
GPU-based Rendering of Arbitrarily Complex
Cutting Surfaces for Black Oil Reservoir Models

Bernardo Franceschin, Frederico Abraham, Luiz Felipe Netto, Waldemar Celes

Tecgraf/PUC-Rio Institute
Computer Science Department

Pontifical Catholic University of Rio de Janeiro, Brazil
{bfrances,fabraham,netto,celes}@tecgraf.puc-rio.br

Fig. 1: A complex cutting surface in a reservoir model: cutting surface embedded in the model (left); views of the cutting
surface in isolation with mapped scalar field (right).

Abstract—Numerical simulation of black oil reservoir models is
extensively used by the oil industry to predict and plan field explo-
ration. Such simulations produce a large amount of volume data
that need to be inspected. One popular visualization technique to
inspect volume data is the rendering of cutting surfaces, shaded
by mapping properties associated with model elements. In this
work, an efficient GPU-based algorithm for rendering arbitrarily
complex cutting surfaces for reservoir models is presented.
The rendering strategy is based on an efficient point location
algorithm. The proposal includes a compact representation of
reservoir models in the GPU memory, the use of a compact
regular grid as the acceleration technique, and an accurate point
location algorithm for handling hexahedral elements with non-
planar faces. Computational experiments have demonstrated the
effectiveness and efficiency of the proposed approach, even when
applied to large models. A set of applications is discussed in the
context of inspecting reservoir simulation results.

I. INTRODUCTION

Sousa et al. [1] discuss the analysis of complex processes
present in the oil and gas industry. They advocate for visual
computing technologies to help professionals in different areas
of expertise to gain insight when dealing with multidisciplinary
datasets and processes. Among the different disciplines, the
present work concentrates on visualizing results of black oil
reservoir simulations or, more specifically, on efficient rendering
techniques to support these visualizations. The industry relies
on numerical simulations to plan the exploration of oil and gas
fields. The output of such simulations includes a large amount

of volume data that needs to be analyzed.
Interactive inspection of volume data uses two different

approaches. In the first approach, the user specifies a transfer
function, which maps opacities to scalar values, and volume ren-
dering techniques are used to reveal the associated isosurfaces
or isovolumes. Therefore, the user chooses the scalar value of
interest to exhibit the spatial position of the related regions. In
the second dual approach, the user specifies cutting surfaces
and requests for viewing the scalar field distribution over such
surfaces. Hence, the user defines the spatial position of interest,
and cut-view techniques reveal the related information.

The focus here is on the second approach, on interactive
cut-view rendering techniques. While trivial for regular volume
data (it suffices to use texture mapping), the implementation
of efficient cut-view techniques for irregular volumes is quite
challenging. In particular, this work addresses the problem
of interactively investigating the result of black oil reservoir
simulations through the definition of general cutting surfaces.
The conventional strategy is to employ hierarchical structures
to accelerate geometry intersection computations. However, for
complex models, a CPU-based approach tends to become the
performance bottleneck for interactive visualization applica-
tions.

This work proposes a novel GPU-based strategy for efficient
cut-view rendering algorithms applied to black oil reservoir
models. The proposed solution supports cut-view visualizations
through an efficient point location query algorithm on the GPU,

exploiting the characteristics of such models. To this end, the
proposal encompasses a compact representation of reservoir
models in the graphics memory. As a result, arbitrarily complex
cutting surfaces can be directly rendered; for each rasterized
fragment, the point location algorithm informs the reservoir cell
that contains the point, if any, and the corresponding parametric
coordinates are then used to map the associated scalar field.

In summary, this work presents the following main contri-
butions:

• A compact GPU-based representation of reservoir models;
• An efficient point location algorithm for reservoir models;
• An efficient rendering algorithm of arbitrarily complex

cutting surfaces based on fragment shaders.
Such contributions serve as the basis for powerful visu-

alization tools for inspecting 3D reservoir models. Figure 1
shows an unrealistic but intricate cutting surface to illustrate
the achievement of the proposed strategy.

The rest of this paper is organized as follows. Section II
presents related works on point location for unstructured
grids and cutting surface rendering for reservoirs. Black
oil reservoir models are briefly described in Section III.
Section IV presents the proposed model representation in the
GPU, followed by the GPU-based point location method in
Section V. Surface shading, specially wireframe rendering, is
presented in Section VI. Experimental results are discussed
in Section VII, demonstrating the efficiency of the proposed
solution. Section VIII presents some real applications of the
method. Concluding remarks and future work discussion are
located in Section IX.

II. RELATED WORK

The conventional approach to render cutting surfaces through
irregular volumetric meshes is to compute the intersection
among surface polygons and mesh elements on the CPU.
Hierarchical subdivision structures [2] are employed to accel-
erate this computation. An intersecting mesh that includes the
associated scalar field values is formed and then rendered. The
interactive model inspection often requires manipulating the
cutting surfaces, quickly hitting a CPU performance bottleneck.

This work pursues a different approach: a rendering algo-
rithm based on point location. For each rasterized fragment,
a point location query is issued to determine the associated
scalar field. The challenge relies on the irregularity of the
underlying mesh. The following paragraphs discuss GPU-based
representation and point location algorithms for unstructured
grids represented by general meshes, which are related to the
current problem.

Andrysco and Tricoche proposed matrix trees [3], an efficient
storage scheme for octrees and kd-trees. They encode the
tree levels as sparse matrices in a CSR (compressed sparse
row) representation and demonstrate GPU-based point location
queries on unstructured grids, but model elements overlapping
more than one tree leaf limit the method scalability and
performance.

Langbein et al. [4] proposed a point location method for large
unstructured grids. Their model representation stores the typical

vertex coordinates and the indices of vertices composing each
element. It also stores the elements incident to each vertex and
element adjacency. Point location is supported by a complete
point-based kd-tree, storing the index of a single mesh vertex
on each leaf. The kd-tree is traversed to locate an element
vertex close to the target point. Their proposal identifies an
element incident to the vertex and propagates a ray from the
vertex to the target point. The propagation is carried by element
walking, eventually finding the target element. Special care
must be taken if the ray reaches the model boundary, requiring
a new kd-tree traversal on nearby elements.

Garth and Joy [5] presented a simple and compact data
structure for point location in large unstructured grids. Their
structure, the celltree, is built upon the concept of bounding
interval hierarchies, being able to accommodate large and
complex grids while delivering a good performance. Their
approach does not suffer from the numerical instabilities of [4],
while also working well on model boundaries and with mesh T-
junctions. Although originally targeted at large general meshes,
the application of such hierarchy for reservoir models deserves
investigation. As part of this work, such hierarchies were
experimentally compared to the proposed solution but, as it
shall be demonstrated, they require too many texture accesses
for each fragment, decreasing performance, as in [4].

The NVIDIA Turing architecture introduced ray-tracing
hardware processors. Hardware-accelerated geometric queries
are now allowed, given the description of a mesh and its
bounding volume hierarchy (BVH). Wald et al. [6] employ
these processors to perform point location in unstructured
tetrahedral meshes entirely inside the GPU. Their basic idea is
to trace a ray from the queried point in an arbitrary direction.
Assuming that the tetrahedron faces are oriented inwards,
if the point lies inside a tetrahedron element, the ray will
necessarily first intersect one of its front faces. Otherwise, it
will either hit a back-face or not hit the model. The hardware
performs both BVH traversal and ray-triangle intersection
tests, quickly identifying the target element. Per-element scalar
values or interpolated per-vertex scalar values are also easily
obtained. This method cannot be directly applied to reservoir
models, which contain non-planar faces and concave elements.
Nevertheless, it is an interesting approach to the problem and
has to be observed with care.

Carvalho et al. [7] implement cutaway visualizations of
oil reservoir models by defining a cutting surface as a depth
map and rendering it indirectly: instead of drawing the cutting
surface, they draw the internal faces of all elements, discarding
fragments between the observer and the depth map. For
correctly shading the cutting surface, the normal of each
fragment is extracted from the depth map. However, the cost
of rendering all faces of all elements is prohibitive, even for
medium size reservoir models.

III. BLACK OIL RESERVOIR SIMULATION MODELS

A black oil reservoir model is created first by discretizing
the reservoir domain in 3D. A ni× nj × nk topological grid
composed of hexahedral elements is formed. Each hexahedral

element with topological coordinates [i, j, k] has the following
elements as its topological neighbors: [i− 1, j, k], [i+ 1, j, k],
[i, j − 1, k], [i, j + 1, k], [i, j, k − 1], and [i, j, k + 1].

Although simple in terms of topological coordinates, the
mesh geometry in cartesian space is usually irregular. Geologi-
cal faults are modeled as geometric discontinuities; they cause
elements that are neighbors in the topological grid to not share
vertices and faces. Element faces can be highly non-planar, and
some elements may not be well-formed, containing collapsed
edges or having zero volume. Furthermore, some elements of
the topological grid can be set as inactive, not being part of the
reservoir model. The presence of inactive elements can yield
irregular and even disconnected active element groups. The
groups of elements with the same k coordinate are defined as
the reservoir layers. Layers resemble terrains containing some
discontinuities when seen from above.

The initial reservoir characterization is completed by spec-
ifying rock and fluid types and attributing geophysical and
geological properties to each mesh element.

The simulator computes oil (and gas) flows and pressures
based on its numerical model and the specified well arrange-
ments and production plans. For each simulation time step, the
simulator outputs well production data and physical properties
associated with each mesh element, such as oil, gas and water
saturations, pressures, and temperatures.

Scientific visualization techniques aid the reservoir engineer
in understanding the underlying physical phenomena and its
correlation with quantitative results such as oil production. Dif-
ferent visualization techniques are offered for better inspection
of the 3D volume data.

IV. COMPACT MODEL REPRESENTATION

The first requirement is a compact and efficient data structure
to represent the active model elements in the GPU memory.
The model elements lay on a topological grid of dimension
ni×nj×nk, where ni, nj, and nk represent the total number
of cells on directions I , J , and K, respectively. Therefore, each
element is uniquely identified by its topological coordinates
[i, j, k].

One can think that the model vertices also lay on a topolog-
ical grid, now with dimensions (ni+ 1)× (nj+ 1)× (nk+ 1).
However, due to geometric discontinuities, there may be more
than one vertex instance at given topological coordinates
[i, j, k], and a consistent way to store all vertex instances
is needed.

A base vertex of an element is defined as the incident vertex
that comes first in the three directions, I+, J+, and K+. In
the present proposal, the base vertices of all elements are stored
at their respective [i, j, k] coordinates, including base vertices
of inactive elements that are incident to active neighbors. The
other vertex instances, sharing the same topological coordinates,
are listed explicitly and appended to the vertex storage.

A. Element classification

An active model element is classified as type 1 if its seven
vertices other than the base vertex are stored at their topological

K
I

J

I

J

12

11

Fig. 2: The classification of elements in type 1, shown in
green, and type 2, shown in blue, for an actual reservoir model.
The schematic illustration depicts the classification criterion:
elements of type 2 do not have all their incident vertices as
base vertices (represented as red solid circles).

coordinates. These seven vertices are the base vertices of their
respective elements. Otherwise, the element is classified as
type 2. Figure 2 illustrates the proposed element classification.

An element of type 1 has its incidence implicitly given, based
on its topological coordinates. The incidence of an element of
type 2 has to be explicitly stored. This implicit representation
represents a significant saving of memory since, in practice,
more than 90% of the elements are of type 1.

B. Data storage and sparsity treatment

Only active elements are stored in the GPU (together with
their incident vertices). This sparsity in the ijk domain is
exploited to achieve a compact structure.

The perfect spatial hashing technique, proposed by Lefebvre
and Hoppe [8], is employed. Their work defines a simple,
multidimensional perfect hash function. In the 3D case, it packs
data that is sparse in a discrete ijk domain into a compact 3D
table H with dimensions m̄3, being m̄ sufficient to store all
input data [8]. It also defines an offset table φ with dimensions
r̄3, typically smaller than those of the original table. Each
offset table entry contains integer offsets in the ijk space.
The offset value [φi, φj , φk] for given [i, j, k] coordinates in
the original domain is obtained from the following position
in φ: [i mod r̄, j mod r̄, k mod r̄]. The data value associated
to [i, j, k] coordinates in the original domain is stored in the
following position in H: [(i+φi) mod m̄, (j+φj) mod m̄, (k+
φk) mod m̄]. The method both computes the offset table and
assigns data locations in H while avoiding collisions, which
delivers a perfect hash function. The algorithm for offsets and
data locations also attains good spatial coherence, with a good
chance of two samples that are near in the original domain to
be near in H . The tables can be stored as simple 3D textures in
the GPU. The indexing of the offset table and the subsequent
access to the associated data on the GPU are straightforward
and efficient.

Figure 3 illustrates the proposed model data structure. For
the sake of simplicity, the present proposal implements a unique

Element i,j,k

Element
type

Element
property

value

8 incident
vertex
indices

Vertex
x,y,z

Vertex
property

value

Vertex i,j,k

φ φ2 φ

He Hpe H2 Hv Hpv

Fig. 3: Element and vertex data access on the GPU. The model
structure components are: φ: hash offsets for both elements
and vertices; φ2: hash offsets for elements of type 2; He:
storage of element types; Hpe: storage of element properties;
H2: storage of incident vertex indices for element of type 2,
pointing directly to the Hv and Hpv storages; Hv: storage of
vertex coordinates; Hpv: storage of vertex properties. Once
we obtain the element type, it is possible to access vertex
coordinates, per-element properties, and per-vertex properties.

mapping table φ for storing element and vertex data. The valid
input indices cover the range i ∈ [0, ni], j ∈ [0, nj], and
k ∈ [0, nk], needed for vertex mapping. The offset table maps
to actual data storage. There are four of them: one Hv for
vertex [x, y, z] coordinates, one He bitmap for element types
(type 1 or type 2), one Hpv for vertex properties, and one
Hpe for element properties. Maps Hv and Hpv are appended
with data related to the additional vertex instances.

Elements of type 2 need an extra hash: φ2 and H2. The
table φ2 maps the original [i, j, k] element coordinates to H2,
which explicitly stores the indices of all 8 incident vertices
of the element. These indices may refer to base or non-base
vertices, and they already represent access to the storage table
Hv (or Hpv).

C. Element adjacency queries

Although not used by the point location algorithm discussed
in this work, querying element adjacencies is useful in different
rendering algorithms. The structure can be easily extended to
include this information. Adjacency requires six additional bits
per element, which can be packed alongside the bit representing
the element type. Each bit indicates if the corresponding
element face is shared by an active sibling element in the
topological grid. The siblings, if present, have their [i, j, k]
coordinates obtained implicitly.

V. POINT LOCATION ALGORITHM

The point location algorithm uses a regular cell grid as the
acceleration technique. Given a point in space (x, y, z), the
containing grid cell is quickly found.1 Given the axis-aligned
bounding box (AABB) enclosing all active elements, the model
discretizations ni, nj, and nk, and a grid refinement factor r,
the AABB is discretized in dni×re×dnj×re×dnk×re cells.
Figure 4 illustrates the point location structure and algorithm.

1Note that the name element refers to model entities and cell to grid entities.

Query x,y,z

BG

Grid i,j,k

1
Not inside any cell

0

Type A initial

element eid

Type B element

list offset u

>= 0 < 0

φG

Hg

(a) Regular grid structure components: Bg informs if the
cell is non-empty; φg and Hg store one integer associated to
each cell in a perfect hash. If in a cell of type A, the integer
holds the identifier eid of the topological search initial element.
Otherwise, a regular search on the list pointed by u is started.

2 id2 -(id4+1)-(id1+1) id33 id2

Type B cell 1 Type B cell 2

u

...

(b) Packed element list. In this illustration, the
second cell element list contains three elements:
id3 and id2 of type 1 and id4 of type 2.

Fig. 4: Point location structure and algorithm: (a) path from
the query coordinates x, y, z to the list of elements to search;
(b) example of packed element lists for cells of type B.

A. Grid cell classification

Grid cells may be empty or non-empty. Empty cells do not
intersect any model element; non-empty cells intersect at least
one element. The proposal further classifies non-empty cells
in two types:

• Cell of type A: the grid cell volume is entirely covered
by intersecting elements of type 1.

• Cell of type B: the grid cell intersects at least one
element of type 2, or its volume is not entirely covered
by intersecting elements.

Cells of type A only store one intersecting element identifier:
eid = i+ ni× (j + nj × k). The stored identifier corresponds
to the element with highest volume overlap with the grid
cell. Cells of type B require explicit access to all intersecting
elements. In this case, the cell stores a negative value that
encodes an index to an auxiliary array of integers: −(u+ 1),
with u being the array index. This auxiliary array stores lists of
intersecting elements. Each list begins with an element count
followed by each element identifier. If the element is of type
1, its identifier eid is stored; if the element is of type 2, its
identifier is encoded in a negative number: −(eid + 1). The
element identifiers in each list are sorted by decreasing order
of volume overlap between element and cell.

In practice, there may be a large number of empty grid cells;
these cells do not need to be represented. To save memory, a

bit array Bg and another perfect hash are used. Bg informs
if the global cell with [i, j, k] coordinates is non-empty. The
offset table φg maps a non-empty [i, j, k] cell to the grid cell
storage table Hg .

B. Point location within a model element

A model element is represented by an irregular hexahedron
with non-planar faces. Given the incident vertex coordinates
and the element shape function Ni [9], the coordinate (x, y, z)
of an internal point with parametric location (s, t, r) ∈ [−1, 1]3

is expressed as:

x = f(s, t, r) =

8∑
i=1

Nixi

y = g(s, t, r) =

8∑
i=1

Niyi

z = h(s, t, r) =

8∑
i=1

Nizi

where (xi, yi, zi) represents the incident vertex coordinates.
The inverse, to find the parametric location given the

coordinate, is not trivial and ends up in a root finding problem:

x− f(s, t, r) = 0

y − g(s, t, r) = 0

z − h(s, t, r) = 0

A Newton-Raphson procedure is performed to find the
(s, t, r) location. Experimental results have shown that four
iterations are sufficient to deliver accurate results. If (s, t, r) ∈
[−1, 1]3, the point is inside the element. Moreover, this
procedure also provides significant parametric values for points
outside the element, as described in the next subsection.

C. Point location within a grid cell

A point location query in a cell of type A is performed by a
topological search. The search begins at the element stored in
the cell; if the given point is not inside the element, the returned
parametric values are used to choose the closest neighbor to
continue the search. As soon as an element containing the
point is found, the query is complete, and the element identifier,
together with the corresponding parametric location, is returned.
Note that this search tends to be efficient: it starts at the element
with the highest volume overlap and continues to the neighbors
in a coherent way.

In cells of type B, the search is performed conventionally.
The listed elements are tested one by one, in decreasing order
of volume overlap.

It should be noted that our cell classification (types A and B)
is crucial for the structure compactness and efficiency. Cells of
type A only require the storage of one element identifier versus
the explicit element list for cells of type B. The topological
search in cells of type A also tends to find the desired element
faster than the simple search performed on cells of type B.

The grid refinement factor r has a significant influence on
search performance. As r increases, each cell overlaps fewer

elements, decreasing the number of visited elements. On the
other hand, increasing r considerably enlarges the memory
space needed to store the grid.

VI. SURFACE SHADING

A fragment shader is responsible for shading the cutting
surfaces. For each fragment, given the element that contains the
point and the corresponding parametric coordinate (s, t, r), the
associated scalar value is first computed, and the corresponding
color is assigned following the color scale of the application.
For visualizing cell properties, the scalar value associated with
the element is retrieved and assigned to the fragment. For
vertex properties, the scalar values associated with the element
vertices are retrieved, and the parametric coordinates are used
to interpolate the scalar value at the fragment: α =

∑
Niαi.

The challenge resides on rendering the wireframe. Revealing
the reservoir mesh wireframe on the cutting surfaces may be
crucial for a better understanding of the numerical simulation.
The fragment gains the wireframe color if it is close to the
element boundaries. However, surface triangles parallel to
element faces should not be rendered as part of the wireframe
to avoid coloring the entire triangle as wireframe.

Bærentzen et al. [10] suggested a procedure to draw
antialiased wireframes. Their strategy combines the original
fragment color with the wireframe color according to the
distance from the fragment to the closest triangle edge. Their
work is extended here to consider the distance to the element
boundary in 3D while avoiding parallel faces. Considering the
parametric coordinates s, t, and r, the fragment is snapped
to the closest boundary, setting the corresponding parametric
coordinate to −1 or 1. With the fragment on the boundary, the
tangent plane at this point is computed (remember the faces
are non-planar) and intersected with the triangle plane. The
distance to the boundary is the distance from the fragment to
the resulting line of intersection between the two planes.

VII. EXPERIMENTAL RESULTS

This section presents an evaluation of the proposed solution,
beginning with model representation statistics. The proposed
regular grid structure is directly compared with the previously
discussed celltree structure [5]. Then, an analysis of the
influence of the regular grid refinement factor r is conducted,
both in terms of memory footprint and performance.

The computational tests considered four reservoir models,
with discretizations ranging from 300,000 to 6,000,000 ele-
ments. The models are identified here by the letters H, L, T, and
P, all based on actual reservoir models. Models H and L contain
many discontinuities and inactive element areas. Model T has
large contiguous regions with some discontinuities. Model P
does not possess any discontinuity on its domain, being entirely
composed of elements of type 1.

All tests were performed on a computer equipped with a
3.3 GHz Intel i7 processor, 40 GB of RAM and an NVIDIA
Geforce GTX 1080 Ti GPU with 11 GB of graphics memory.
The implementation uses C++, OpenGL, and GLSL in its
entirety. All rendering performance measurements were made

mapping per-element properties. The cost of the proposed
rendering algorithm is dominated by fragment operations; the
geometry complexity of the cutting surfaces has a low impact
on the achieved performance.

A. Model representation
Table I shows the active element count and the percentage of

elements of type 1 for each model. The table also presents the
GPU memory usage of each component of the model internal
representation. As can be noted, the optimizations for elements
of type 1 and the use of perfect hashes result in compact
structures, even for models containing millions of elements.

Model
Statistics H L T P
Active element count (M) 0.3 1.1 6.0 6.2
Elements of type 1 (%) 90% 90% 93% 100%
Element and vertex offsets (φ) (MB) 0.4 1 10 13
Element types (He) (MB) 0.06 0.2 0.8 0.8
Vertex coordinates (Hv) (MB) 6.2 22 83 81
Type 2 incidences (φ2 and H2) (MB) 1.2 4 15 -
Total geometry memory (MB) 8 27 109 95
Element property (Hpe) (MB) 2.0 7 26 27
Vertex property (Hpv) (MB) 2.1 7 28 27

TABLE I: Element count statistics and GPU memory usage
for each tested model.

B. Comparison with the celltree structure
The celltree structure, proposed by Garth and Joy [5],

served as a reference to evaluate the regular grid and point
location proposal. The celltree structure was implemented and
tested, replacing the regular grid as the acceleration technique,
maintaining the proposed model representation. The bounding
interval tree was recursively built, forming leaves with at most
two elements. In this way, no element list is needed: the two
integers stored at each leaf can directly store one or two element
identifiers. Moreover, the same encoding optimization when
storing identifiers was applied: if the element is of type 1, its
identifier eid is stored; if the element is of type 2, its identifier
is encoded in a negative number: −(eid + 1).

The celltree structure is very compact, avoiding element
overlaps altogether, with each element being stored only once
in the entire hierarchy. Nevertheless, its point location search
ends up testing a larger set of cells, due to many situations
where it is necessary to traverse the two children of a given
hierarchy node to locate the desired element. This cost is
critical in the intended applications, which tend to perform
a massive number of point location queries per frame. The
regular grid has shown to be more appropriate in this case,
requiring the test of a smaller set of elements, resulting in a
better performance.

The test measured performance by rendering, for each model,
one vertical cutting plane in one setting and twenty equidistant
horizontal planes in another. The regular grid refinement
factor r was adjusted to produce regular grids with the same
GPU memory usage2 as the celltree structure. Table II shows

2Represented by the GPU memory needed to store Bg , φg , Hg , and the
element lists for cells of type B.

Model Method GPU Memory 1 plane 20 planes
Usage (MB) fps fps

H Celltree 5.0 65 3
Regular grid 5.0 (r = 0.5) 79 6

L Celltree 16.4 30 3
Regular grid 16.4 (r = 0.43) 35 5

T Celltree 91.5 27 3
Regular grid 91.3 (r = 1.033) 77 16

P Celltree 93.1 121 11
Regular grid 92.7 (r = 1.842) 286 33

TABLE II: Comparison between the celltree structure and the
proposed regular grid structure. The grid factor r was adjusted
to match the GPU memory usage of the celltree structure. The
rendering performance measurements were taken with a single
cutting plane and with twenty parallel cutting planes.

the comparison measurements, with the proposed method
performing better in all tests.

The observed gain in performance for the two first models
(22% and 17%) are small if compared to the gain for the last
two (85% and 136%). The main reason is the presence of
discontinuities and inactive elements, generating more grid
cells of type B, which decreases search performance.

C. Regular grid refinement factor influence

The next test measured the influence of the grid refinement
factor r on memory usage and rendering performance. The
performance was measured by rendering twenty equidistant
horizontal planes cutting through the T model (with 6 million
elements). Figure 5 presents the achieved results.

As mentioned before, the greater r is, the greater is the
expected point location search performance, since smaller
grid cells tend to intersect fewer elements; on the other
hand, memory usage increases. The plot shows the memory
costs growing proportional to r3, as expected, with the
rendering performance increasing. From this and other similar
computational experiments, setting r = 1.6 seemed appropriate,
which delivers a good trade-off between memory usage and
performance for most models.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.5 1 1.5 2 2.5 3
 0

 100

 200

 300

 400

 500

 600

 700

 800

Ap
pl

ic
at

io
n

fra
m

es
-p

er
-s

ec
on

d
(H

z)

R
eg

ul
ar

 g
rid

 m
em

or
y

(M
B)

r refinement factor

Regular grid memory (MB)
Application frames-per-second (Hz)

Fig. 5: Influence of the grid refinement factor r on memory
usage and rendering performance. The test renders 20 plane
surfaces cutting model T.

VIII. APPLICATIONS

This section illustrates some actual applications of the
proposed method for inspecting reservoir simulation results.

A. Fence diagram and fault surfaces

Visualization of fence diagrams is a traditional tool for
inspecting reservoir models. A fence diagram is created by
specifying a set of vertical planar panels. In general, the
user needs to evaluate the model property distribution along
sections passing through the wells. Figure 6 illustrates one
achieved visualization. The proposed rendering technique
allows modifying the fence position interactively, even for
large reservoir models.

(a) Fence diagram embedded in the model

(b) Fence diagram viewed in isolation, with property mapping

Fig. 6: Visualization of fence diagrams.

Another common practice in the oil industry is the use of
faults as cutting surfaces. While inspecting reservoir simulation
results, specialists need to investigate and understand the fluid
behavior in the vicinity of geological faults. To this end, it is
desired to use the original faults as cutting surfaces, mapping
reservoir properties over them, which is directly obtained with
the proposed algorithm.

B. Reservoir properties mapped over streamlines

Reservoir simulators also output oil, gas, and water velocity
fields. Streamlines are then traced to investigate the fluid paths.
Visualizing the streamlines allows a set of different analyses.
One important analysis examines the quality of reservoir drains.
For this end, it is needed to visualize model properties along
streamlines. This visualization is easily achieved with the
proposed rendering algorithm; it suffices to draw the streamlines
as “cutting surfaces”. As the proposed method is based on
point location, the same algorithm can be employed for line
fragments, as illustrated in Figure 7.

Fig. 7: Visualization of streamlines with a reservoir property
mapped over them. The image illustrates the mapping of
oil saturation (SO). Injector wells are shown in blue, while
producers are shown in red.

C. Visualization of convex probes

One possible application of our method is the extraction of
convex probes to cut out parts of the reservoir model. The
main idea is to simulate the drawing of the probe shape inside
the model and allow the user to move the cut object apart from
it. An example of this visualization can be seen in Fig 8.

The proposed visualization can be obtained by rendering
the reservoir model twice, inspired by Volume Clipping from
[11]. In the first rendering pass, the cut inside the reservoir is
revealed; in the second, the cut object is rendered at another
position interactively chosen by the user.

The reservoir model cut is performed with the following
steps:

1) Draw the back faces of the convex probe object inside the
reservoir model, writing the fragment depth to a texture
buffer, keeping fragments far away from the camera.

2) Draw the front faces of the convex object inside the
reservoir model, writing the fragment depth to a texture
buffer, keeping fragments closer to the camera.

3) Draw the reservoir model hull, discarding fragments that
have a depth greater than the front faces of the convex
object and less than its back faces.

4) Draw the cut surface intersection with the proposed point
location algorithm by sampling the depth from the back-
face texture map.

The probe is drawn in isolation by simply setting it as a
cutting surface, using the proposed method. However, when
the probe object intersects the reservoir external hull surface,
we need to combine the model hull with the cutting surface.
The final image is achieved then by drawing the model hull
discarding fragments outside the probe, using the front and
back face texture maps.

D. Decoupled cut visualization

To analyze the behavior of the simulation in the vicinity of
wells is one of the most important tasks while inspecting a
reservoir model. The proposed technique offers different views
for this inspection. Each well is represented by a cylindrical
shape following its trajectory. Along the well, there are several
completions. Well completions connect the reservoir to the
surface, allowing fluids to be produced or injected. They

Fig. 8: Convex cut visualizations can rely on our GPU-based
rendering method. They are quite useful to inspect the interior
of the reservoir, particularly around its wells.

usually consist of perforations along the well path. The reservoir
regions close to the well completions are of particular interest
to reservoir engineers. Figure 9 illustrates some proposed well
visualizations.

First, the well and completion shapes can be used as cutting
surfaces, as illustrated in Figure 9a. Furthermore, one can
render disks centered at the well completions, perpendicular
to the well trajectory, as in Figure 9b.

Additionally, it is possible to decouple the rendered object
from the cutting coordinates. Figure 9c illustrates an array of
disks along the well trajectory in a 2D view. Each column
represents a different time step of the simulation. To obtain
such images, the disks are rendered in the 2D space, with their
3D coordinates passed as vertex attributes, which are used
by the point location algorithm. This example shows that the
proposed technique can be seen as a unstructured 3D texture
representing the reservoir model.

IX. CONCLUSION

This work presented an approach for efficiently rendering
cutting surfaces with arbitrary geometry in reservoir models.
The proposal includes a compact data structure for storing the
model in the GPU memory, an acceleration technique based on
a regular grid, and an efficient algorithm for point location. For
accuracy, the point location algorithm uses a Newton-Raphson
iteration to handle hexahedral elements with non-planar faces.
The compactness of the proposed data structure allowed the
storage of large reservoir models on the GPU. Computational
tests have demonstrated that the proposed regular grid brought
better performance than the one achieved with the celltree data
structure as the acceleration technique. The effectiveness of the
proposed rendering algorithm was demonstrated by its use in
different reservoir visualization techniques, allowing interactive
inspection even for large reservoir models.

A natural extension of the proposed approach is to handle
unstructured meshes. Another topic of interest is the integration
of the proposed compact representation with level-of-detail
techniques for massive reservoir models.

Fig. 9: Different visualization techniques to inspect reservoir
behavior in the vicinity of a well: (a) well trajectories and
completions rendered as cutting surfaces; (b) disks positioned
at the well completions, showing the property variation on the
regions around them; (c) disks laid out in a 2D view, presenting
the property variations around each completion over simulation
time.

ACKNOWLEDGMENT

The first author was financially supported by CAPES, the
Brazilian government agency for higher education personnel
improvement, during his master program.

Tecgraf/PUC-Rio is a research institute mainly funded by
Petrobras.

REFERENCES

[1] M. C. Sousa, E. Vital Brazil, and E. Sharlin, “Scalable and Interactive
Visual Computing in Geosciences and Reservoir Engineering,” Geological
Society, London, Special Publications, vol. 406, no. 1, pp. 447–466, 2015.

[2] T. Akenine-Möller, E. Haines, N. Hoffman, A. Pesce, M. Iwanicki, and
S. Hillaire, Real-Time Rendering 4th Edition. Boca Raton, FL, USA:
A K Peters/CRC Press, 2018.

[3] N. Andrysco and X. Tricoche, “Matrix trees,” Computer Graphics Forum,
vol. 29, no. 3, pp. 963–972, 2010.

[4] M. Langbein, G. Scheuermann, and X. Tricoche, “An efficient point
location method for visualization in large unstructured grids,” in
Proceedings of the Vision, Modeling, Visualization, 2003, pp. 27–35.

[5] C. Garth and K. I. Joy, “Fast, memory-efficient cell location in
unstructured grids for visualization,” IEEE Transactions on Visualization
and Computer Graphics, vol. 16, no. 6, pp. 1541–1550, Nov 2010.

[6] I. Wald, W. Usher, N. Morrical, L. Lediaev, and V. Pascucci, “RTX
Beyond Ray Tracing: Exploring the Use of Hardware Ray Tracing Cores
for Tet-Mesh Point Location,” in Proceedings of the Conference on
High-Performance Graphics (HPG), 2019.

[7] F. M. de Carvalho, E. Vital Brazil, R. G. Marroquim, M. C. Sousa, and
A. Oliveira, “Interactive cutaways of oil reservoirs,” Graphical Models,
vol. 84, pp. 1 – 14, 2016.

[8] S. Lefebvre and H. Hoppe, “Perfect Spatial Hashing,” ACM Transactions
on Graphics, vol. 25, no. 3, pp. 579–588, Jul. 2006.

[9] P. I. Kattan, MATLAB Guide to Finite Elements. Springer Berlin /
Heidelberg, 2008.

[10] A. Bærentzen, S. L. Nielsen, M. Gjøl, B. D. Larsen, and N. J. Christensen,
“Single-pass wireframe rendering,” in ACM SIGGRAPH 2006 Sketches,
ser. SIGGRAPH ’06. New York, NY, USA: ACM, 2006.

[11] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. R. Salama, and
D. Weiskopf, “Real-time volume graphics,” in ACM SIGGRAPH 2004
Course Notes, ser. SIGGRAPH ’04. New York, NY, USA: ACM, 2004.

