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Abstract—The visual and automatic classification of vehicles
plays an important role in the Transport Area. Besides of
security issues, the monitoring of the type of traffic in streets
and highways, as well the traffic dynamics over time, allows
the optimization of use and of resources related to such public
infrastructure. In this work we propose a novel method, called
2D-DBM, for robust and efficient automatic vehicle classifica-
tion through color images based on a DBM (Deep Boltzmann
Machine) combined with bilinear projections. While the DBM
training allows a robust initialization of discriminative MLP
(Multilayer Perceptron) neural network parameters, the bilinear
projection technique can scale down the MLP dimensions, obtai-
ning efficiency while preserving accuracy. The proposed method
was assessed on the BIT-Vehicle database, a challenging dataset
consisting of frontal images of vehicles collected in a real traffic
environment, and compared with a CNN (Convolutional Neural
Network) and a traditional DBM (without bilinear projection).
The obtained results show that, while keeping the accuracy,
the new method significantly reduced the network size and the
processing time.

Keywords-Vehicle Classification; Traffic Control; Image Ana-
lysis; Deep Boltzmann Machines; Bilinear Projection.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) have gained con-
siderable attention in the past few years due to their valuable
applications, such as avoidance of vehicle collision [1], [2]
and traffic flow monitoring [3], [4], [5].

An ITS, in general, is composed of different modules, such
as vehicle detection and vehicle tracking, that communicate
with each other [3]. The vehicle classification module, usually
placed at the top of the ITS stack, is responsible for taking
important decisions concerning the entire information already
processed by the other components, e.g., classificating the
detected vehicle in the images into predefined classes.

In this work, we propose a robust and efficient method
for automatic visual vehicle classification based on a novel
deep learning architecture, inspired by works such as [6],
[7], [8], which achieved good results in such task. According
to [9], the main advantages of using deep learning architectures
consist in the fact that: (i) they present an intrinsic contrast
detection ability (acting similar to edge detection frameworks);
(ii) they work with more robust (high-level) features than
traditional methods, learned automatically from training data
even by mean of unsupervised algorithms; and (iii) their
learned parameters can also serve as a good initialization for

other models, such as a Multilayer Perceptron (MLP) network
- as proposed in section III.

Despite of such advantages, there are two main problems
associated with the already existent deep learning-based tech-
niques. The first issue concerns to the amount of time and
computer processing demanded to deal with their huge amount
of matrix products (due to their multilayer architectures) as
well as with their sampling and second order optimization
methods, like conjugate gradient [10], [11]. The second pro-
blem regards to the choice of the best network configuration,
i.e., determining its optimal number of layers and amount of
neurons in each of them.

In this work we also address such issues, especially the time
consumption and network size definition. In order to solve the
time consumption problem, especially for training the network,
parallel programming in a CUDA (Compute Unified Device
Architecture) device and a recently proposed deep learning
architecture, the Deep Boltzmann Machine (DBM) [12], are
employed. The problem of defining the amount of neurons
in the network is addressed by using a bilinear projection
technique [13], which also improves the network efficiency,
reducing its dimensions while preserving accuracy.

II. TECHNICAL BACKGROUND

In this section, fundamental concepts concerning the main
techniques used in the proposed deep network for visual vehi-
cle classification are briefly described. They involve, mainly,
fundamentals of Boltzmann Machines (BM) [14], Deep Boltz-
mann Machines (DBM) [12] and 2D-Linear Discriminant
Analysis [13].

A. Boltzmann and Deep Boltzmann Machines
Boltzmann Machines (BM) [14] are neural networks that

can also be viewed as fully connected graphs, in which all
nodes are connected to each other by symmetrical edges.
These nodes are treated as stochastic binary variables and
can be virtually grouped in two layers, v and h, as shown
in Fig. 1, in order to facilitate the formulation of the model.
There is an important property directly related to Energy
Models [14] which states that, when the BM reaches the
thermal equilibrium, its joint probability can be written as:

P (v,h; Θ) =
e−E(v,h)

Z(Θ)
, (1)



in which v and h denote the visible and hidden layers of the
BM, respectively, Θ = {L,S,W } stands for the BM set of
parameters, and the normalization term Z(Θ), also known as
the partition function, is given by:

Z(Θ) =
∑
v,h

e−E(v,h). (2)

The Energy of the model joint distribution is given by:

E(v,h) = −
∑
i<j

vivjLij−
∑
k<l

hkhlSkl−
∑
i,k

vihkW ik. (3)

in which j and l indicates respectively the maximum quantity
of nodes in layer v and in layer h.

In an attempt to solve the optimization (learning) problem
of the BM, that consists in minimizing the energy E(v,h)
of Eq. 3, the same as maximizing the “Goodness”, −E(v,h),
Hinton and Sejnowsky [14] proposed a parallel version for the
Simulated Annealing algorithm created by Kirkpatrick, Gelatt
and Vecchi [15], capable to find the minimum of the non-
linear energy function. Simulated Annealing technique tries
to find the best possible minimum through the calculation of
the probability ratio between the configurations of the network
nodes following:

Pα
Pβ

= e−(Eα−Eβ)/T , (4)

in which α and β represent two global configurations of the
network, and the variable T controls the temperature of the
system (which tends to decay over time). High temperatures
avoid the algorithm getting stuck in poor local optimal po-
sitions in search space, while low temperatures prevent the
algorithm escaping from a great optimal solution.

Trying to overcome the convergence instability of the Simu-
lated Annealing method, in [16] and [17] a better approach to
solve the energy minimization problem is proposed based on
the simplification of the BM model, which is converted to a
bipartite graph structure called Restricted Boltzmann Machine
(RBM), also shown in Fig. 1.
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Fig. 1. Boltzmann architectures: (a) Boltzmann Machine (BM); and (b)
Restricted Boltzmann Machine (RBM). L, S and W indicate the weights of
connections between neurons, and b and c their biases. In RBMs no intralayer
connections are allowed.

The optimization method presented in [16] and [17] was
called Contrastive Divergence (CD) and its main goal is to
solve the maximum log-likelihood approximation problem:

∂ log P (v)

∂Wik
=
〈
vihk

〉
data
−
〈
vihk

〉
model

, (5)

which consists in minimizing the divergences between two
correlations, one with respect to the observed data, expectation
〈vihk〉data, and the other with respect to the model non-
observed data, expectation 〈vihk〉model. Since it is difficult
to calculate the model expectations, in [16] a Gibbs sampling
technique is applied to the RBM until the Markov Chain hits
the thermal equilibrium. In [17], the authors show that if the
Markov Chain is initialized on the observed data, a single
Gibbs sampling iteration is sufficient to produce the model
expectations.

The conditional probabilities used in the CD method are
given by the logistic functions:

P (hk = 1|v) =
1

1 + e(−bk−
∑

i
viwik)

, (6)

and,

P (vi = 1|h) =
1

1 + e(−ci−
∑

k
hkwik)

, (7)

and, in case the RBM input values are not sparse enough (real-
valued data), Eq. 7 must be replaced by the normal distribution
over the training data given by:

P (vi|h) = N

(
vi

∣∣∣∣∣∑
k

hkwik + ci, σ
2
i

)
. (8)

A Deep Boltzmann Machine (DBM) model [12], which
architecture is shown in Fig. 2, is a deep model that, besides
incorporating the advantages of the Deep Belief Networks
(DBN) [9], such as the ability to learn internal representations
from the input data (higher layers capture complex statistical
structures) and a fast way of making inferences (hidden layers
state computation), can also incorporate top-down feedback,
making possible to use higher level knowledge to solve
uncertainty regarding raw or intermediate level features with
accuracy. Its optimization, as given in [9], consists in finding
the solution to the maximization problem of the variational
lower bound on the log-likelihood:

log P (v; Θ) ≥
∑
h

Q(h|v;µ) log P (v,h; Θ) +H(Q), (9)

where H(·) indicates the entropy functional.
For simplicity and speed, in [12] the authors use the fully

factorized Mean-Field approximation method [18], approxi-
mating the true posterior P (h|v; Θ) by:

Q(h|v;µ) =

L∏
l=1

Fl∏
k=1

q(hlk), (10)



where q(hlk = 1) = µlk, Fl is the number of hidden units in
hidden layer l, and L is the number of hidden layers.

The Mean-Field approximation is used to calculate the data
expectations (middle term of Eq. 5) for the whole DBM, mean-
while due to the difficult in calculating the model expectations
(last term of Eq. 5), a Persistent Contrastive Divergence (PCD)
technique [19] is applied to a set of uniformly random initia-
lized fantasy particles. After computed the data and model
expectations, the final step of the stochastic approximation
process consists in calculating the approximate log-likelihood
gradient as in Eq. 5. 
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Fig. 2. DBM architecture with two layers, h1 and h2. The DBM can be
viewed as a stack of RBMs with an improved learning.

B. 2D-Linear Discriminant Analysis

Given a set of t matrices A = {X1,X2,X3, . . . ,Xt},
with Xs ∈ IR m × n, Ā denoting the mean matrix of A and
Ā
i denoting the mean of all matrices from A which belongs

to class i, an special kind of bilinear projection, the 2D-Linear
Discriminant Analysis (2D-LDA), aims to produce a compact
representation for matrix Xs, denoted here by Ds, such that
Ds ∈ IR p × q and p × q < m × n. According to [13], [20]
and [21], the projection matrices, represented therefore by φ,
need to satisfy the following criterion:

arg max
φ

J(φ) =
φTGbφ

φTGwφ
, (11)

which indicates that the optimum projection matrices are
the ones that maximize the between class separability and
minimize the within class separability.

The optimization process consists, starting from a column
projection matrix φ = U , in finding the between and the
within class scatter matrices, i.e., Gb = Sb and Gw = Sw
through:

Sb =
1

t

c∑
i=1

ki(Ā
i − Ā)T (Ā

i − Ā), (12)

and,

Sw =
1

t

c∑
i=1

ki∑
j=1

(Ai
j − Ā

i
)T (Ai

j − Ā
i
), (13)

in which ki denotes the maximum quantity of elements of
class i, and Ai

j indicates the jth element of A that belongs
to class i.

According to [13], since the projection matrix U must
be constituted of uncorrelated feature vectors, it must be
generated from the eigenvalue decomposition:

S−1
w Sb = λjuj , (14)

where λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λq are the set of eigenvalues as-
sociated with the set of column eigenvectors {u1,u2, . . . ,uq}
that generates the projection matrix U ∈ IR n × q.

After finding B = AU , in the next step of the optimization
φ = V is found following basically the same approach used to
find U . However, in such step, the scatter matrices Gb = Hb

and Gw = Hw are found following:

Hb =
1

t

c∑
i=1

ki(B̄
i − B̄)(B̄

i − B̄)T , (15)

and,

Hw =
1

t

c∑
i=1

ki∑
j=1

(Bi
j − B̄

i
)(Bi

j − B̄
i
)T . (16)

After calculatingHb andHw the eigenvalue decomposition
is performed:

H−1
w Hb = εjvj , (17)

leading to the projection matrix V ∈ IR m × p, where ε1 ≥
ε2 ≥ ε3 ≥ · · · ≥ εp are the set of eigenvalues associated with
the set of column eigenvectors {v1,v2, . . . ,vp}.

The optimization finally ends when the value obtained in
Eq. 11, given the projection matrices V and U , stops growing.

III. PROPOSED METHOD

In this work, we propose a novel Deep Boltzmann Machine,
called 2D-DBM since it utilizes bilinear projections, for robust
and fast vehicle classification based on an MLP (Multilayer
Perceptron) neural network.

In the proposed classifier, the weights of the MLP neural
network are robustly initialized based on the parameters of a
trained DBM combined with 2D-LDA projections. The MLP
architecture is formed based on the DBM structure formed.
After initialization, the MLP parameters are fine-tuned using
the conjugate gradient technique.

In the 2D-DBM, the DBM training (together with 2D-LDA
projections) is carried out in two stages called Local and
Global DBM Pre-Training, likewise in [22]. Such stages, as
well as the MLP initialization and fine-tuning, are described
in the following subsections.

A. DBM Local Pre-Training

In the first step of the proposed method, the main goal
is to train one DBM over each individual patch extracted
from the training images in order to improve the local feature
extraction of the graphical model. As illustrated in Fig. 3,
the local pre-training starts by splitting each sample image
(32 × 32 downsampled color images) into 8 × 8 patches that
represents the local regions of the image. This is done to every



training sample and, following Krizhevsky [22], we used 16
non-overlapping patches plus 9 overlapping patches, resulting
in 25 patches per image.
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Fig. 3. Local pre-training process: after splitting each original 32 × 32
training image, each patch is projected in the 2D-LDA space and serves as
input to train a Gaussian RBM (GRBM), which is used as interface between
the real-valued patch and a binary local DBM. At the end, the whole image
is resized to 8× 8 pixels and also feeds a GRBM and a local DBM.

Given every group of local patches (extracted from the same
8 × 8 region of the training images), as shown in Fig. 3,
the next step is to apply the bilinear projection technique on
them, following [7] and [23], and projection matrices found
given all the training patches in the database. Fig. 4 shows
our solution to solve the problem of projecting color patches
(3 channels - RGB) in the 2D-LDA space and combining
the results into a Gaussian Restricted Boltzmann Machine
(GRBM) [24] model. For each individual channel, we calculate
one pair of projection matrices, U8 × q(f)

and V 8 × p(f)

, for
f ∈ {R,G,B}, resulting in W (f) = V (f)T ⊗ U (f). Based
on this, it is possible to initialize Wp∗ × q∗ since p∗ and q∗

represent the maximum sizes found during the search for the
optimum projection matrices.

In Fig. 4, the blue edges of the GRBM indicate that the
weights of such symmetric connections are obtained from the
projection matrices generated for each channel of the training
patches, obtained from 2D-LDAR (2D-LDA in channel R),
2D-LDAG (bilinear projection in channel G) and 2D-LDAB
(2D-LDA in channel B). The black dashed lines indicate the
connections of Wp∗ × q∗ that are initialized with value 0.

Using a local GRBM for preprocessing the projected data
ensures a more stable convergence for the optimization of the
local DBMs. After optimizing each GRBM, the local pre-train
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Fig. 4. Color patch projection, GRBM construction and training. Each
channel of a training patch is considered separately. For each channel, R,
G or B, the patch is projected in the 2D-LDA subspace (found based on all
local training patches in the database from the same channel) and the local
GRBM is trained: each channel of a given patch feeds part of the visible layer
of such GRBM.

process moves on each local DBM optimization, noting that
the DBM is placed in the top of the GRBM, i.e., its hidden
layer h is considered as the non-sampled version of the first
layer of the DBM (v).

The local pre-training continues until there is no more
patches to be processed for the given training images. After
that, the whole 32 × 32 training images are resized to 8 × 8
pixels and the same steps applied to their extracted patches
are repeated over them.

B. DBM Global Pre-Training

The second step in the DBM training is called global pre-
training and consists in combining all the local trained GRBMs
and DBMs, where there is no more need to apply the pro-
jection technique because we already have scaled the hidden
sizes and obtained a good initialization space of parameters
Θ = {W1, . . . ,Wl+1, c1, . . . , cl+1,b1, . . . ,bl+1}, where l
denotes the maximum amount of patches used in local pre-
training phase.

In order to initialize the global DBM, we follow a very
similar approach described in [22]. The initialization of the
generative and recognition biases, c and b, respectively, is



performed throw concatenating all the small representations
of them in the local DBMs.

Fig. 5 shows the initialization process of parameter W
of the global DBM, that is very similar to the process of
initialize the local GRBM in Fig. 4. The main difference is
in the concatenation of the local DBMs generated based on
the 8 × 8 patches. For the local DBM trained on the whole
reduced training images, the connection values of visible layer
nodes with all the other local hidden layers nodes will be an
averaged version of its original values.

In Fig. 5, the blue lines represent connections of pre-trained
local DBM isolated, black dashed lines represent connections
established between hidden and visible nodes from different
DBMs initialized with 0 values, and red lines indicate con-
nections between the local DBM pre-trained over the resized
version of the entire image. The notation vs(1) indicates the
set of visible nodes coming from the local DBM pre-trained
over patch 1 and hs(1) indicates the corresponding hidden
layer of the same local DBM. The n + 1 value indicates the
resized version of the 32× 32 image to 8× 8 size. Likewise
in Fig. 4, the bias information was visually omitted but it is
implicitly in the model.
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Fig. 5. Global DBM initialization.

C. MLP Initialization and Training

After the DBM pre-training steps, such structure is used,
removing its top layer with softmax units (used to improve
the DBM feature representation as said), to robustly initialize
a MLP neural network, which is then fine-tuned in order to
classify unknown images of vehicles into pre-defined classes.
The architecture of the formed MLP based on the DBM
architecture (with two hidden layers) is shown in Fig. 6. As
one can observe, the trained weights (W 1, W 2 and W 3) and
biases of the hidden neurons of the DBM (b1 and b2) are used
as the initial parameters of the MLP. The symbol φ in layers
h1 and h2 denote the sigmoid function, Eq. 6, applied to the
inner product of the output of the previous layer and weights
of connections, which is denoted by the symbol Σ.

In Fig. 6, it is also possible to observe the addition of
a softmax layer where the abbreviation sft in each node
indicates that the input inner product (Σ) is processed by
a softmax function, which makes possible to use the cross-
entropy function to estimate the error of the MLP predictions

and consequently fine-tune such network through backpropa-
gation. As said, in our work the conjugate gradient method
was used fo such task. Assuming that the softmax layer
produces the normalized distribution of probabilities S(·) for
the presented image, which indicates the probability of the
vehicle belonging to each pre-defined vehicle class, and that
L(·) represents the categorical distribution over the real label
of the image (value “1” in the position associated with the
correct class of the vehicle and “0” otherwise), the cross-
entropy function can be calculated by:

Cr(S,L) = −
|V|∑
i=1

S(vi) log L(vi), (18)

where |V| represents the cardinality of the set of input images,
already preprocessed by the GRBM and submitted to the MLP
classifier (vi indicates each position of S and L).
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Fig. 6. MLP neural network architecture formed based on the trained DBM.
An additional layer with softmax units, one per known class of vehicle, is
inserted at the top of the structure to perform classification based on their
outcome probabilities given a presented image (after passing through the
trained GRBM and the MLP). Such values are compared with the real label of
the image through the cross-entropy function to fine-tune the MLP parameters.

IV. MATERIAL

The proposed vehicle classification neural network, called
2D-DBM, was assessed on the challenging BIT-Vehicle
dataset [6].

For the assessment, the adopted evaluation metric was the
average accuracy, traditionally used in literature to compare
vehicle classification methods [6].

A. BIT-Vehicle Dataset

The BIT-Vehicle dataset was proposed in [6]. The dataset
has a total of 9,905 color (RGB) vehicle images with different
sizes: 1600 × 1200 or 1920 × 1080 pixels. The images were



captured from two different cameras in different days and from
different angles from a real road traffic environment, most
of them with frontal view of the vehicles. The luminosity,
scale and surface color conditions differ from an image to
another. Due to capture delay from the cameras and the large
size of some vehicles, in some images it is not possible
to observe them as a whole. All these properties make the
BIT-Vehicle dataset a challenging database for testing visual
vehicle classification methods. Fig. 7 shows some samples of
BIT-Vehicle dataset.

BUS 

TRUCK 

MICROBUS 

MINIVAN 

SEDAN 

SUV 

 

Fig. 7. Example of images from the BIT-Vehicle dataset [6].

As illustrated in Fig. 7, the images of vehicles in the BIT-
Vehicle dataset [6] are originally distributed into six classes:
Bus (555 images), Microbus (878 images), Minivan (474
images), Sedan (5796 images), SUV (1381 images), and Truck
(821 images).

In the experiments two subsets of images derived from the
BIT-Vehicle dataset were used: Original Images subset and
Normalized Images subset.

1) Original Images: This subset is composed by 1200
samples of vehicle images randomly selected from the BIT-
Vehicle dataset. Actually, were sampled 1200 images for

training and other 1200 for testing, with an equal amount of
200 images per class in both sets. The sampling of the images
was performed 5 times, for training and testing sets, and the
final accuracies and time results obtained were averaged.

2) Normalized Images: Aiming to overcome the luminosity
issues that can be found in most of the images of the BIT-
Vehicle dataset, we applied on them two well known histogram
equalization techniques based on the HSV (Hue, Saturation
and Value) [25] and Lab color spaces [26].

The first equalization technique consists in converting the
image from the RGB to the HSV color space and applying an
automatic equalization to the histogram of its V component,
since it is directly related to the luminosity of the image. This
method proved to be efficient to eliminate dark areas that were
obstructing the vehicles visualization.

Despite presenting a good performance, the HSV equaliza-
tion technique, in many cases, was not capable to improve
significantly the quality of the images of the BIT-Vehicle
dataset. Due to this reason, in such cases, we applied in
the vehicle images a second type of normalization based
on the Lab space, the Contrast Limited Adaptive Histogram
Equalization (CLAHE) technique [27]. To determine wether
to use the HSV or conversely the CLAHE normalization, it
was defined that the HSV equalization would be applied only
when the skewness of the histogram of the V component of
the image presented a positive value, greater than 1.0. Fig. 8
shows results of the normalization techniques applied to two
vehicle images of the BIT-Vehicle dataset. 

Original Normalized 

equ(HSV) 

Original Normalized 

equ(Lab) 

Fig. 8. Images of the BIT database [6] before and after applying one of
the two equalizations equ(·). The normalized images present a much better
visual aspect.

This subset (Normalized Images) is composed by 1200
samples of normalized vehicle images randomly selected from
the BIT-Vehicle dataset. After normalizations of the images,
the same sampling approach performed on the Original Im-
ages dataset was addopted (also considering 1200 images for
training and 1200 for testing).

V. EXPERIMENTAL RESULTS AND DISCUSSION

In order to compare the method for vehicle classification
based on the new neural network architecture proposed in



this work, 2D-DBM, which utilizes bilinear projections, with
the method based on the traditional DBM [12], which does
not utilizes bilinear projections, and other method based on
CNN [28], several experiments were carried out.

A. “All Class” Experiments

The name “All Classes” experiments was given to the group
of experiments in which all the six classes of vehicles in the
evaluated database were considered.

We performed such experiments configuring the hidden
layers for the DBM, that operates without bilinear projections
in a complete mode. This means that since the local pre-
training of our method used patches with 8 × 8 pixels, the
number of filters of each local hidden layer of DBM was set
to 64.

The amount of epochs used for local and global pre-training
in the proposed 2D-DBM, as well as in DBM and CNN
models, was set to 80, while the learning rates were set to
0.01 and 0.02 for W and both biases, respectively, during the
GRBM pre-training, and 0.1 and 0.2 after that, only for the
non 2D-DBM based approach. The same learning rate rule
was used during the global pre-training phase, but with the
learning rate of W set to 0.001. Initial momentum was set
to 0.5 until fifth epoch and changed to 0.9 after that. For
the Mean Field variational inference method, the amount of
epochs used was 50, the learning rates were set to 0.0005 and
momentums, following the same rule of pre-training stage,
were set to 0.1 and 0.5. The quantity of iteration used during
the Mean Field positive phase was 30. During the fine-tuning
of the MLP, supervised training through conjugate gradient
method was performed as said. It was used 50 epochs to train
the network over the Original and Normalized Image subsets.
For the CNN, the default parameter set up was maintained. In
[28] there is a detailed description of such configuration.

In Table I the accuracies (%) obtained on the Original Image
(OI) subset and on the Normalized Image (NI) subset are
presented.

TABLE I
“ALL CLASSES” EXPERIMENTS - AVERAGE ACCURACIES (%) IN SUBSETS

OI AND NI.

METHOD OI NI
CNN 70.08 ± 0.01 69.33 ± 0.02
DBM 80.03 ± 0.02 80.62 ± 0.03

2D-DBM 77.20 ± 2.80 78.95 ± 2.80

In Table II the training times (minutes) of each method are
presented.

TABLE II
“ALL CLASSES” EXPERIMENTS - AVERAGE TIME (MINUTES) TO TRAIN

THE NETWORK IN OI AND NI SUBSETS.

METHOD OI NI
CNN 29m 29m
DBM 44m 93m

2D-DBM 15m 17m

The results presented in Table I and Table II show that
2D-DBM was superior to CNN in both criteria, accuracy and
processing time, in both image subsets, Original Image (OI)
and Normalized Image (NI).

These results also show that although being slightly in-
ferior to DBM regarding the criterion accuracy, 2D-DBM
was significantly superior to DBM regarding the criterion
processing time in both image subsets, Original Image (OI)
and Normalized Image (NI).

Regarding the results reported in [6] for BIT-Vehicle dataset
(an accuracy rate of 88% using a semisupervised CNN), any
comparison is difficult because the authors did not made
available the source code of their method. Besides, the training
and test subsets of images used in the experiments may not
be exactly the same.

B. “Combined Classes” Experiments

Since usually only major classes of types of vehicles are
considered in real applications of Intelligent Transportation
Systems [29], in this group of experiments, that we called
“Combined Classes” experiments, we have combined the six
classes of the BIT dataset [6] into three main classes: (i)
Cars (Sedan & SUV), (ii) Buses (Buses & Micro-buses), and
(iii) Trucks (Minivans & Trucks). Minivans original class was
grouped into the class Trucks, since both classes represent
similar kinds of vehicles in BIT-Vehicle dataset, differing only
in dimension. In many cases the minivans in this dataset have
truck bodies.

In Table III the accuracies (%) obtained for the Original
Image (OI) subset and for the Normalized Image (NI) subset
on the “Combined Classes” Experiments are presented. As
expected, the accuracies obtained were superior than the ones
obtained on the “Combined Classes” experiments.

In Table IV the times spent to train the networks in the
“Combined Classes” experiments are presented. It is important
to recall that the number of training and test samples per class
was increased to 400.

The results obtained in these experiments confirm that 2D-
DBM is faster than the other two compared deep learning tech-
niques, DBM and CNN, and also superior to CNN regarding
the criterion accuracy.

TABLE III
“COMBINED CLASSES” EXPERIMENTS - AVERAGE ACCURACIES (%) IN

SUBSETS OI AND NI.

METHOD OI NI
CNN 78.15 ± 0.02 80.43 ± 0.01
DBM 88.45 ± 0.01 89.50 ± 0.01

2D-DBM 85.53 ± 1.16 87.15 ± 1.43

It was observed during the experiments that the processing
time was increased using NI dataset because all the 5 iterations
of line search (conjugate gradient method) was executed by the
MLP fine tuning step, while a maximum of 3 iterations of line
search was executed in the tests with OI dataset.



TABLE IV
“COMBINED CLASSES” EXPERIMENTS - AVERAGE TIME (MINUTES) TO

TRAIN THE NETWORK IN OI AND NI SUBSETS.

METHOD OI NI
CNN 30m 28m
DBM 45m 1h 35m

2D-DBM 10m 19m

VI. CONCLUSION

In this work we propose a novel deep learning-based method
for visual vehicle classification called 2D-DBM. Besides its
superior accuracy levels due to the initialization carried out
by means of a DBM, the architecture of the proposed method
incorporates bilinear projections in order to obtain efficiency.
As well as accuracy, efficiency is an important property
of Intelligent Transportation Systems, primarily to meet the
online processing requirements.

The 2D-LDA technique plays an important role in the
speed up of the pre-training and training phases of the DBM
and MLP. In some cases the average time spent to train the
bilinear version of the DBMs was 3 times faster than the
classical DBM based approaches and 2 times faster than the
CNN method in [28]. Besides training speed up, the 2D-LDA
technique used in the proposed 2D-DBM method makes the
process of defining the architecture more automatic in com-
parison with CNNs, whose architecture must be reformulated
every time the image database changes significantly.

In future work the proposed classifier could be easily
extended for other kind of discriminative problems involving
images from the real world not related with vehicles and pro-
blems involving MLP parameter optimization using techniques
like cross validation. It also could be extended for generative
problems such as autoencoders [30].
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