
Pruning Optimum-Path Forest Classifiers Using

Multi-Objective Optimization

Douglas Rodrigues

Department of Computing

Federal University of São Carlos

São Carlos, Brazil

E-mail: douglasrodrigues.dr@gmail.com

André Nunes Souza

Department of Electrical Engineering

São Paulo State University

Bauru, Brazil

E-mail: andrejau@feb.unesp.br

João Paulo Papa

Department of Computing

São Paulo State University

Bauru, Brazil

E-mail: papa@fc.unesp.br

Abstract—Multi-objective optimization plays an important role
when one has fitness functions that are somehow conflicting
with each other. Also, parameter-dependent machine learning
techniques can benefit from such optimization tools. In this paper,
we propose a multi-objective-based strategy approach to build
compact though representative training sets for Optimum-Path
Forest (OPF) learning purposes. Although OPF pruning can
provide such a nice representation, it comes with the price of
being parameter-dependent. The proposed approach cope with
that problem by avoiding the classifier to be hand-tuned by
modeling the task of parameter learning as a multi-objective-
oriented optimization problem, which can be less prone to
errors. Experiments on public datasets show the robustness of
the proposed approach, which is now parameterless and user-
friendly.

I. INTRODUCTION

Optimization techniques have been widely used in several

research areas, since many problems usually refer to the task of

finding the minimum or maximum of a given function. Some

challenges such as the allocation of resources, product delivery

for logistic companies, and cutting-and-packing problems with

direct application in industries are among the most widely

pursued tasks.

In regard to optimization techniques, a considerable at-

tention has been given to nature-inspired meta-heuristics,

i.e., approaches that aim at solving several problems using

concepts based on physical process, social dynamics and/or

the behavior of living beings [1], [2], [3], [4], [5], [6], [7].

Since such techniques are quiet elegant to solve optimization

problems, they have been applied for solving multi-objective

optimization problems, where the idea of a unique global

optimal solution is replaced by a non-dominated solution set,

the so-called Pareto-optimal set [8], [9], [10], [11], [12], [13].

Meta-heuristic multi-objective optimization techniques have

become popular to solve many optimization problems in the

field of engineering [14], [15], [16], [17], [18], [19], [20].

However, such techniques have a wider range of applications,

mainly in the context of machine learning-oriented prob-

lems, which are usually composed of several multi-objective

tasks [21]. It is very common to face problems in which we

need to find out the best set of parameters (e.g., a neural

network architecture) that lead to both high recognition rates

and low computational burden.

Parameter-dependent machine learning techniques are often

preferable to cope with real-world problems, since they can

be adjusted to fit better to a given application. Support

Vector Machines (SVMs) [22], Neural Networks (NNs) [23]

and Optimum-Path Forest (OPF) [24], [25], [26] are some

examples of parameter-dependent techniques, just to name a

few. Although OPF comprises a collection of classifiers, being

some of them parameterless, new problems may require some

of them to be parameterized. Papa et al. [27] proposed to

design compact though representative training sets by means of

learning the most important samples during training, thus dis-

carding the remaining ones preserving similar or even higher

accuracy [28], [29], [30]. Such process is ruled by a parameter

that controls the desired loss in accuracy with respect to the

final pruned training set when compared to the original one.

Later on, Nakamura et al. [31] modeled the problem of finding

the OPF pruning parameter automatically as a mono-objective

optimization problem. In fact, they combined both information

of training set size and accuracy in a single equation (fitness

function) for further optimization.

Actually, since a good recognition accuracy does require

a considerable training set size (for most applications where

training is complex), these two criteria fit perfectly into a

multi-objective optimization problem, since they are conflict-

ing with each other. Therefore, the main contribution of this

paper is apply meta-heuristic multi-objective algorithms to the

Optimum-Path Forest pruning algorithm in order to obtain

compact and representative training sets without the need

for the desired loss and the maximum number of iteration

parameters. The experiments showed the robustness of the

proposed approach in a number of datasets.

The remainder of this paper is organized as follows.

Section II presents the theoretical background about multi-

objective optimization, while Section III presents the OPF

classifier and its pruning strategy. Section IV discusses the

experiments, and Section V states conclusions and future

works.

II. MULTI-OBJECTIVE OPTIMIZATION

The multi-objective optimization problem aims at finding

the global minimum x∗ ∈ S that minimizes a set of M

functions represented by f, i.e.:

x∗ = arg min
∀x∈S

(f1(x), f2(x), . . . , fM (x)), (1)

subject to:

gi(x) = 0 ∀i = 1, 2, . . . , p, (2)

hi(x) ≥ 0 ∀i = 1, 2, . . . , q, (3)

where p and q represent the number of equality g(·) and

inequality constraints h(·), and S ∈ R
N stands for the search

space.

In a multi-objective problem, there is no single solution

that is optimal with respect to all objectives when considering

conflicting objectives. Thus, the solution to a multi-objective

optimization problem is no longer a scalar value, but a vector

in the form of a “trade-off” known as Pareto-optimal set.

Firstly, we define the Pareto Dominance, where a solution

vector xa is said to dominate another solution vector xb

(i.e., xa ≺ xb) if f(xa
i) 6= f(xb

i), ∀i = {1, 2, . . . , N}, and

∃i ∈ {1, 2, . . . , N} such that f(xa
i) < f(xb

i). In regard to the

Pareto Dominance, a solution vector xa is considered Pareto-

optimal if, for every xb, fj(x
a) 6= fj(x

b), j = 1, 2, . . . ,M ,

and if there exists at least one j ∈ {1, 2, . . . ,M} such

that fj(x
a) < fj(x

b). Therefore, the Pareto-optimal set P∗

considering a multi-objective optimization problem f(x) with

respect to all Pareto-optimal solutions is thus defined as

follows:

P∗ = {x ∈ S | f(x) ≺ f(x′), ∀x′ ∈ S}. (4)

The Pareto-optimal front PF ∗ with respect to a multi-

objective optimization problem f(~x) and the Pareto-optimal

set P∗ is defined as follows:

PF ∗ = {f(x) | x ∈ P∗}. (5)

One way to solve multi-objective optimization problems

is to combine all objectives into a single-objective problem.

Hence, the idea of scalarized multi-objective optimization is

to convert a problem of minimizing the vector x into a scalar

optimization problem [32]. The weighted-sum method is one

of the most used approach, in which several objective functions

are combined into a single one through a weight vector. Thus,

a problem with multiple objective functions is reduced to a

single optimization problem subject to the original constraints,

and the choice of the value of each weight is performed

according to a preference assigned to each objective function:

x∗ = arg min
∀x∈S

(

M
∑

k=1

wkfk(x)

)

, (6)

with
∑M

i=1
wi = 1. A single point of the Pareto front will

be produced by a given a weight vector. A sufficiently large

number of weight vectors generate a good approximation to

the true Pareto front. If the weights are positive for all ob-

jectives, the solutions to the problem are Pareto optimal [32],

[33]. The weights are calculated as follows:

wi =
ui

∑M
i=1

ui

, (7)

where ui ∼ U(0, 1).

III. OPTIMUM-PATH FOREST

Let D = Dtr ∪ Dts be a λ-labeled dataset such that Dtr

and Dts stand for the training and testing sets, respectively.

Additionally, let s ∈ D be an n-dimensional sample that

encodes features extracted from a certain data, and d(s, v) be

a function that computes the distance between two samples s

e v, v ∈ D.

Let Gtr = (Dtr,A) be a graph derived from the training

set, such that each node v ∈ Dtr is connected to every other

node in Dtr\{v}, i.e. A defines an adjacency relation known

as complete graph (Figure 1a illustrates such training graph),

in which the arcs are weighted by function d(·, ·). We can also

define a path πs as a sequence of adjacent and distinct nodes

in Gtr with terminus at node s ∈ Dtr. Notice a trivial path is

denoted by 〈s〉, i.e. a single-node path.

0.4

0.3

1.1

1.4

2.4 0.7

1.7

2.1

3.1

3.7

(a)

0.4

0.3

1.4

0.7

(b)

0.4

0.4

0.0

0.0

0.7

(c)

Fig. 1. Illustration of the OPF working mechanism: (a) a two-class (orange
and blue labels) training graph with weighted arcs, (b) a MST with prototypes
highlighted, and (c) optimum-path forest generated during the training phase
with costs over the nodes (notice the prototypes have zero cost).

Let f(πs) be a path-cost function that essentially assigns a

real and positive value to a given path πs, and S be a set of

prototype nodes. Roughly speaking, OPF aims at solving the

following optimization problem:

min f(πs), ∀ s ∈ Dtr. (8)

The good point is that one does not need to deal with

mathematical constraints, and the only rule to solve Equation 8

concerns that all paths must be rooted at S . Therefore, we

must choose two principles now: how to compute S (prototype

estimation heuristic) and f(π) (path-cost function).

Since prototypes play a major role, Papa et al. [24] proposed

to position them at the regions with the highest probabilities

of misclassification, i.e. at the boundaries among samples

from different classes. In fact, we are looking for the nearest

samples from different classes, which can be computed by

means of a Minimum Spanning Tree (MST) over Gtr. The

MST has interesting properties, which ensure OPF can be

errorless during training when all arc-weights are different to

each other [34]. Figure 1b depicts a MST with prototypes

highlighted.

Finally, with respect to the path-cost function, OPF requires

f to be a smooth one [35]. Previous experience in image

segmentation led the authors to use a chain code-invariant

path-cost function, that basically computes the maximum arc-

weight along a path, being denoted as fmax and given by:

fmax(〈s〉) =

{

0 if s ∈ S
+∞ otherwise,

fmax(πs · (s, t)) = max{fmax(πs), d(s, t)}, (9)

where πs · (s, t) stands for the concatenation between path

πs and arc (s, t) ∈ A. In short, by computing Equation 9 for

every sample s ∈ Dtr, we obtain a collection of optimum-path

trees (OPTs) rooted at S , which then originate an optimum-

path forest. A sample that belongs to a given OPT means it is

more strongly connected to it than to any other in Gtr. Roughly

speaking, the OPF training step aims at solving Equation 9

in order to build the optimum-path forest, as displayed in

Figure 1c. A gentle implementation of the aforementioned

procedure is given by Algorithm 1.

Line 1 calls SelectPrototypes function, which computes

the minimum spanning tree over the input graph, selects

prototypes as the connected elements with different classes

(Figure 1b), and finally it outputs the prototype set S . Lines

2−4 and 5−7 initialize the prototypes and remaining samples,

respectively, where Cs stands for the cost of sample s, and

Ps denotes its predecessor in the optimum-path forest. Line

8 creates a priority queue based on the input graph and the

cost of each sample (for such purpose, LibOPF implements a

binary heap).

The main loop in Lines 9 − 17 is in charge of the OPF

competition process, in which Line 10 removes a sample s

from the priority queue whose cost is minimum, and Line 11
inserts s in the ordered list K (such list will be used to speed

Algorithm 1: OPF with Complete Graph - Training Al-

gorithm

Input: A λ-labeled training graph Gtr = (Dtr,A) and

the distance function d.

Output: An optimum-path forest P , label map L, cost

map C, and a list of nodes ordered by their

costs (ascending order) K.

1 S ← SelectPrototypes(Gtr);
2 for s ∈ S do

3 Cs ← 0;

4 Ps ←NIL;

5 for s ∈ Dtr\S do

6 Cs ←∞;

7 Ps ←NIL;

8 Q← BuildPriorityQueue(Dtr, C); K ← ∅;
9 while Q 6= ∅ do

10 Remove from Q a sample s whose Cs is minimum;

11 K ← K ∪ {s};
12 for v ∈ Dtr\s do

13 tmp← max{Cs, d(s, v)};
14 if (tmp < Cv) then

15 Cv ← tmp;

16 Pv ← s;

17 Lv ← λ(s);

18 return [P,L,C,K];

up the classification phase). The inner loop in Lines 12− 17
evaluates all neighbors of s in order to conquer them, and

line 13 computes fmax as described by Equation 9. When

sample v is conquered by s (Lines 15 − 17), the cost (Line

15), predecessor (Line 16) and label map (Line 17) of v are

updated.

The next step concerns the testing phase, where each sample

t ∈ Dts is classified individually as follows: t is connected to

all training nodes from the optimum-path forest learned in the

training phase (Figure 2a), and it is evaluated the node v∗ ∈
Dtr that conquers t, i.e. the one that satisfies the following

equation:

Ct = argmin
v∈Dtr

max{Cv, d(v, t)}. (10)

The classification step simply assigns L(t) = λ(v∗), as

depicted in Figure 2b. Roughly speaking, the testing step aims

at finding the training node v that minimizes Ct.

The example displayed in Figure 2 shows an interesting

situation: although t is closest to a sample from “yellow” class,

it has been labeled to the another class, which emphasizes OPF

is not a distance-based classifier, but instead it uses the “power

of connectivity” among samples. The OPF with complete

graph degenerates to a nearest neighbor classifier only when

all training samples are prototypes. Actually, such situation is

considerably difficult to face, thus indicating a high degree of

0.4

0.4

0.0

0.0

0.7

t
0.!

0.3

0.7

0.6

1.1

(a)

v

0.4

0.4

0.0

0.0

0.7

t

0.�

*

(b)

Fig. 2. Illustration of the OPF classification mechanism: (a) sample t is
connected to all training nodes, and (b) t is conquered by v∗ and it receives
the “blue” label.

overlapping among samples, which means the features used for

that specific problem may not be adequate enough to describe

it. Algorithm 2 implements the OPF classification procedure.

Notice this algorithm uses the ordered list of notes K, where

ki ∈ K stands for a node in Dtr, to speed up the classification

step, as proposed by Papa et al. [26].

Algorithm 2: OPF Classification Algorithm

Input: Classifier [P1, C1, L1,K], test set Dts, and the

distance function d .

Output: Label L2 and predecessor P2 maps defined for

Dts, and accuracy value Acc.

Auxiliary: Cost variables tmp and mincost.

1 for each t ∈ Dts do

2 i← 1, mincost← max{C1(ki), d(ki, t)};
3 L2(t)← L1(ki), P2(t)← ki;

4 while i < |K| and mincost > C1(ki+1) do

5 Compute tmp← max{C1(ki+1, d(ki+1, t};
6 if tmp < mincost then

7 mincost← tmp;

8 L2(t)← L1(ki+1), P2(t)← ki+1;

9 i← i+ 1;

10 Compute accuracy Acc according to [24];

11 return [L2, P2, Acc];

A. Learning with Pruning of Irrelevant Patterns

Large datasets usually present redundancy, so at least in

theory it should be possible to estimate a reduced training

set with the most relevant patterns for classification. The use

of a training set Dtr and an evaluating set Dev has allowed

OPF to learn relevant samples for Dtr from the classification

erros in Dev , by swapping misclassified samples of Dev and

non-prototype samples of Dtr during a few iterations [24].

In this learning strategy, Dtr remains the same size and the

classifier instance with the highest accuracy is selected to be

tested on the unseen set Dts. Algorithm 3 implements this

learning procedure.

Algorithm 3: OPF Learning Algorithm

Input: A λ-labeled training and evaluating sets Dtr and

Dev , respectively, number T of iterations, and

distance function d.

Output: Optimum-path forest P1, cost map C1, label

map L1, ordered set K and MaxAcc.

Auxiliary: Arrays FP and FN of sizes c for false

positives and false negatives, set S of

prototypes, and list LM of misclassified

samples.

1 Set MaxAcc← −1;

2 for each iteration I = 1, 2, . . . , T do

3 LM ← 0 and compute the set S ⊂ Dtr of prototypes;

4 [P1, C1, L1,K]← Algorithm 1(Dtr,S, d);
5 for each class i do

6 FP (i)← 0 and FN(i)← 0.

7 [L2, P2, Acc]←Algorithm 2([P1, C1, L1,K],Dev, d);
8 if Acc > MaxAcc then

9 [P ∗
1 , C

∗
1 , L

∗
1,K

∗]← [P1, C1, L1,K];
10 MaxAcc← Acc;

11 while LM 6= 0 do

12 LM ← LM\{t};
13 Replace t by a non-prototype sample randomly

selected from Dtr;

14 return [P ∗
1 , C

∗
1 , L

∗
1, Z

∗] and MaxAcc;

The efficacy of Algorithm 3 increases with the size of

Dtr, because more non-prototype samples can be swapped by

misclassified samples of Dev. However, for sake of efficiency,

we need to choose a reasonable maximum size for Dtr. After

learning the best training samples for Dtr, we may also mark

paths in P1 used to classify samples in Dev and define their

nodes as relevant samples in a set R. The “irrelevant” training

samples in Dtr\R can then be moved to Dev. Algorithm 4

applies this idea repetitively, while the loss in accuracy on Dev

with respect to the highest accuracy obtained by Algorithm 3

(using the initial training set size) is less or equal to a

maximum value MLoss specified by the user or there are no

more irrelevant samples in Dtr.

In Algorithm 4, Lines 1−3 compute learning and classifica-

tion using the highest accuracy classifier obtained for an initial

training set size. Its accuracy is returned in Acc and used as

reference value in order to stop the pruning process when the

loss in accuracy is greater than a user-specified MLoss value,

Algorithm 4: OPF Pruning Algorithm

Input: Training and evaluating sets, Dtr and Dev ,

labeled by λ, distance function d, maximum loss

MLoss in accuracy on Dev , and number T of

iterations.

Output: OPF classifier [P1, C1, L1, Z] with reduced

training set.

Auxiliary: Set R of relevant samples, and variables Acc

and tmp.

1 [P1, C1, L1,K]← Algorithm 3(Dtr,Dev, T, d);
2 [L2, P2, Acc]← Algorithm 2([P1, C1, L1,K],Dev, d);
3 tmp← Acc and R ← ∅;
4 while (Acc− tmp) ≤MLoss, R 6= Dtr do

5 R ← ∅;
6 for each sample t ∈ Dev do

7 s← P2(t) ∈ D
tr;

8 while s 6= NIL do

9 R ← R∪ s;

10 s← P1(s);

11 Move samples from Dtr\{R} to Dev;

12 [P1, C1, L1,K]← Algorithm 3(Dtr,Dev, T, d);
13 [L2, P2, Acc]←Algorithm 2([P1, C1, L1,K]),Dev, d);

14 return [P1, C1, L1,K];

or when all training samples are considered relevant. The main

loop in Lines 4 − 13 essentially marks the relevant samples

in Dtr by following the optimum paths used for classification

(Lines 6 − 10) backwards, moves irrelevant samples to Dev ,

and repeats learning and classification from a reduced training

set until it reaches the above stopping criterion.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results with

respect to the proposed approach to optimize OPF prun-

ing. In order to minimize both the OPF classification error

and the training set size, we considered the following opti-

mization techniques: Multi-objective Black Hole Algorithm

(MOBHA) [36], Multi-objective Cuckoo Search (MOCS) [37],

Multi-objective Firefly Algorithm (MOFFA) [38] and Multi-

objective Particle Swarm Optimization (MOPSO) [39]. Ad-

ditionally, we employed ten benchmark datasets, being eight

from UCI repository1 and two private: NTL-Comercial and

NTL-Industrial. Notice we set the number of possible solu-

tions, m = 10, and the number of iterations T = 10. We used

50%, 30% and 20% for the training, evaluating and testing

set percentages, respectively. In regard to the source-code, we

used the LibOPT [40].

The proposed approach aims at modeling the problem of

automatically tuning the MLoss parameter and the number

of iterations T by means of a multi-objective problem, which

1http://archive.ics.uci.edu/ml/

means we are going to use the OPF classification error over the

evaluating set and the training set size as the fitness functions

to be minimized. Mathematically speaking, the aforemen-

tioned problem can be formulated as follows:

x∗ = arg min
∀x∈S

(w1f1(x) + w2f2(x)) , (11)

where f1(x) stands for the the OPF classification error over

the evaluating set, and f2(x) denotes the training set size. As

such, we opted to approach the problem as a scalarized multi-

objective problem, as previously discussed in Section II.

Table I displays the number of samples, number of features,

and number of classes for each dataset. Notice we decided

to evaluate the robustness of the proposed approach under

different scenarios.

TABLE I
DESCRIPTION OF THE BENCHMARKING DATASETS.

Dataset No. samples No. features No. classes

German Numer 1,000 24 2
Ionosphere 351 34 2
MPEG-7 1,400 180 70
Pendigits 7,494 16 10
Satimage 4,435 36 6

Sonar 208 60 2
Splice 1,000 60 2

SVM-Guide 2 391 20 3
NTL-Comercial 4952 8 2
NTL-Industrial 3182 8 2

Table II presents the parameter configuration for each

meta-heuristic optimization technique. The parameters were

set based on empirical studies conducted over a number of

experiments.

TABLE II
PARAMETERS USED FOR EACH TECHNIQUE.

Technique Parameters

PSO c1 = 1.7, c2 = 1.7, w = 0.7

CS α = 0.1, pa = 0.25

FFA α = 0.2, β = 1, γ = 1

BHA –

In order to evaluate the techniques compared in this work,

we used a measure F that considers the results of both fitness

functions as follows:

F =
accuracy over the test set

training set size
. (12)

Therefore, since one aims at using smaller training sets and

obtaining higher accuracy rates, the greater the value of F ,

the better the technique is.

Table III presents the OPF classification accuracy over the

test set and the training set size. However, Table IV displays

the F values for each optimization technique considered in this

work, where the values in bold stand for the best results. No-

tice OPF denotes the standard classifier, i.e., without pruning

samples. It is worth noting that MOBHA obtained the best

results in German Numer, MPEG-7 and Pendigits datasets.

MOCS achieved the best F values in SVM-Guide 2, NTL-

Comercial and NTL-Industrial datasets. Concerning Splice and

Sonar datasets, the highest values belong to MOFFA, while

the better results in Ionosphere and Satimage datasets were

achieved by MOPSO.

Clearly, one can observe the multi-objective techniques

obtained better results than standard OPF in all datasets. Also,

different optimization techniques obtained the best results in

distinct datasets, although they have performed similarly in

all situations. Another interesting point to observe concerns

the stability of the methodology employed in this work. The

results presented in Table IV stand for a single run over

the datasets. Although Equation 11 initializes w1 and w2

with random values, we have observed that different runs,

i.e., experiments with other values for these variables, did

not influence the final results. Probably, the results would be

different if we have used more fitness functions, as well as the

decision variables (MLoss and T) seem to stabilize both the

accuracy and training set size after some time.

Table V displays the classification time over the testing set

(miliseconds) regarding the proposed approach to find MLoss

and T . One can observe that MOBHA obtained the lowest

classification time in German Numer, MPEG-7, Pendigits,

SVM-Guide 2 and NTL-Comercial datasets, thus obtaining a

gain of 322%, 272%, 419%, 322% and 454%, respectively,

in terms of computational load. With respect to Ionosphere,

Satimage, Sonar and NTL-Industrial datasets, MOPSO ob-

tained the lowest classification time with gains of 390%,

363%, 313% and 413%, respectively. MOCS obtained the best

classification time in Splice dataset achieving a gain of 368%.

Therefore, we can highlight the gain in efficiency concerning

the proposed multi-objective OPF pruning algorithm.

V. CONCLUSIONS

The very basic idea of OPF pruning is to learn the most

representatives samples in order to create a compact training

set. However, OPF pruning is parameter-dependent (MLoss

and T), and finding the proper values for such parameters can

be a hard task.

In this paper, we proposed to use well-known meta-heuristic

algorithms in order to find near-optimal values concerning the

aforementioned parameters. The experiments were conducted

over 10 datasets in order to show the robustness of the

proposed approach. We have observed that all meta-heuristic

algorithms obtained F values considerably better than standard

OPF, indicating a good compactness of the training sets, being

MOBHA and MOCS the ones that obtained the best results in

the majority datasets. Also, we can highlight the improvements

in the computational load.

In regard to future works, we intend to work on a many-

objective optimization model by adding more fitness functions,

such as pruning less representative OPF prototypes. We be-

lieve that keeping more prototypes, we can also obtain more

accurate results.

ACKNOWLEDGMENT

The authors are grateful to FAPESP grants #2014/12236-1

and #2016/19403-6, Capes, and CNPq grant #306166/2014-3.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems. Cambridge,
MA, USA: MIT Press, 1992.

[2] R. Storn and K. Price, “Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of

Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[3] J. Kennedy and R. Eberhart, Swarm Intelligence. M. Kaufman, 2001.

[4] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A gravita-
tional search algorithm,” Information Sciences, vol. 179, no. 13, pp.
2232–2248, 2009.

[5] X.-S. Yang, “Firefly algorithm, stochastic test functions and design
optimisation,” International Journal Bio-Inspired Computing, vol. 2,
no. 2, pp. 78–84, 2010.

[6] X.-S. Yang and D. S., “Engineering optimisation by cuckoo search,”
International Journal of Mathematical Modelling and Numerical Opti-

misation, vol. 1, pp. 330–343, 2010.

[7] A. Kaveh and S. Talatahari, “A novel heuristic optimization method:
charged system search,” Acta Mechanica, vol. 213, no. 3, pp. 267–289,
2010.

[8] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective
optimization: Formulation, discussion and generalization,” in Proceed-

ings of the Fifth International Conference in Genetic Algorithm, 1993,
pp. 416–423.

[9] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic
algorithm for multiobjective optimization,” in Proceedings of the IEEE

Conference on Evolutionary Computation, vol. 1, 1994, pp. 82–87.

[10] N. Srinivas and K. Deb, “Multiobjective optimization using nondomi-
nated sorting in genetic algorithms,” Evolutionary Computation, vol. 2,
pp. 221–248, 1994.

[11] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-
parative case study and the strength pareto approach,” IEEE Transactions

on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, Nov 1999.

[12] J. Knowles and D. Corne, “The pareto archived evolution strategy:
a new baseline algorithm for pareto multiobjective optimisation,” in
Proceedings of the Congress on Evolutionary Computation, vol. 1, 1999,
pp. 98–105.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[14] S. Sivasubramani and K. S. Swarup, “Multi-objective harmony search
algorithm for optimal power flow problem,” International Journal of

Electrical Power and Energy Systems, vol. 33, no. 3, pp. 745–752, 2011.

[15] S. N. Omkar, J. Senthilnath, R. Khandelwal, G. N. Naik, and
S. Gopalakrishnan, “Artificial bee colony (ABC) for multi-objective
design optimization of composite structures,” Applied Soft Computing,
vol. 11, no. 1, pp. 489–499, 2011.

[16] R. Akbari, R. Hedayatzadeh, K. Ziarati, and B. Hassanizadeh, “A multi-
objective artificial bee colony algorithm,” Swarm and Evolutionary

Computation, vol. 2, pp. 39–52, 2012.

[17] H. C. Lau, L. Agussurja, S.-F. Cheng, and P. J. Tan, “A multi-objective
memetic algorithm for vehicle resource allocation in sustainable trans-
portation planning,” in Proceedings of the Twenty-Third International

Joint Conference on Artificial Intelligence. AAAI Press, 2013, pp.
2833–2839.

[18] K. Khalili-Damghani, A.-R. Abtahi, and M. Tavana, “A new multi-
objective particle swarm optimization method for solving reliability
redundancy allocation problems,” Reliability Engineering and System

Safety, vol. 111, no. 0, pp. 58–75, 2013.

[19] Y.-J. Zheng, Q. Song, and S.-Y. Chen, “Multiobjective fireworks opti-
mization for variable-rate fertilization in oil crop production,” Applied

Soft Computing, vol. 13, no. 11, pp. 4253–4263, 2013.

[20] M. K. Marichelvam, T. Prabaharan, and X.-S. Yang, “A discrete firefly
algorithm for the multi-objective hybrid flowshop scheduling problems,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 2, pp.
301–305, April 2014.

[21] Y. Jin and B. Sendhoff, “Pareto-based multiobjective machine learning:
An overview and case studies,” IEEE Transactions on Systems, Man,

and Cybernetics, vol. 38, no. 3, pp. 397–415, May 2008.

TABLE III
TRADE-OFF BETWEEN THE OPF CLASSIFICATION ERROR AND TRAINING SET SIZE.

German Numer Ionosphere MPEG-7 Pendigits Satimage Sonar Splice SVM-Guide 2 NTL-Comercial NTL-Industrial

MOBHA 61.03%/167 85.53%/51 88.65%/251 99.25%/928 91.95%/666 86.63%/36 70.70%/137 76.12%/64 63.19%/601 70.37%/414
MOCS 60.00%/175 85.53%/52 89.61%/263 99.44%/960 92.15%/665 84.69%/31 70.91%/134 78.61%/64 66.75%/615 75.11%/436

MOFFA 63.97%/174 88.58%/50 89.25%/254 99.44%/962 92.28%/672 88.35%/31 70.25%/132 79.95%/68 64.32%/637 70.43%/414
MOPSO 62.86%/178 89.47%/48 89.49%/256 99.36%/946 92.64%/630 87.04%/31 72.11%/147 74.55%/65 62.76%/614 70.08%/418

OPF 59.64%/500 81.58%/174 91.85%/700 99.67%/3744 93.15%/2214 85.98%/103 65.86%/499 74.16%/194 62.97%/2475 57.91%/1590

TABLE IV
F VALUES CONSIDERED THE DATASET AND TECHNIQUES EMPLOYED IN THIS WORK.

German Numer Ionosphere MPEG-7 Pendigits Satimage Sonar Splice SVM-Guide 2 NTL-Comercial NTL-Industrial

MOBHA 0.0037 0.016771 0.003532 0.00107 0.001381 0.024064 0.005161 0.011894 0.001051 0.0017
MOCS 0.003429 0.016448 0.003407 0.001036 0.001386 0.027319 0.005292 0.012283 0.001085 0.001723

MOFFA 0.003676 0.017716 0.003514 0.001034 0.001373 0.0285 0.005322 0.011757 0.001010 0.001701
MOPSO 0.003532 0.01864 0.003496 0.001050 0.001471 0.028077 0.004905 0.011469 0.001022 0.001677

OPF 0.001193 0.004689 0.001312 0.000266 0.000421 0.008348 0.001320 0.003823 0.000254 0.000364

TABLE V
OPF CLASSIFICATION TIME [MS] OVER THE TEST SET.

Datasets OPF MOBHA MOCS MOFFA MOPSO

German Numer 0.012205 0.003800 0.004236 0.004243 0.004359
Ionosphere 0.001462 0.000454 0.000447 0.000488 0.000375
MPEG-7 0.080667 0.029715 0.033082 0.030930 0.032747
Pendigits 0.481865 0.115130 0.120072 0.122654 0.122084
Satimage 0.251095 0.073188 0.075933 0.077176 0.069209

Sonar 0.000653 0.000448 0.000228 0.000246 0.000209
Splice 0.018213 0.005239 0.004956 0.005084 0.005645

SVM-Guide 2 0.001660 0.000516 0.000828 0.001063 0.000808
NTL-Comercial 0.185389 0.040857 0.041952 0.044368 0.043448
NTL-Industrial 0.071641 0.017673 0.018219 0.018176 0.017353

[22] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning,
vol. 20, pp. 273–297, 1995.

[23] S. Haykin, Neural Networks: A Comprehensive Foundation (3rd Edi-

tion). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2007.

[24] J. P. Papa, A. X. Falcão, and C. T. N. Suzuki, “Supervised pattern
classification based on optimum-path forest,” International Journal of

Imaging Systems and Technology, vol. 19, no. 2, pp. 120–131, 2009.

[25] J. P. Papa, A. X. Falcão, V. H. C. Albuquerque, and J. M. R. S.
Tavares, “Efficient supervised optimum-path forest classification for
large datasets,” Pattern Recognition, vol. 45, no. 1, pp. 512–520, 2012.

[26] J. P. Papa, S. E. N. Fernandes, and A. X. Falcão, “Optimum-path forest
based on k-connectivity: Theory and applications,” Pattern Recognition

Letters, vol. 87, pp. 117–126, 2017.

[27] J. Papa, A. Falcão, G. de Freitas, and A. Avila, “Robust pruning
of training patterns for optimum-path forest classification applied to
satellite-based rainfall occurrence estimation,” IEEE Geoscience and

Remote Sensing Letters, vol. 7, no. 2, pp. 396–400, 2010.

[28] D. R. Wilson and T. R. Martinez, “Reduction techniques for instance-
based learning algorithms,” Machine Learning, vol. 38, no. 3, pp. 257–
286, 2000.

[29] N. Jankowski and M. Grochowski, Comparison of Instances Seletion

Algorithms I. Algorithms Survey. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 598–603.

[30] E. Pkalska, R. P. W. Duin, and P. Paclk, “Prototype selection for
dissimilarity-based classifiers,” Pattern Recognition, vol. 39, no. 2, pp.
189–208, 2006.

[31] R. Nakamura, C. Pereira, J. Papa, and A. Falcão, “Optimum-path
forest pruning parameter estimation through harmony search,” in 24th

SIBGRAPI Conference on Graphics, Patterns and Images, 2011, pp.
181–188.

[32] K. Miettinen, Nonlinear Multiobjective Optimization. Springer US,
1998.

[33] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
New York, NY, USA: John Wiley & Sons, Inc., 2001.

[34] C. Allène, J.-Y. Audibert, M. Couprie, and R. Keriven, “Some links
between extremum spanning forests, watersheds and min-cuts,” Image

Vision Computing, vol. 28, no. 10, pp. 1460–1471, 2010.
[35] A. X. Falcão, J. Stolfi, and R. A. Lotufo, “The image foresting transform:

Theory, algorithms, and applications,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 26, no. 1, pp. 19–29, 2004.
[36] K. Jeet and R. Dhir, “Software clustering using hybrid multi-objective

black hole algorithm,” in International Conference on Software Engi-

neering and Knowledge Engineering, 2016, pp. 650–653.
[37] K. N. Abdul Rani, W. F. Hoon, M. F. Abd Malek, N. A. Mohd Affendi,

L. Mohamed, N. Saudin, A. Ali, and S. C. Neoh, “Modified cuckoo
search algorithm in weighted sum optimization for linear antenna array
synthesis,” in IEEE Symposium on Wireless Technology and Applica-

tions, 2012, pp. 210–215.
[38] X.-S. Yang, “Multiobjective firefly algorithm for continuous optimiza-

tion,” Engineering with Computers, vol. 29, no. 2, pp. 175–184, 2013.
[39] M. C. Bhuvaneswari, Application of Evolutionary Algorithms for Multi-

Objective Optimization in VLSI and Embedded Systems. Springer India,
2015.

[40] J. P. Papa, G. H. Rosa, D. Rodrigues, and X.-S. Yang, “Libopt: An open-
source platform for fast prototyping soft optimization techniques,” ArXiv

e-prints, 2017, http://adsabs.harvard.edu/abs/2017arXiv170405174P.

