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Abstract—Training convolutional neural networks (CNNs) for
medical image segmentation often requires large and repre-
sentative sets of images and their corresponding annotations.
Obtaining annotated images usually requires manual interven-
tion, which is expensive and time consuming, as it typically
requires a specialist. An alternative approach is to leverage
existing automatic segmentation tools and combine them to create
consensus-based “silver-standards” annotations. A drawback to
this approach is that silver-standards are usually smooth and
this smoothness is transmitted to the output segmentation of
the network. Our proposal is to use a two-staged approach.
First, silver-standard datasets are used to generate a large set
of annotated images in order to train the brain extraction
network from scratch. Second, fine-tuning is performed using
much smaller amounts of manually annotated data so that the
network can learn the finer details that are not preserved in
the silver-standard data. As an example, our two-staged brain
extraction approach has been shown to outperform seven state-
of-the-art techniques across three different public datasets. Our
results also suggest that CNNs can potentially capture inter-rater
annotation variability between experts who annotate the same
set of images following the same guidelines, and also adapt to
different annotation guidelines.

I. INTRODUCTION

U-nets are fully convolutional neural networks (CNNs)
commonly used for biomedical image segmentation [1]. Train-
ing these networks requires considerable amounts of annotated
data, which is usually generated manually by experts. Man-
ual annotation often is performed following strict guidelines.
These sets of annotation guidelines define what structures or
sub-structures to include in the final segmentation. Ideally,
raters who annotate images by following the same guidelines,
should get the same annotation results, regardless of the
software used and/or the starting point for the annotation
(i.e., annotating from scratch or fixing a mask generated by
automatic method A or B). However, in practice inter-rater
annotation agreement is seldom perfect. Brain extraction in

magnetic resonance (MR) imaging [2]–[9], for example, is a
very common brain image processing task, usually used as an
initial processing step for more complex analysis, that is built
around image segmentation guidelines that include only brain
structures (e.g., white and grey matter) and exclude the skull
and other brain surrounding tissues.

Lucena et al. [10] leveraged existing automatic segmen-
tation techniques and combined them to generate “silver
standard” annotations. The drawback to their method was
that silver standard annotations tend to be smooth and, thus,
omitted finer segmentation details. We investigate a two-staged
approach for brain extraction that combines 1) training of a U-
net from scratch with silver-standard annotated data, followed
by 2) fine-tuning of the network using smaller amounts of
manually annotated data.

Our goal in this work is not to find the best architecture
for skull-stripping, but rather to assess the impact of our
two-staged approach when building data-driven models, such
as CNNs. For a more comprehensive analysis of different
CNNs architectures for skull-stripping, see [11]–[13] and
[14]. Our method compared favorably to seven public, com-
monly used, skull-stripping techniques [2]–[8]. The two-staged
approach also potentially reduced the number of manually
annotated datasets necessary to train a network capable of
outputting sharp segmentations (i.e., optimal delineation of
gyri and sulci). Through this study, we enhanced the previ-
ously published Calgary-Campinas dataset [9] (https://sites.
google.com/view/calgary-campinas-dataset/home) by adding
additional manual annotations.

II. MATERIALS

A. Brain MR datasets

Three publicly available datasets were used in this study.
Sample renderings of manually segmented data for each
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Fig. 1. Sample 3D reconstruction of manual annotations for (a) CC-12 Manual
1, (b) CC-12 Manual 2, (c) LPBA40, and (d) OASIS datasets. CC-12 Manual
1 and Manual 2 annotations were generated using the same guidelines, but
with different initialization masks as starting point. Note that CC-12, LPBA40,
and OASIS were annotated following different guidelines.

dataset are shown in Figure 1.
1) LONI Probabilistic Brain Atlas (LPBA40) [15]: This

dataset consists of 40 coronal 3D T1-weighted spoiled gra-
dient echo MR image volumes. Manual annotation (i.e., brain
masks) were obtained by manually correcting masks generated
with the Brain Extraction Tool (BET) [16]. All image volumes
were obtained on a General Electric (GE) 1.5-T scanner.

2) Open Access Series of Imaging Studies (OASIS) [17]:
This dataset included 77 subjects, of which 20 were classified
as having some degree of cognitive impairment. For each
subject, three to four T1-weighted MP-RAGE scans were ac-
quired and co-registered. Manual brain mask annotations were
obtained using an in-house method based on atlas registration
and specialist review of the masks. The images were collected
on a Siemens 1.5-T scanner.

3) Calgary-Campinas-359 (CC-359) [9]: The CC-359 is
a dataset of brain T1 volumetric images acquired in 359
presumed normal subjects. The image volumes were acquired
on scanners from three vendors (GE, Philips, Siemens) and
at two magnetic field strengths (1.5 T, 3 T). The dataset is
balanced - with approximately 60 subjects in each of the six
vendor-field strength subgroups. Age and gender balance in
each subgroup were comparable. The CC-359 dataset was
divided into 1) a group of 347 subjects who had silver-standard
brain masks (CC-347) and 2) a group of 12 subjects who had
both silver standard and manually annotated brain masks (CC-
12).

a) CC-347: These image volumes were accompanied by
only their silver standard brain masks. These masks were
generated by consensus using the simultaneous truth and

performance level estimation (STAPLE) algorithm [18]. The
input to STAPLE was the output of eight publicly avail-
able skull-stripping methods: Advanced Normalization Tools
(ANTs) [2], Brain Extraction based on non-local Segmentation
Technique (BEaST) [4], BET, Brain Surface Extractor (BSE)
[8], Hybrid Watershed Approach (HWA) [7], Marker Based
Watershed Scalper (MBWSS) [3], Optimized Brain Extraction
(OPTIBET) [6], and Robust Brain Extraction (ROBEX) [5].
The complete consensus building process is described in [9].
We refer to the silver standard brain masks as STAPLE-
automatic.

b) CC-12: Data from twelve subjects (consisting of two
image volumes randomly selected for each of the six vendor-
field strength subgroups) were manually and independently
annotated by two experts. Both experts annotated using the
same guidelines. They were instructed to segment the same
brain structures with as much detail (i.e., follow the brain con-
tours) as they could. We refer to the annotated data generated
by the two experts as Manual 1 and Manual 2. The experts
used different masks generated with automatic skull-stripping
methods as a starting point for the annotation procedure.
Manual 1 masks were obtained by manually correcting masks
generated with BEaST [4]. Manual 2 masks were obtained
by correcting the output of a 3D watershed segmentation
approach [19]. Both experts used the software ITK-snap [20]
to complete their annotation. The STAPLE-derived consensus
masks of the two sets of twelve manual annotations generated
by each expert was also computed (STAPLE-manual). As well,
the silver standard brain masks derived from consensus among
the eight publicly available skull-stripping methods (STAPLE-
automatic) were also formed.

B. U-net segmentation

The U-net-like architecture used in the experiments is
depicted in Figure 2. It is a 2D architecture that receives
a three-channel image as input to incorporate 3D context.
The channels correspond to the superior, inferior as well as
the slice currently being segmented. An area-open filter [21]
implemented in [22] is applied to the resulting 3D output of
the network in order to filter out small connected components,
leaving only the largest component.

III. EXPERIMENTAL METHODOLOGY

A two-staged approach was implemented. For all networks,
70% of the data was used for training and 30% was left for
validation (i.e., model selection). The networks were trained
using coronal images with 64× 64 patches. These parameters
(image orientation and patch size) and the number of patches
were set experimentally. Training methodology (number of
patches, and number of training epochs) is summarized Table
I. The Dice coefficient overlap metric of the silver standard-
trained networks (Stage 1) and the fine-tuned networks (Stage
2), were computed versus the manually annotated masks and
also STAPLE-manual and STAPLE-automatic on the CC-12
data. The Dice coefficient served as the training loss function
of the network [23].



Fig. 2. U-net architecture used in the experiments.

TABLE I
SUMMARY OF THE TRAINING (SILVER STANDARD, STAGE 1; OR

FINE-TUNED, STAGE 2), NUMBER OF PATCHES AND NUMBER OF EPOCHS
FOR THE DIFFERENT NETWORKS.

Method Training Patches Epochs
CC-347 scratch 124, 920 50
CC-12∗ fine-tune 11, 520 25
LPBA40 fine-tune 10, 000 25
OASIS fine-tune 19, 000 / 19, 500∗∗ 25

∗The parameters for the four versions of the CC-12 fine-tuning (Manual 1,
Manual 2, STAPLE-manual, STAPLE-automatic were the same.
∗∗The OASIS dataset has an odd number of images, therefore the number
of patches between folds one and two differ slightly.

a) Stage 1: The networks were initially trained from
scratch using the silver standard masks available in the CC-
347 dataset. The Stage 1 network was trained using the Adam
optimizer [24] with a learning rate of 10−3.

b) Stage 2: Different networks were created by fine-
tuning the silver standard-derived network (from Stage 1) us-
ing a two-fold cross validation procedure. The fine-tuned net-
works correspond to fine-tuning with the manual annotations
from LPBA40, OASIS, and CC-12 datasets. In the case of CC-
12, fine tuning was performed separately with each of the four
different annotation datasets (Manual 1, Manual 2, STAPLE-
manual, and STAPLE-automatic, see previous section). The
Stage 2 networks were trained using the Adam optimizer with
a learning rate of 10−4.

A Wilcoxon signed-rank test [25] was used to assess statisti-
cal significant differences between Stage 1 and Stage 2 results.
A p-value < 0.05 was deemed statistically significant. We also
compared our approach against seven publicly available skull-
stripping techniques (ANTs, BEaST, BET, HWA, MBWSS,
OPTIBET, and ROBEX). We left BSE out of the comparison,
because it has been previously reported as a poorer performing
technique [9]. Where appropriate, mean ± standard deviation
are reported.

Fig. 3. Representative segmentation contours output of Stage 1 (red) and
Stage 2 fine-tuned with Manual 2 (blue). The network after fine-tuning is
capable of better following the brain surface curvature.

IV. RESULTS

The computed Dice coefficient results are summarized in
Table II. Our fine-tuned techniques (Stage 2) achieved the best
results in 4 of 6 (66.7%) comparisons (in the two cases, it
ranked second). It was outperformed only by BEaST in the
CC-12 dataset when using the annotations from Manual 1 as
the reference mask, though the difference was not significant
(p = 0.16). Stage 2 performance was better than Stage 1
performance (p < 0.05) in all datasets, except CC-12 when
STAPLE-automatic was used as the reference annotation mask
(difference not significant, p = 0.34).

Sample output segmentation results for Stage 1 and Stage
2 are depicted in Figure 3. Sample 3D reconstructions are
also shown for Stage 2 fine-tuned with OASIS and fine-
tuned with CC-12 STAPLE-manual results (Figure 4). The
Dice coefficient agreement between Manual 1 and Manual 2
annotations was 96.4%± 0.7%.

Dice coefficient curves during Stage 1 and Stage 2 training
using the LPBA40 and OASIS dataset are presented in Figure
5. The Dice coefficients training, validation and test curves
for Stage 1 using the four annotations of CC-12 as reference
and Stage 2 Dice coefficient curves for the CC-12 dataset are
depicted in Figures 6 and 7, respectively.

V. DISCUSSION

Our proposed methodology that combines training from
scratch using silver standard masks annotations (Stage 1)
and then fine-tuning with manual annotations (Stage 2) had
the overall best result. The only two scenarios where it was
outperformed (ranking second in both cases) were with 1) the
CC-12 (Manual 1) dataset, where it performed worse than
BEaST, and 2) with the CC-12 STAPLE-automatic dataset,
where it was worse than the Stage 1 results. Neither difference,
however, was found to be statistically significant (p > 0.05).
These findings can be explained by the fact that Manual
1 masks were generated by manually adjusting an initial
segmentation generated by BEaST, resulting a bias in favor of



TABLE II
PERCENTAGE DICE COEFFICIENT RESULTS (MEAN ± STANDARD DEVIATION). TRUTH WAS MANUAL SEGMENTATION AND STAPLE-automatic, IN ONE

CC-12 CASE, PROVIDED WITH EACH OF THE THREE DATASETS. THE BEST RESULT FOR EACH DATASET IS EMBOLDENED.

Dataset CC-12 LPBA40 OASIS
Method Man-1 Man-2 STAPLE-man STAPLE-auto
ANTS 96.2± 0.9 96.0± 0.8 96.1± 0.8 96.2± 0.9 97.3± 0.6 95.3± 1.9
BEaST 97.9 ± 1.0 95.7± 1.2 96.8± 1.1 95.4± 1.7 96.3± 0.5 92.5± 1.3

BET 94.0± 1.6 95.4± 1.0 94.7± 1.3 97.4± 0.5 96.6± 0.7 93.5± 2.7
HWA 89.7± 1.8 91.8± 1.3 90.7± 1.4 93.8± 1.5 92.5± 1.2 94.0± 1.4

MBWSS 96.2± 1.4 95.7± 1.4 90.7± 1.4 93.8± 1.5 92.2± 0.8 90.2± 4.4
OPTIBET 94.9± 1.2 95.6± 0.7 95.2± 0.9 97.1± 0.5 95.9± 0.6 94.5± 1.1
ROBEX 94.3± 1.0 95.9± 0.6 95.1± 0.7 97.7± 0.6 96.8± 0.2 95.6± 0.8
Stage 1 95.6± 1.4 97.0± 0.6 96.3± 0.9 98.6 ± 0.2 97.1± 0.9 95.4± 0.9
Stage 2 97.6± 0.5 97.5 ± 0.3 97.4 ± 0.4 98.5± 0.2 98.2 ± 0.2 96.6 ± 0.5

(a) (b)

(c) (d)

Fig. 4. Sample 3D reconstruction of the manual annotation and the U-
net results for the OASIS dataset. (a) Manual annotation reference, (b)
Stage 1, (c) Stage 2 fine-tuned with OASIS and (d) fine-tuned with CC-
12 STAPLE-manual results. Notice that the network is capable of adapting to
two different segmentation guidelines: the one used in OASIS, which gives
a rough segmentation, and the one used in STAPLE-manual, which tries to
follow the brain surface curvature.

BEaST. In the CC-12 STAPLE-automatic case, this result is
justified due to the masks used for fine-tuning were generated
using the same methodology as the masks used for Stage 1.
Also, Stage 1 was trained on 347 images as opposed to the
fine-tuning stage (Stage 2) that was trained on only six image
volumes in each of the two folds.

Note that the relative ranking of the best skull-stripping
techniques changes according to the reference used to compute
the Dice coefficient [26] (e.g., Manual 1 or Manual 2),
although the experts were performing the task under the same
annotation guidelines, the only difference being the mask they
used as a starting point for their annotation.

By observing the training, validation and testing Dice co-
efficient curves for Stage 1 using the different annotations

Fig. 5. Dice coefficient test set curves for the LPBA40 and OASIS datasets.
The first 50 epochs correspond to training from scratch with the silver standard
masks (Stage 1) and the last 25 epochs correspond to the fine-tuning (Stage
2). There is a noticeable effect on the curves when transitioning from Stage
1 to Stage 2, probably due the fact that the number of subjects available for
fine-tuning LPBA40 and OASIS are larger compared to CC-12.

Fig. 6. Training, validation and test curves for the CC-12 dataset: Dice
coefficient curves are shown for the different epochs during the Stage 1
training. The test curve results is higher for STAPLE-automatic due to its
similar nature to the silver standards used to train the network.

of CC-12 as reference (Figure 6), we can see that the test
curves had a similar shape. As expected in this case, the



(a) Manual 1 (b) Manual 2

(c) STAPLE-manual (d) STAPLE-automatic

Fig. 7. Dice coefficient test set curves for the CC-12 dataset on different epochs of the fine-tuning (Stage 2). Fine-tuning with (a) Manual 1, (b) Manual
2, (c) STAPLE-manual, (d) STAPLE-automatic. The curves illustrate that the network is able to adapt to the annotation quality used in the fine-tuning step.
Manual 1 and Manual 2 curve improves while the STAPLE-automatic curve decreases, when fine-tuning with the respective manual annotation. When using
STAPLE-manual, we can see that Manual 1, Manual 2 and STAPLE-manual curves improve, because STAPLE-manual is created based on Manual 1 and
Manual 2 information. Fine-tuning curves for STAPLE-automatic are nearly flat, because theses annotations were similar to the ones used when training from
scratch on Stage 1.

curve of CC-12 STAPLE-automatic data was higher than the
other references. This observation was because its reference
annotation was similar to the the silver standard annotations
used for its training. The fine-tuning curves of the CC-12
dataset (Figure 7) illustrate that the network was able to
adapt to the details of the specific annotation being used
to fine-tune the network. When fine-tuning with Manual 1,
the Manual 1 curve improves while the STAPLE-automatic
curve decreases. The same trend was observed with Manual 2.
When using CC-12 STAPLE-manual, we can see that Manual
1, Manual 2 and STAPLE-manual curves improve, which is
expected, because STAPLE-manual incorporates Manual 1 and
Manual 2 information. CC-12 STAPLE-automatic decreased.
Finally, when fine-tuning with CC-12 STAPLE-automatic the
Dice coefficients were nearly flat, because theses annotations
were similar to the ones used when training from scratch.
This indicates that the network can potentially capture inter-
rater annotation variability and adapt to different annotation
guidelines. This is supported quantitatively (see Table II) and
also by the results presented in Figures 3 and 4; where the
amount of detail in the segmentation varies according to the
reference (different guideline or different rater) used to fine-

tune the network. The results of Stage 1 and Stage 2 when fine-
tuned with CC-12 STAPLE-automatic had less brain-surface
contour detail due the nature of the annotation masks used for
training and fine-tuning. The results of Manual 1 and Manual
2 provided more detail. Not surprisingly, CC-12 STAPLE-
manual captures an amount of detail in between Manual 1
and Manual 2.

It is important to clarify that in practice we do not have
access to the test Dice coefficient curves when selecting our
model. In this paper, we have only used them to depict
network behaviors. The model was always chosen based on
the validation set error, and the metrics reported in Table II
are computed on the test set. Often the model selected based
on the validation set is not the model that will give the best
results on the test set, but currently there are no alternatives
to tackle this challenging problem.

The same behavior can be seen for LPBA40 and OASIS
(cf., Figure 5). In this case, the network starts to fine-tune
to the guidelines followed when manually annotating both of
these datasets. These results were interesting, and opens up
some interesting possibilities. For instance, many brain image
analysis software packages, such as FreeSurfer [27] and FSL



[28], can take several hours to process a single subject. A
suitably trained network could potentially model the output of
these packages in order to yield similar results. The advantage
of the network is that it would be much faster. A similar idea
has been recently applied to hippocampus segmentation [29].

Another important advantage of our technique is that gener-
ating the silver standard masks is relatively inexpensive com-
pared to manual annotation. Therefore, allowing the creation
of large silver standard annotated datasets that can be used to
train a network from scratch potentially exposing it to a larger
variability of data (multi-centre, healthy/diseased), making it
more robust and generalizable. Then, smaller amount of man-
ually annotated data can be used to capture finer segmentation
details. In our skull-stripping case study, as few as six image
volumes (i.e., the number in each fold of CC-12 processing)
was sufficient to fine-tune the network by learning the finer
segmentation details.

VI. CONCLUSIONS

We presented a two-staged methodology that combines, in
Stage 1, silver standards with, in Stage 2, manual annota-
tion to train CNNs for segmentation tasks. While the case
study demonstrates advantages for the specific case of skull-
stripping, we believe that the two-staged methodology can be
generalized to most segmentation tasks. Further, the method-
ology can potentially capture inter-rater and annotation guide-
line variability to yield state-of-the-art results with reduced
amounts of manually annotated data, as was shown in our
skull-stripping case study. The data used in the experiments
are publicly available. The annotations Manual 1, Manual
2 and STAPLE-manual were incorporated to the Calgary-
Campinas dataset. In future studies, we would like to evaluate
this methodology in other brain structures, specially structures
of smaller size to more fully validate our method.
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