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Abstract—This paper presents a general framework for live
detection of broilers in poultry houses. The challenges for
image recognition of broilers are posted by crowded scenes,
poor image quality and difficulty in acquiring a benchmark of
labeled samples. The proposed framework consists on the use
of image thresholding, morphological transformations, feature
engineering, in addition to supervised and unsupervised learn-
ing techniques. Results show the effectiveness of the proposed
framework to detect individual broilers in a poultry house image.
Descriptive attributes related to the spatial distribution and
movement of the broilers can be extracted using the resultant
detections. These attributes can be used by automated warning
systems, for the detection of anomalous events and thermal stress
conditions.

I. INTRODUCTION

According to Brazilian Association of Animal Protein
(ABPA) [1], in 2015 Brazil has been responsible for 20% of
world chicken meat production and 40% of the world chicken
meat exports. Exporting around 4.3 million tons of chicken
meat (7.2 billions USD in receipt), Brazil was the largest
exporter and second largest producer of chicken meat in 2015.

Despite the high financial volume of broiler industry, this
activity has very low profit margins [2]. In order to ensure
that the activity is profitable, an intensive system is adopted
for the simultaneous production of thousands of birds. In this
intensive system, the proper management of the birds is crucial
for the activity.

Broiler management is one of the main factors responsible
for ensuring adequate levels of productivity, as well as en-
suring good health and comfort conditions [3]. Considering
the low profit margins, the economic viability of this farming
activity is strongly dependent on good management practices.

In this scenario, live video monitoring can be used to collect
helpful information for the proper broiler management. In
particular, behavioral patterns can be monitored with image
processing, for cheap and efficient solutions to guarantee the
welfare, health and meat quality [2].

Several methods regarding broiler image monitoring have
been proposed in the last years. These methods use image
thresholding and optical flow to generate broiler movement
and spatial distribution statistics.

In contrast to such methods, our proposal is to use an object
detection approach to detect broilers, extracting the exact
location of each broiler before generating any distribution or

movement statistics. We search for particular texture patterns
that permit to distinguish the center of each broiler in com-
mercial broiler house images. The usage of this new approach
is promising, because new studies can be done relating the
detected broiler dynamics and the detection of interest events
in commercial broiler houses. We show that, even with the
poor image quality and the crowded scene challenges, it is
possible to achieve a high accuracy level in such detection.

II. RELATED WORKS

In the context of live video monitoring, research has been
developed to infer spatial distribution patterns, movement and
behavior, allowing the detection of events unfavorable to bird
development.

In the work of Aydin et al. [4], recordings of broilers were
used to measure the movement intensity (activity index) of
the birds. Analysis identified a correlation between changes in
the historical series of this index and adverse conditions, like
diseases that affect broiler locomotion.

In the work of Youssef et al. [5], the index of activity was
modeled as a dynamic response of the broilers, subjected to
ventilation system alterations in the confinement space. It was
shown that when the ambient temperature inside the space
deviated from the thermal comfort zone, the broilers began a
search for more comfortable zones, suddenly increasing the
global activity index.

Dawkins et al. [6] proposed the use of optical flow to
analyze broiler movement patterns. It was shown that different
metrics (mean, variance, asymmetry and kurtosis) calculated
from the optic flow of the flocks were related to the behavior
and individual well-being of the broilers. The asymmetry and
kurtosis of the optical flow was related to the percentage of
chickens with locomotion problems in each flock.

Kashiha et al. [2] proposed a spatial distribution index,
using image thresholding. Anomalous behavior patterns were
detected by analyzing the time series of this indicator. It was
found that anomalies in the time series of the distribution index
were associated with ventilation system failures, illumination
changes and feeding problems.

In the work of Nääs et al. [7], patterns of behavior and
spatial distribution were related to the thermal welfare of
broilers. It was observed that the distribution of broilers in



drinking and feeding areas varies according to the thermal
welfare of the birds.

Vilas Novas et al. [8], [9] proposed a method using image
thresholding, altogether with thermal sensors data for thermal
welfare classification in commercial broiler houses. Applying
an unsupervised learning algorithm, different broiler distribu-
tion profiles were detected.

In comparison to the previous works, our method improves
the state-of-the-art by using image texture information to
detect the center of each broiler in commercial broiler house
images. Using the detected broilers, statistics related to the
spatial distribution and the movement of the broilers can be
easily obtained. These statistics calculated by the detected
object tend to be more accurate, opening new possibilities of
broiler behavioral studies.

III. BASIC CONCEPTS AND NOTATIONS

In this section we present important concepts related to the
problem under analysis. An image can be defined as a set of
pixels I = {Pi|0 ≤ i < n}, where n is the total number of
pixels in the image. Each pixel is a tuple Pi = (Ri, Gi, Bi),
where the values of Ri, Gi and Bi represents the intensity
of each channel of the RGB color space. Global or local
information can be extracted from images. A feature extraction
is a function F that for a given image I , generates a feature
vector V ∈ Rd, of size d.

Let a set T ⊂ Rd of tuples of size d and a set of possible
labels L. Given a training set in which every ti ∈ T has a
label ci assigned by an expert, where ci ∈ L.

ci =

{
1, if Pi is a broiler center
0, otherwise

(1)

A supervised classifier C must build a model capable to
predict the label of a new data item. Given a tuple x ∈ Rd,
a classifier can be defined as the function C(x) = c, where
c ∈ L. Among the most used classifiers are the K-Nearest
Neighbors (KNN), Multi-layer Perceptron Neural Networks
and Random Forests [10], [11]. We refer to the above defi-
nitions in the rest of this work.

Feature Extraction: Images are processed by means of
extracted features. The features extracted from a given image
correspond to numerical measurements that describe visual
properties. Such properties are able to discover and represent
connections between pixels of the whole image (global) [12],
or of small regions of the image (local) [13]. Low-level
descriptors [14], as those base on color, shape and texture,
are frequently used.

The Local Binary Pattern (LBP) is a texture feature extrac-
tor that considers the neighborhood of a pixel. Perhaps the
most important property of the LBP descriptor in real-world
applications is its robustness to monotonic gray-scale changes
caused, for example, by illumination variations. Another im-
portant property is its computational simplicity, which makes
it possible to analyze images in challenging real-time settings
[15].

The LBP descriptor is used in several applications, as fire
detection [16], pedestrian detection, image matching, facial
expression recognition and image segmentation [15]. The LPB
can be performed in gray scale, in a region of nn pixels. For
each pixel Pi from the neighborhood of the central pixel Pc, a
binary code is created by assigning the value 1 if Pi > Pc, or
0, otherwise. Then, the histogram of codes is used as a feature
vector.

In order to make the LBP rotation invariant, a variation
of the original algorithm shifts the code until it reaches its
minimum value. In our approach it will be used a LBP
variation that is defined as uniform patterns [17]. A code
is called uniform if the binary pattern contains at most two
bitwise transitions from 0 to 1 (or vice versa). This method
is defined by its rotation invariance with uniform patterns and
finer quantization of the angular space which is gray scale and
rotation invariant.

IV. OUR PROPOSAL

We propose a framework that consists on the use of image
thresholding, morphological transformations, feature engineer-
ing, together with supervised and unsupervised learning tech-
niques for broiler detection. The goal of this framework is to
provide an effective automated detection for the development
of new studies relating broiler dynamics to interest situations
in commercial broiler houses.

A. Image Pre-processing

Feature Engineering: We explore the fact that the texture
can improve the detection of broilers, since they are more
robust to changes in rotation, scale, illumination, viewpoint
and different types of image degradation [15].

Our approach starts by using the uniform patterns LBP
operator [17], [18] for each pixel Pi.

Itexture = LBP (Igrayscale) (2)

Image Segmentation: Since the poultry house floor is
darker than the white broilers, an image thresholding step is
useful to restrict which pixels Pi are more likely to be broiler
centers. Using Homogeneous Blur and Otsu’s method [19],
[20], the image Igrayscale is converted to a binary image Iotsu.
The homogeneous blur is performed using a normalized box
filter, in order to reduce image noise before the segmentation.

Iotsu = Otsu(Blur(Igrayscale)) (3)

Idilate = Dilate(Iotsu) (4)

Idilate is generated by applying a dilation (see Eq. 4) on the
binary image. This morphological operation ensures that every
broiler center must highlighted in Idilate, respecting relation
(5).

(ci == 1) =⇒ (Pi == 1|Pi ∈ Idilate) (5)



Let S be the set of highlighted pixels in Idilate. These pixels
are the foreground Pi of the image, that must be classified by
the supervised model C.

S = {i|Pi == 1 and Pi ∈ Idilate} (6)

B. Image Processing

Supervised Classifier: The binary image Idilate is used to
filter which pixels must be classified using a trained model C
[10].

C(Pi) =

{
C(Pi), if (i ∈ S|Pi ∈ Itexture)

0, otherwise
(7)

The result of the classification is the binary image Iclassify .

Iclassify = {C(Pi)|0 ≤ i < n} (8)

Multiple detections of a given broiler can occur. To avoid
multiple segmentations of the same broiler, a merging algo-
rithm combines detected pixels, if they are in close proximity.

C. Image Post-processing

Clustering: Before merging the detected pixels, an opening
morphological operation (9) is performed to remove part of the
noise in the binary image Iclassify. Opening is just another
name of erosion followed by dilation.

Iopening = Opening(Iclassify) (9)

Since a single broiler must be leading to multiple local
detections in the image, Mean Shift clustering algorithm [21]
is used to merge detections relative to the same broiler.

Mean shift clustering aims to discover blobs in a smooth
density of samples. It is a centroid based algorithm, which
works by updating candidates for centroids to be the mean of
the points within a given region. These candidates are then
filtered in a post-processing stage to eliminate near-duplicates
to form the final set of centroids [10].

Ifinal = MeanShift(Iopening) (10)

The final output is the image Ifinal with only one detection
for each broiler in the image I .

V. EXPERIMENTS

A. Configuration

Following, we describe the configuration of our experi-
ments.

Video Recordings: To perform the proposed computational
experiments it will be used a sequence of videos collected in
a commercial broiler house located in the region of Jundiaı́,
in the state of São Paulo. Video samples were collected for
two flocks, totaling about 2 thousand hours of video.

All filming was done using a digital surveillance camera,
with 480p resolution, connected to a DVR (Digital Video
Recorder). The camera was attached to the ceiling of the
poultry house, about 2.5 meters high. The camera lens had

a 2.45 mm focal length and a 1/3-inch photosensitive sensor
(CCD). With these specifications, the camera was capable of
filming an area of about 22 square meters from the poultry
house floor, capturing images from a fixed panorama as shown
in Figure 1. Each pixel in the captured images represent
approximately 1.3 cm2 of the poultry house floor.

Camera Calibration: Since the surveillance camera had a
wide-angle lens, the lens distortion have been corrected in the
recordings before the experimental dataset preparation [20].
Figure 2 presents a grayscale image of the broilers after the
lens distortion correction.

Fig. 1. Image captured in a commercial broiler house located in the region
of Jundiaı́, Brazil. Broilers with 28 days of life.

Labeling: Exhaustive labeling generation has been per-
formed for a series of 40 images, with 9,695 labeled broilers
of approximately the same size and age (21 days of life). Each
of the 40 images were taken 1 second after the previous one.

Fig. 2. Image generated after the lens distortion correction. Broilers with 21
days of life (Igrayscale).

Starting from the labeled broiler centers, slight variations
of the samples were created by randomly shifting the original
points, resulting in a new set with more 9,695 samples. The
shift has been generated randomly (with discrete uniform
distribution) around ±2 pixels of the originally labeled broiler
center.



Negative samples were collected by random sampling pixels
with distances between 9 and 29 pixels from the nearest broiler
center (see Eq. 11), resulting in a negative set of 38,780
samples.

distance(cbroiler, cbackground) ∈
(
8, 30

)
(11)

The experimental dataset (see Table I) had 58,170 samples,
33.3% labeled positive and 66.7% negative.

TABLE I
EXPERIMENTAL DATASET

Labeled
Attributes

Number of
Labeled Samples

Detector Size
(Width×Height)

Broiler Centers
(exhaustive labeling) 9,695 13× 13

Broiler Centers
(random shifting) 9,695 13× 13

Negative Samples 38,780 13× 13

Total 58,170

B. Description of the experiments

In this section we go through the proposed framework to
detect the broiler centers labeled in the experimental dataset.
Figure 2 will be used to illustrate each of the pre-processing,
processing and post-processing framework operations.

Feature Extraction: The LBP descriptor has been applied
to the 40 images of the experimental dataset. Itexture has
been calculated by LBP comparisons to neighboring 24 sample
points at 12 pixels of radius (see Eq. 2).

Figure 3 shows an image representation of the LBP feature
extraction result.

Fig. 3. LBP feature extraction representation (Itexture).

Image Segmentation: Figure 4a shows Iotsu, generated
with Otsu thresholding and uniform blur (with a 9×9 uniform
kernel).

Figure 4b presents Idilate, the result of a dilation in Iotsu
using a 3× 3 uniform kernel.

Square windows with width = 13 were extracted around
each of the labeled pixels.

(a) Blur + Otsu (b) Blur + Otsu + Dilation

Fig. 4. Image segmentation results (Iotsu and Idilate).

In Figure 5, Idilate (Figure 4b) is combined to Itexture
(Figure 3). The result is a new image with LBP features filtered
only for the pixels highlighted in the image segmentation step.

Fig. 5. LBP feature extraction combined with image segmentation filter.

Comparing Figure 5 with the original grayscale image
(Figure 2), we can perceive significant differences in LBP
activations between broiler and background pixels.

Training Classifier: First of all, the labeled samples from
the last 5 poultry house images of the 40 experimental images
were separated to serve as a testing dataset.

The 35 remaining images were then splitted for a 5-
Fold Cross-Validation [10]. Using a grid-search approach, the
hyperparameters of a Random Forest have been optimized to
predict the dataset samples, using a 13 × 13 LBP window
around the labeled pixels.

The following hyperparameters have been optimized using
a grid-search approach:

1) Estimators number: Number of trees in the forest;
2) Split criterion: The function to measure the quality of a

split (Gini Impurity or Information Gain);
3) Max features: Number of features to consider when

looking for the best split;
4) Min samples leaf: The minimum number of samples

required to be at a leaf node.
Scikit-learn implementation of the Random Forest Classifer

[11] has been used in this experiment. More details about
the hyperparameters above can be found in the Scikit-learn
documentation [10].

The best model has been chosen by searching for the high-
est area under the ROC (Receiver Operating Characteristic)
curve, for the 5-Fold Cross-Validation resultant mean. The



evaluation and results of these experiments are reported in
section VI.

Initial Detection: The trained classifier can be used now to
detect which pixels are broiler centers. A sliding window is
then applied for the highlighted pixels, resultant of the image
segmentation step.

The window is slided with a step of size 3. If the interest
pixel isn’t highlighted in Idilate, this pixel is automatically
classified as background. Otherwise, if the interest pixel is
highlighted in Idilate, the classifier is used to predict the label
using the LBP 13x13 descriptor around the pixel.

Figure 6 presents which pixels are automatically classified
as background.

Fig. 6. Grayscale image Igrayscale convolved by Idilate.

Applying the trained model, we can generate a heatmap of
broiler detection probabilities (see Figure 7).

Fig. 7. Heatmap of broiler detection probabilities.

Only detections with probabilities of at least 70% will
be considered valid in this experiment. Figure 8a shows the
binary image resultant by dismissing the classified pixels with
probabilities lower than 70%.

Opening operation is done in sequence to remove isolated
detections (noise), placing them in the background (see Figure
8b). In our experiments, the opening operation has been
applied using a 2× 2 kernel.

Merging Detections: Finally, detections relative to the same
broiler needs to be merged. Figure 9 presents the final result
after the mean shift clustering, with a bandwidth of 2.

(a) Detection (b) Detection + Opening

Fig. 8. Binary broiler detection results (Iclassify and Iopening).

Fig. 9. Broiler detections after the mean shift clustering (Ifinal).

Figure 10 presents the original image (Figure 2) highlighted
with the final detection results from the mean shift operation.

Fig. 10. Final result of the proposed approach for broiler detection.

VI. RESULTS AND DISCUSSION

The performance of the experiments presented in the pre-
vious section have been evaluated by means of the trained
classifier performance metrics. Since the experimental dataset
was generated by exhaustive labeling poultry house images,
labeling deviations and mistakes can interfere in the accuracy
of the final model.

Table II presents the calculated perfomance metrics. The
best model achieved a 0.9864 value for the ROC AUC (Area
Under Curve) for the test dataset.

The LBP texture description of the poultry house images
allowed the classifier to detect broilers even in the areas of the



image with significative illumination and sharpness variations
(see the bottom right corner of Figure 10).

False-negative classifications were the major problem in the
final model, and these error were mostly related to broilers that
were really close from each other.

TABLE II
TEST DATASET PERFORMANCE METRICS

Metric Performance

ROC AUC 0.9864
F1 Score* 0.9202
Accuracy* 0.9470

Recall* 0.9134
Precision* 0.9271

*Note: Probabilities ≥ 50%
were considered detections.

Significant differences between the texture of the back-
ground and the texture around the broiler centers are evidenced
in the good discrimination between the two labeled classes.
The quality of this discrimination is presented in Figure 11,
with the ROC curve for the final model.

Fig. 11. ROC Curve of Class 1 (Labeled Broilers).

The optimal hyperparameters configuration chosen by the
grid-search approach were the following:

1) Estimators number: 40 trees;
2) Split criterion: Information Gain;
3) Max features: 40%;
4) Min samples leaf: 9 samples.
Our broiler detection approach can achieve real-time per-

formance, which is a requirement for live broiler monitoring
applications. In our experiments, on a desktop computer,
the total processing time for each image has averaged 10.2
seconds.

Parallel executions of the same broiler detection routine
for each recorded image can guarantee a real-time detection
performance. This approach would permit the detection in real-
time, but with a 10.2 seconds delay between the recording of
an image and the detection of the broilers. Through a better
use of the CPU power and of the available memory, several
parallelizations can also be performed in the framework’s
routines to reduce the processing time.

VII. CONCLUSIONS

In this paper, we presented a novel approach for live
broiler monitoring in commercial poultry houses. Our results
show that the proposed approach was capable of detecting
broilers with high accuracy, allowing the calculation of spatial
distribution statistics for the detected broilers.

Given its performance, our approach is suitable to integrate
a tracking system that monitors short-term movements of the
broilers. These spatial and movement attributes can be used
by automated warning systems, for the study of anomalous
events and thermal stress conditions in poultry houses.

The proposed technique should be considered in future
works for the detection of broilers of different ages and sizes.
In addition, another set of image descriptors and supervised
classifiers should be investigated to improve the obtained
results.

Finally, since the detection recall didn’t meet exactly the
number of broilers present in the poultry house scene, evalua-
tions of the images obtained after the mean shift consolidation
step should also be considered. This has the potential to further
decrease the false-negative rate achieved with the proposed
framework.
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