviews the foundations of PBD/XPBD
methods and we refer to the tutorial by Bender et al. [13]
for further details. PBD [1] accepts the input model as a
system of interconnected particles with a given set of position
constraints. The algorithm works in three steps: As a first step,
Verlet integration scheme predicts positions of the particles
(xi ∈ R3). In the second step, the bilateral constraint set



Fig. 2. Strain based torus model is stretched and compressed by using our method. Many different material models are simulated, First column: Linear
elasticity constraint, Second column: 3D Green strain tensor constraint, Third column: St. Venant - Kirchhoff material constraint, Fourth column: Neo -
Hookean material constraint. All simulations are executed under the same conditions, such as α = 0.0001, iteration count = 5, damping coef. = 0.3,
step-size = 1/24.

is solved by employing a Gauss-Seidel solver. Lastly, the
velocities are updated according to the new particle positions.

The second step of PBD is the core of the algorithm and
determines the position correction of each particle (∆xi) such
that bilateral behavior is conserved (C(x + ∆x) = 0). The
displacements of the particles are calculated with the first order
Taylor approximation: C(x+ ∆x) ≈ C(x) +∇xC(x) ·∆x =
0. The directions of the ∆x are limited to the directions of
the ∇xC(x) to conserve both linear and angular momentums
implicitly. Thus, with the consideration of the mass (m) of
each particle i, ∆x is computed as in Equation (1):

∆xi = wi∇xi
C(x)λi (1)

where wi = 1
m and λi stands for the Lagrange multiplier

which is obtained by substituting Equation (1) in the first order
Taylor approximation:

λi = − C(x)∑
i wi|∇xiC(x)|2

(2)

XPBD [3] improves the original algorithm with total La-
grange multiplier to address the dependency of simulation
step-size and iteration count. XPBD replaces λi from Equation
(1) with ∆λi based on the constraint derivation of [12].
Furthermore, ∆λi is extended with the compliance parameter
α which is the inverse stiffness. Therefore, the new position
correction is computed as in Equation (3):

∆xi = wi∇xi
C(x)∆λi (3)

and ∆λi is computed as in Equation (4):

∆λi = − C(x) + α̃λi
(
∑

i wi|∇xi
C(x)|2) + α̃

(4)

where α̃ = α/h2, λi+1 = λi + ∆λi that is computed in each
iteration, and h represents the simulation step-size. Therefore,
the λi value is updated incrementally for each constraint value
at the instant iteration.

IV. ENERGY EMBEDDED GAUSS-SEIDEL ITERATION

The proposed algorithm works under two necessary assump-
tions. First, we utilize the implicit velocity vectors similar to
[2]. Second, we consider that the projected constraints are

the potential energies of mass-spring systems or continuous
material models based on [6].

According to our proposed method, the Gauss-Seidel itera-
tion should satisfy ∆KE = −∆PE where KE is the kinetic
energy and PE is the potential energy. When we simulate
with PBD or XPBD, this condition is not satisfied due to
energy dissipation. Furthermore, it is not possible to directly
apply energy budgeting from [4] due to the fact that XPBD
computes velocities based on the particle positions. However,
it is possible to directly apply energy budgeting within the
Gauss-Seidel iteration. The Gauss-Seidel algorithm updates
the positions of particles as many times as the iteration count.
This allows us to track the new particle positions and their
corresponding velocities during each iteration. Therefore, the
kinetic energy and potential energy differences can be defined
as:

∆KE =
1

2
m[(V k+1

i )TV k+1
i − (V k

i )TV k
i ] (5)

∆PE = C(xn)k − C(xn−1) (6)

where V k+1
i and V k

i are the velocities for each particle i at
iteration k + 1 and k respectively. That is simply V k+1

i =
(xni )k+1−xn−1

i and V k
i = (xni )k−xn−1

i at time tn. C(x)k is
the constraint value at iteration k. It should be noted that there
exists a direct relation between the velocity changes and the
position corrections. In order to maintain an energy balance
within the simulation loop, ∆KE + ∆PE = 0 should be
satisfied while iterating the Gauss-Seidel algorithm. However,
after some iterations, the system starts to lose that equality
due to dissipation which causes the energy residuals (ε). In
[4], these energy residuals are computed in the last iteration,
and corrected before moving to the next simulation step.
Alternative to that, we compute ∆KE + ∆PE = ε for each
Gauss-Seidel iteration, and alter the constraint values with the
energy residual (ε) in each iteration. Therefore, the constraint
value becomes C(xn)k = C(xn)k+ε. Moreover, it is possible
to define the current constraint as in Equation (7):

C(xn)k = C(xn−1)−∆KE (7)

Either by using equation (7) or by updating C(x)k with
ε, our approach guarantees an implicit energy balance within



Algorithm 1 Energy Embedded XPBD Simulation Loop
1: for each particle i do
2: initialize xi ← x0

i , V
k
i ← 0, V k+1

i ← 0, wi ← 1/m
3: end for
4: loop
5: Verlet Integ.: xn+1

i ← xni +(xni −x
n−1
i )+h2wifext(x

n
i )

6: initialize Total Lagrange Multiplier λ0
i ← 0

7: while k < iterationCount do
8: for each Constraint do
9: compute C(xn−1)

10: compute C(xn)
11: compute ∆PE using Eq (6)
12: compute ∆KE using Eq (5)
13: ε← ∆KE + ∆PE
14: C(xn)← C(xn) + ε
15: compute ∆λi using Eq (4)
16: compute ∆xi using Eq (3)
17: V k

i ← (xni )k − xn−1
i

18: update λki ← λki + ∆λi
19: update (xni )k+1 ← (xni )k + ∆xi
20: V k+1

i ← (xni )k+1 − xn−1
i

21: end for
22: k ← k + 1
23: end while
24: update positions xn+1

i ← (xni )k

25: end loop

each iteration with a slight computation cost. Besides, ε value
provides information about the energy residual and determines
the current state of the constraint. In each iteration, it may
load or relax the constraint according to its value. Algorithm
1 presents our proposed technique.

V. CONSTRAINTS

XPBD provides the simulation of many position constraints.
Extending the original algorithm with our method does not
violate its generality. In this section we define the constraint
functions which we use to simulate the deformable models
and cloth.

A. Geometric Constraints

Geometric constraints are the oldest and the most employed
constraint types of position-based frameworks. They are easy
to implement, fast and robust (Figure 1 - first column). These
constraints are mostly employed to simulate cloth. The most
popular constraint is the stretch [2] (or distance) in this
class. Furthermore, visual quality of cloth simulation can
be improved by adding shear [10] and dihedral bending [1]
constraints with a slight performance loss. The mathematical
expressions of these constraints are:

Cstretch(x1, x2) = |x2 − x1| − l12 (8)

Cshear(x1, x2, x3) = cos−1(M12 ·M13)− γ123 (9)

Cbend(x1, x2, x3, x4) = cos−1(N123 ·N124)− θ1234 (10)

where l12 is the rest length of each edge between the particles,
γ123 is the rest angle between edges and θ1234 is the rest angle
between each face primitive. Besides, M and N values are the
shear and bending angles:

M12 =
x2 − x1

|x2 − x1|

M13 =
x3 − x1

|x3 − x1|

(11)

N123 =
(x2 − x1)× (x3 − x1)

|(x2 − x1)× (x3 − x1)|

N124 =
(x2 − x1)× (x4 − x1)

|(x2 − x1)× (x4 − x1)|

(12)

Derivations of the gradients of these constraints can be
found in [31]. Besides, geometrically motivated area and
volume preservation constraints can be added to this list;
however, strain based alternatives of these constraints behave
more strongly and accurately which we cover in the next
section.

B. Strain Based Constraints

Instead of applying geometric constraints, we can simulate
the deformable objects by using strain tensor constraints from
[5]. Although, our method accepts triangle meshes as input, we
provide the behavior of tetrahedral meshes. We compute the
model’s center of mass for each iteration, and use that point
as the tip of each ”tetrahedron”. We perform this operation
for the simulation of volumetric meshes. Green strain tensor
is computed as in Equation (13):

G =
1

2
(FTF − I) (13)

where I is 3×3 identity matrix, and F ∈ R3x3 is the deforma-
tion gradient: F = DsD

−1
m where Ds is the deformed shape

matrix (Ds = (x1−x0, x2−x0, x3−x0)), and Dm is the initial
material matrix (Dm = (X1 − X0, X2 − X0, X3 − X0)) for
each tetrahedron. The diagonal entries of G from equation (13)
determines the stretch and non-diagonal entries are employed
for shear. Therefore, strain based constraints are:

Cstretch(x0, x1, x2, x3) = Sii − 1 (14)

Cshear(x0, x1, x2, x3) = Sij , i < j (15)

where S = FTF and x0 is the center of mass. Although,
those constraints are associated with stiffness parameters in
[5], XPBD algorithm does not require any stiffness parameters
for those constraints (Figure 2 - second column).

For cloth simulation, two dimensional triangle elements of
the mesh are processed (Figure 1 - second column). Due to
the fact that Ds and Dm are not square it is not possible



to invert Dm. To overcome that problem, we follow the
procedure explained in the appendix of [5] and employ the
texture coordinates to define Dm in two dimensional space.
After we compute the deformation gradient for each triangle
(F tri ∈ R2x2), the constraint functions to simulate cloth are
similar to equations (14) and (15) without a center of mass
point.

Green strain tensor does not provide volume and area
preservation. During the simulations, it is desired to preserve
the volume of solids and area of cloth for visually pleasing
results. Therefore, we attach these constraints (Cvolume =
det(Ds) − det(Dm), Carea = |x2 × x3|2 − |X2 × X3|2) as
an addition to Green strain constraint for strong volume and
area preservation. Although over constraining the simulation
may cause a modest performance cost, those constraints are
easy to implement and provide an effective outcome for the
volume and area preservation.

C. Continuous Materials

While explaining the energy embedded Gauss-Seidel itera-
tion, we assume that the constraints are the potential energies
of the model. In this section, we accept that constraints are
actually the potential energies which are stored in a single
tetrahedron according to Equation (16):

C(x0, x1, x2, x3) =

∫
Ω

Ψ(F )dX = VΨ(F ) (16)

where V is the initial (undeformed) volume, Ψ is the energy
density function which determines the character of the mate-
rial. In the scope of this paper, we apply three different elastic
materials to simulate solid objects. Those are linear elastic
material, St. Venant - Kirchhoff material and Neo - Hookean
material.

Linear elasticity is a simple and practical constitutive model
compared to others (Figure 2 - first column). The energy
density function is computed as in Equation (17):

ΨLinElas(F ) = µξ : ξ +
Λ

2
tr2(ξ) (17)

where ξ is the small strain tensor and expressed as ξ = 1
2 (F +

FT )− I . This strain tensor is more suitable for small motions
(or deformations). It may not give pleasing results for large
deformation cases. µ and Λ are the Lamé coefficients which
are associated with Young’s modulus and Poisson ratio.

St. Venant - Kirchhoff material is an improved constitutive
model based on Green strain tensor (G) from Equation (13)
(Figure 2 - third column). Unlike linear elastic material,
St. Venant - Kirchhoff material can be applicable to large
deformations. The energy density function is computed as in
Equation (18):

ΨSTVK(F ) = µG : G+
Λ

2
tr2(G) (18)

Neo - Hookean material is defined by employing isotropic
invariants which are I1 = tr(FTF ) and I3 = det(FTF )
(Figure 2 - fourth column). The energy density function of
Neo - Hookean material is computed as in Equation (19):

Fig. 3. Duck Lifebuoy (Bob) is simulated with St. Venant - Kirchhoff (left)
and Neo - Hookean (right) materials and collision handling is tested. Left:
Sphere collision constraint. Right: Convex objects collision constraint.

ΨNeoH(F ) =
µ

2
(I1 − log(I3)− 3) +

Λ

8
log2(I3) (19)

In order to obtain the position corrections from Equation
(3), the gradients of the constraints have to be computed.
The gradients of the continuous material constraints are as-
sociated with the first Piola-Kirchhoff stress tensor (P (F ) =
∂ψ(F )/∂F ). The foundations and detailed derivations of the
first Piola-Kirchhoff stress tensors for each mentioned material
can be found in [32].

Regarding the cloth simulation, the energy constraint is
similar to Equation (16) except the potential energy is stored
in triangle elements: C(x1, x2, x3) = AΨ(F ), where A is
the initial (undeformed) area. For computing the deformation
gradient (F), we follow the same procedure which is discussed
in strain based constraints, and the anisotropic elasticity tensor
is adapted from [6] (Figure 1 - third column).

D. Collision and Damping

Collision: Two different unilateral collision constraints are
employed: sphere collision and convex objects collision (Fig-
ure 3). Sphere collision is satisfied by C(x) = R − |x −
Scen| ≥ 0 where R is the sphere radius and Scen is the
sphere center point. Convex objects collision is adapted from
[33] with a slight modification. The nearest collision point
p is checked with a surface normal ns for the colliding
particle x. This collision surface has to satisfy the constraint
C(x) = (x−p) ·ns ≥ 0. This list can be improved with more
advanced collision types.
Damping: Damping is a critical factor for pleasing results.
Our damping model is analogous to [3] in which Rayleigh
dissipation function is employed: R = 1

2 Ċ(x)TβĊ(x) where
C(x) is the constraint function and β is the diagonal matrix of
damping coefficients. This damping model is derived directly
to the Total Lagrange Multiplier and performs damping locally
for each position correction within the Gauss-Seidel iterations.
Besides, we have implemented the damping model from [1]
and it does not have any conflict with our method.

VI. IMPLEMENTATION AND RESULTS

We have implemented our method as a plugin for Autodesk
Maya by using C++ as a single-threaded CPU implementation.
All test scenarios presented within this paper have been
performed on a 4-core Intel i7-2600 3.4 GHz machine with 8



Fig. 4. Neo - Hookean material is simulated. Top: Our Method. Bottom:
XPBD. Our method behaves more resistant than XPBD under constant manual
stretching and compression. Many unintended buckling effects are obtained
during XPBD simulation which can be observed left, upper and right sides
of the torus.

GB of RAM and an nVidia GTX 570 GPU. Our experiment
setups use only triangle meshes to compare our algorithm
1 with XPBD [3] method. The details of the models and
simulation performances are listed in Table I.

We have designed three comparison test scenarios, and we
have mostly relied on visual inspection. The major purpose is
to evaluate the gain achieved in stability and visual aesthetics
over XPBD. In Figure 1, we simulate a falling cloth under
the constant gravitational force. Both methods show similar
response during falling. This is due to the fact that the
difference of the potential and kinetic energy changes is not
a notable value that causes a dramatic visual distinction.
During our observations, this has not been a surprising fact,
because the XPBD approximates the geometric constraints
as if they are the actual potentials of a mass-spring system.
Furthermore, while simulating the cloth with strain based
constraint, strain tensor enforces the elastic behavior. This can
be explained by the effect of x-stretch, y-stretch and shear
simultaneously to the vertices of the model. On the other hand,
while simulating anisotropic material constraint, our method
behaves relatively more aesthetic than XPBD under the exact
same parametrization. XPBD produces a slight degeneration
in the top folded part of the cloth. This can be seen in Figure
6.

Our method and XPBD work well with continuous material

Fig. 5. Bunny model is hanged under constant gravity. St. Venant - Kirchhoff
material is simulated. Left: XPBD. Right: Our method. Although both methods
behaves identical, our method produces slightly more aesthetic result than
XPBD. The difference can be observed on the face and bottom parts of the
model.

models. Figures 2 and 4 simulate the simple torus without any
constant external forces. We fix the top and bottom vertices,
and manually compress and stretch the torus. When we apply
the continuous material constraints to the model (St. Venant -
Kirchhoff material and Neo - Hookean material), we observe
more jiggling in XPBD than in our method. Furthermore,
XPBD produces an unexpected but modest buckling during the
simulation which is not observed with our method (in Figure
4). This observation motivates our next test scenario. We hang
the bunny model under gravity by using the same constraints
from the previous test (in Figure 5). During falling, our method
and XPBD behave almost identical. However, when the model
hangs, our method preserves the shape better than XPBD.
During the hang phase, both methods produce some noise in
the ears and undesired mesh degeneration in the bottom of the
model. This peculiarity is more obvious in XPBD than our
method. The main reason is the fact that we plug the energy
residual to the constraint in each Gauss-Seidel iteration, and
this allows the constraint to correct the corresponding vertex
positions partially dependent to the previous iterations. This
dependency provides visually more plausible results.

The plots in Figure 7 illustrate the relative error between the
proposed method and XPBD. Both algorithms behave similar,
and produce some error that is not dramatically different than
each other. However, our method produces smaller relative
errors. During the cloth simulation (top row of Figure 7), the
obtained errors are close to each other. Especially while the
cloth falls, both algorithms behave almost identical. This is
not unexpected by the fact that our algorithm is an extension
to XPBD. On the other hand, when the cloth stabilizes, XPBD
produces a slightly larger error than our method. Furthermore,
the same case is applied to the bunny model (bottom row of
Figure 7). The obtained results are not considerably differ-



Fig. 6. A piece of cloth is hanged under constant gravity. Anisotropic
continuous material is simulated. Top: Our Method. Bottom: XPBD. When
both cloths remain stable, our method produces relatively more smooth surface
than XPBD. This can be seen in the top folded part of the cloth.

Fig. 7. The relative error of our method is compared with XPBD. Top row:
Simulation of falling cloth. Bottom row: Simulation of falling bunny. The
relative error values are defined as, err = log( C

I.V.
), where C represents

the corresponding constraint, and I.V. represents the initial value of each
corresponding primitive (edge, triangle or tetrahedron).

ent from the cloth simulation case. However, our algorithm
stabilizes the bunny with smaller error values. This can be
explained as the constraint values benefit from their previous
values by using our proposed energy embedded formulation
in each Gauss-Seidel iteration. This type of dependency is not

Details of the models with Constraints Frame Rates (FPS)
Model # vertices # faces (tri.) # iters XPBD Our Method
Cloth (with St. + Sh.) 441 800 20 55 50
Cloth (with 2D Strain) 441 800 20 64 60
Cloth (with Ani. Cont. Mat.) 441 800 20 70 65
Torus (with Lin. Elast.) 900 1800 5 50 46
Torus (with StVK) 900 1800 5 48 45
Torus (with NeoH.) 900 1800 5 46 43
Torus (with 3D Strain) 900 1800 5 38 34
Bunny (with StVK) 4098 8192 10 24 19
Bunny (with NeoH.) 4098 8192 10 22 18
Duck Lifebuoy (Bob with StVK) 3087 6174 10 23 19
Duck Lifebuoy (Bob with NeoH.) 3087 6174 10 21 17

TABLE I
DETAILS OF THE MODELS AND SIMULATION PERFORMANCE RATES FOR

OUR EXAMPLES. St. + Sh. = STRETCH AND SHEAR CONSTRAINTS
TOGETHER, 2D Strain 2D GREEN STRAIN TENSOR CONSTRAINT, Ani.

Cont. Mat. = ANISOTROPIC CONTINUOUS MATERIAL CONSTRAINT, Lin.
Elas. = LINEAR ELASTIC MATERIAL CONSTRAINT, StVK = ST. VENANT -

KIRCHHOFF MATERIAL CONSTRAINT, NeoH = NEO - HOOKEAN
MATERIAL CONSTRAINT, 3D Strain = 3D GREEN STRAIN TENSOR
CONSTRAINT. FRAME RATES ARE OBTAINED FROM THE DEFAULT

INTERFACE OF MAYA.

Fig. 8. This plot illustrates the average performance comparison of our
method and XPBD. Due to additional energy computations within the Gauss-
Seidel process, our method performs 4 FPS in average slower than XPBD.
However, this slight performance difference can be considered within the
tolerable limits. The details can be seen in Table I.

unrealistic, because Gauss-Seidel iterates the constraints based
on their previous states where the proposed algorithm enforces
this fact.

In terms of performance rates, XPBD performs slightly
more efficient than our proposed method. This is not an
unexpected fact due to additional computation steps that are
required in our algorithm. In average, the difference is four
frames per second which can be seen in Figure 8. Nevertheless,
this overhead can be considered within the tolerable limits
since both methods perform over the standard interactive rates.
Therefore, we consider that the obtained marginal difference
is the cost for enhancing the visual quality.

VII. CONCLUSIONS

We have presented a new method that embeds the energy to
the Gauss-Seidel iteration process of PBD/XPBD to simulate
soft bodies. Our method takes advantage of the energy budget-
ing principle from [4] and utilizes it within the XPBD method.



It is not limited to any integration technique, simulation
step-size and damping approach. We have demonstrated the
usability of our method with a large spectrum of constraints
that vary from simple stretch to continuous material models.
Energy embedded Gauss-Seidel algorithm is straightforward,
stable and easy to adapt to the existing frameworks.

A. Limitations and Future Work:

Currently, our method supports only simple static object
collisions. In the future, we would like to improve our collision
handling with more advanced methods such as [34]. Fur-
thermore, we pursue to adapt different numerical integration
methods to our method. Finally, we would like to take the
advantage of parallelism on GPU for faster simulation results
similar to [35].
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