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Abstract—Atherosclerosis is a disease responsible for millions
of deaths each year, primarily due to heart attack and stroke.
Magnetic resonance (MR) imaging is a non-invasive method that
can be used to analyze the carotid artery and detect signs
of atherosclerosis. Most MR methods acquire high contrast,
static images. These methods, however, are sensitive to artifacts
from cardiac motion, produce time-averaged images, and do
not allow for carotid distensibility analysis. Carotid distensibility
is an important, systematic measure of vascular health. Cine
fast spin echo (FSE) is a new MR imaging that can obtain
dynamic MR data (i.e., cardiac phase-resolved datasets). Dynamic
imaging, however, comes at the cost of lower spatial resolution
and signal-to-noise ratio, making these data potentially more
difficult to segment. This paper introduces a semi-automated
segmentation method that segments the common carotid artery
(CCA) lumen across the cardiac cycle from dynamic MR images.
To the best of our knowledge, this work is the first proposed
technique for segmenting cardiac cycle-resolved cine FSE images.
It combines a priori knowledge about the size and shape of the
CCA, with the max-tree data structure, the tie-zone watershed
transform (using identified internal and external markers) and
supervised classification, to segment the carotid artery wall-lumen
boundary. The user has to select only a seed point (centred in
the carotid artery lumen). Technique performance was assessed
using forty-five cine FSE data sets, each consisting of images
reconstructed at sixteen temporal bins across the cardiac cycle.
The automatic segmentation results were compared against the
consensus of three different manual segmentation results. Our
technique achieved an average Dice coefficient, sensitivity and
false positive rate of 0.928± 0.031 (mean ± standard deviation),
0.915 ± 0.037 and 0.056 ± 0.049, respectively. Our method
achieved higher agreement versus the consensus of the three
manual segmentations than the individual manual segmentations
versus the consensus.

Index Terms—max-tree, watershed transform, carotid artery
imaging, carotid artery segmentation, carotid artery distensibil-
ity, cine FSE

I. INTRODUCTION

Stroke is the most common cause of death in the world.
It is estimated that 4.4 million people die every year due
to stroke and 5,000 in every 1,000,000 people suffer from
stroke-related disability [1]. Atherosclerosis is one of the
main causes of ischemic stroke, causing about 25% of all
events [2]. Atherosclerotic vessel disease is characterized

by accumulation of lipid, fibrin, cholesterol and calcium in
artery walls, specifically at bifurcations and in regions of
vessel curvature. Atherosclerosis progression is complex with
severe cases resulting in complex plaques in the vessel wall
and, eventually, a reduction in cross-sectional area (i.e., the
development of lumenal stenosis).

In order to decrease the rate of ischemic stroke due to
atherosclerosis, it is desirable to use a non-invasive method
to quantify, monitor and assess carotid artery stenosis and
plaque composition. Magnetic resonance (MR) imaging is
a technique that permits the evaluation of morphology and
composition. Using MR imaging, one can better define the
absence or presence of vulnerable (or “at-risk”) carotid plaques
[1] that can be treated medically (e.g., statin therapy) or
with surgery. In order to evaluate the carotid morphology and
composition, an important initial step is segmenting the carotid
artery wall-lumen boundary. Most methods for segmenting the
carotid artery were derived for use with computed tomography
angiography images [3], but a few studies segment the carotid
artery from static MR images. These approaches can be
divided into three groups [4]:

• Geometric models, based on vessel shape. Some com-
monly used features include elongation, radius and bifur-
cation. Arias-Lorza et al. [5] use a centerline initialization
followed by a surface graph cut algorithm. This method
permits the localization of the inner and outer walls of
the vessel in a semiautomatic way.

• Appearance models, based on luminance properties, de-
pend on the imaging modality. Kumar et al. [6] creates an
edge detection model based on the histogram equalization
of the image and previous pre-processing.

• Hybrid models, combining appearance and geometric
models. Sakellarios et al. [7] combine ellipse fitting for
boundary detection and fuzzy clustering for lumen and
plaque segmentation.

Despite the large amount of research, currently there are
no public methods available for automatic or semi-automatic
segmentation of carotid MR images, either static or dynamic.



In the present work, a hybrid model was used in cine
fast spin echo (cine FSE) time-series of MR images with
the initial goal of segmenting the common carotid artery
(CCA) lumen. Our method uses the max-tree [8] area signature
analysis combined with the tie-zone watershed transform from
markers [9], [10] and supervised classification to get accurate
segmentations. The user has to provide one marker for each
of the left and right carotid arteries. The main contribution of
this work is the development of a semi-automatic method to
segment the lumen of CCA in cine FSE images. To the best of
our knowledge this is the first work that tries to segment the
CCA lumen using cine FSE images. This is important because
it opens the possibility of assessing carotid artery distensibility,
which is expected to be correlated with atherosclerotic disease.

This paper is organized as follows: Section II presents
a brief theoretical background necessary to understand the
method. Section III describes our method. Section IV presents
the results and discussion. Finally, Section V presents the work
conclusions and intended future work.

II. BACKGROUND

A. Cine FSE Images

Conventional static MR imaging techniques generate images
with acceptable vessel wall-blood image contrast and allow for
the depiction of vessel wall morphology and characterization
of plaques components. FSE images, with proton density-,
T1- and/or T2-weightings are commonly used [1], [2]. These
images provide only a snap-shot (time averaged) of the vessel
wall morphology and composition over the cardiac cycle. They
can also suffer from cardiac motion-induced artifacts due to
their long data acquisition times [11]. Cine FSE imaging is
a new technique that is capable of acquiring images across
the cardiac cycle in total acquisition times similar to those
required for a standard static FSE technique, albeit often with
reduced spatial resolution [11], [12]. Because cine FSE images
are resolved over the cardiac cycle they potentially can reduce
image artifacts due to motion [12].

Cine FSE acquires data over the entire acquisition window
asynchronously with respect to the contraction of the heart.
The acquired raw MR data is however tagged with its acquisi-
tion time within the cardiac cycle (typically using information
from a pulse oximeter). The raw data is then rebinned into
N temporal bins that evenly cover the average cardiac cycle.
N is user selectable and typically is between 10 and 20.
Because the raw MR data was collected asynchrounoulsy, each
rebinned data set will, in general, be incomplete. Therefore
sophisticated, non-linear reconstruction methods, based on
compressed sensing [13], are required to generate images.
Compared to static FSE images, cine FSE images are able
to generate a similar range of image contrasts (weightings),
with potentially lower resolution and signal-to-noise, but fewer
motion artifacts. For this project, we used sequences of images
rebinned into 16 temporal bins, as we can see on Figure 1.
The cine FSE data acquisition process is fully explained in
Boesen et al. [12].

Fig. 1. Sequence of 16 temporal bins of the same slice during the cardiac
cycle (zoom in around a CCA) collected with Cine FSE technique.

B. Max-tree

An upper threshold of a gray-scale image results in a binary
image, where each pixel with a value greater or equal to the
threshold receives the value 1 (white) and all other pixels
receive value 0 (black). Loosely speaking, a binary image is
composed of “islands”, which in image processing are called
connected components. The connected components have an in-
clusion relationship, the higher the threshold value the smaller
the component will be. At increasingly larger thresholds, the
component may even split in two or more components. The
max-tree [8] represents an image through the hierarchical
relationship of its connected components. Each node of the
max-tree represents a different connected component resulting
from an upper threshold. The leaves in the max-tree represent
regional maxima in the image. If interested in processing
minima, the duality property may be employed by processing
the negative of the image. A simplified illustration of the max-
tree corresponding to the negated slice of a carotid MR image
is depicted in Figure 2.

Many size, shape and gray-level intensity attributes, such
as area (or volume), bounding-box coordinates, circularity,
average gray-level can be efficiently extracted from the max-
tree nodes [14], to enable tasks like object recognition and
segmentation [15].

C. Max-tree Signature Analysis

The max-tree signature consists of analyzing the variation
of an attribute of any pair of nodes connected by a max-tree
path. It conveys information concerning the variation in shape



Fig. 2. Max-tree illustration of the negated input image. The arrows point to some of the connected components corresponding to the max-tree nodes
(highlighted in green).

and/or size of a connected component. The attribute signature
uses the linking information between connected components at
sequential gray-levels in the image to help the decision making
process. The area signature of the max-tree of the negative
of the input image depicted in Figure 2 starting in a node
inside the carotid (highlighted in green) and ending at the
max-tree root is illustrated in Figure 3. We can see that for
higher thresholds the carotid lumen starts to separate itself
from the rest of the image.

(a) (b)

(c) (d)

Fig. 3. Max-tree area signature analysis: (a) carotid image with seed point
highlighted in green. (b) Area signature starting at the node corresponding to
the seed. (c) Node reconstruction at gray-level 151. (d) Node reconstruction
at gray-level 152.

D. Tie-zone Watershed Transform from Markers
The watershed transform from markers [16] segments the

image based on a flooding procedure starting from imposed
markers in the image (Figure 4). The excellence of the seg-
mentation results are dependent of the quality of the markers
chosen.

Fig. 4. Watershed from markers operation.

The watershed transform from markers can be seen as an
optimization problem. Audigier et al. [9], [10] showed that
the watershed transform may have multiple solutions, and its
output may depend on algorithm implementation details, such
as the order the image pixels or pixels neighbors are processed.
For instance, the watershed result applied to an image can be
different of the watershed result applied to the same image
rotated by 90◦, which is an undesirable feature. The tie-zone
watershed [9], [10] assigns a tie-zone label to the regions that
have the same cost to more than one marker. The tie-zones
regions then may be addressed in a subsequent post-processing
step.

The tie-zone watershed from markers applied to a carotid
MR image is illustrated in Figure 5. Two markers are used



in this case, one internal marker in the carotid lumen and one
external marker on the carotid wall. In this example, the area of
the pixels segmented as lumen corresponds to 63 pixels, while
the tie-zone area is of 64 pixels, which shows that the tie-zones
have significant influence on the segmentation results.

(a) (b)

Fig. 5. Illustration of the tie-zone watershed from markers. (a) Internal (green)
and external (red) markers. (b) Tie-zone watershed result with the tie-zones
shown in blue.

III. PROPOSED METHODOLOGY

A. Method Assumptions

Our method was developed based on two assumptions with
respect to the CCA in adults and a third stipulation with
respect to cine FSE imaging. These assumptions are supported
theoretically, as well as by typical carotid artery anatomy
and our experimental findings. The first assumption is that
the diameter of the CCA lumen varies from 4.3 mm to 7.7
mm [17] (Figure 6(a)). The second assumption is that CCA
can be modeled as a circle. The third assumption is that two
cine FSE images at the same slice position but rebinned at
different temporal bins in the cardiac cycle will have similar
gray-level intensities. This observation would be theoretically
expected based on the implemented reconstruction method
[11]–[13] and was experimentally confirmed by histogram
analysis (Figure 6(b)).

B. Method Steps

Our solution uses appropriate size and shape information
obtained from the max-tree algorithm [8], [18] to find internal
and external markers to the carotid artery lumen that are
then used by the tie-zone watershed transform. The tie-zones
are classified using supervised classification. Our method
processes on a slice-by-slice basis, i.e., two-dimensional pro-
cessing. It has five main steps (Figure 7), which are detailed
below.

Step 1: CCA centroid selection: The first step of the
method requires the user to select two seed points, one in the
left and one in the right carotid artery lumen (Figure 8(a)).
These seeds are propagated to the other temporal bins of the
acquisition.

Step 2: Internal marker selection: For selecting the
internal marker we are interested in the carotid lumen (darkest
points of the image), so we build the max-tree of the negative

(a)

(b)

Fig. 6. Key assumptions for post-processing. (a) Manual segmentation of CCA
(white). Area of left carotid artery is 25.5 mm2 and right carotid artery is
31.0 mm2, which equals an average carotid diameter of 6.3 mm and 5.7 mm,
respectively. (b) Intensity histograms from the same slice at different temporal
bins are similar (Kolmogorov-Smirnov test found no significant differences
between the three histograms, p = 0.918).

of the input image. Then, we analyze the max-tree area
signature starting from the selected centroid all the way down
to the max-tree root. Using a priori knowledge of the carotid
artery area, we look in the area signature only for structures
with an area in the range of 14.5 mm2 to 46.6 mm2 , because
CCA areas are well established from measurements in the
literature (diameters ranging from 4.3 mm to 7.7 mm) and we
are modeling the vessel cross-section as a circle (with area
πr2), this observation reduces the number of max-tree nodes
that need to be analyzed. According our third assumption, the
histograms of two consecutive temporal bins are similar, then
we select as an internal marker (over the remaining nodes) the
candidate with gray-level value closest to the gray level of the
previous temporal bin (Figure 8(b)). For the first temporal bin,
we select the node with gray level closest to the highest peak
of the histogram, once the vessels are the darkest structures
of the image.

Step 3: External marker selection: For external markers,
we are interested in the vessel wall (brighter structure around
the lumen), so we built the max-tree of the gradient image to
find nodes around the carotid artery lumen. We use the gradient
image, because it accentuates the artery walls due to the
sudden change in gray-level between the wall and the lumen.
We choose the node in which its centroid has the smallest
Euclidean distance compared to the manually selected seed
point on Step 1 (Figure 9(a)). Usually, the carotid artery wall



Fig. 7. Flowchart of our proposed method.

is not entirely represented by a single max-tree node (Figure
9(b)), therefore, the final external marker was composed of a
circle of diameter equal 1.5 times the greatest distance between
the pixels of the selected max-tree node and the manual seed.
The diameter is not allowed to exceed 7.7 mm, the assumed
maximum diameter for the CCA [17].

Step 4: Tie-zone watershed transform: The tie-zone
watershed transform using the selected internal and external
markers is applied to the gradient image (Figure 8(c)).

Step 5: Tie-zone assignment: As explained before, the tie-
zone watershed returns regions that have the same cost value
for both lumen and vessel wall. Those pixels, named here as
tie-zone pixels, need to be correctly assigned to improve the
method accuracy. The tie-zone pixels are then assigned using a
random forest classifier [19] (Figure 8(d)). The classification
is performed pixel-by-pixel. The features extracted for each
tie-zone pixel are: local binary pattern [20], histogram of
oriented gradients computed on the tie-zone image with the
bins weighted by the gradient magnitude, and the tie-zone
labels histogram. The histograms are computed on a nine-
by-nine window centered in the tie-zone pixel (Figure 10).
The ground truth used to train the classifier was created
using the majority voting consensus of three different manual
segmentations made by three different specialists.

C. Experimental Setup

We used forty-five cine FSE datasets acquired on healthy
subjects on a 3 T MR scanner (Discovery 750; General
Electric, Waukseha, WI) following a protocol approved by our

local research ethics board in Calgary. Each dataset had sixteen
temporal bins reconstructed across the cardiac cycle. Three
manual segmentations were performed independently by three
experts on the right CCA. Figure 11 illustrates processing on
one example dataset.

A random forest classifier was trained using five randomly
selected datasets. In order to get the samples for this classifier,
we ran the first four steps of our method. Then, we chose the
tie-zone pixels in a way that the number of samples of each
class was balanced. The classifier was trained using a cross-
validation procedure with the objective of optimizing accuracy.
The other forty datasets were used to validate our method.

We assessed our method performance using the Dice coeffi-
cient, sensitivity and false positive rate (FPR) metrics. Suppose
that G is the “ground truth” image and S is the segmentation
we want to assess, the metrics are given by the following
equations:

• Dice coefficient:

Dice(G,S) =
2|S ∩G|
|S|+ |G|

• Sensitivity:

Sensitivity(G,S) =
|G ∩ S|
|G|

• False positive rate:

FPR(G,S) =
|Gc ∩ S|
|G|



(a) (b)

(c) (d)

Fig. 8. Methodology overview for segementing a left common carotid artery.
(a) Manually selected seed (represented here as green cross). (b) Internal
(green) and external (red) markers. (c) Tie-zone watershed result (tie-zones
in blue). (d) Segmentation result after tie-zone classification (red).

(a) (b)

Fig. 9. Example of external markers. (a) In green, node representing the entire
vessel wall (smallest Euclidean distance compared to the manually selected
seed point). In blue, final external marker (b) In green, case where there is
no node representing the entire vessel wall. In blue, final external marker

The Dice coefficient can be viewed as a compromise between
sensitivity and specificity and is probably the most widely used
metric to assess segmentation. Sensitivity measures how much
brain tissue is included in the segmentation. The FPR gives the
fraction of false positive results as a percentage of the ground-
truth size. The larger the Dice coefficient and the sensitivity
the better is the quality of the segmentation; while the smaller
the FPR, the better is the segmentation.

We used the Dice coefficient, sensitivity and FPR to assess
the performance of our method. Our method results were com-
pared against the three manual segmentations. The evaluation
was only performed for the right carotid, because the experts

(a) (b) (c)

(d) (e)

(f)

Fig. 10. Overview of our tie-zone classification methodology for carotid artery
segmentation. (a) Original Image. (b) Tie-zone watershed transform. White
zones are always labeled as lumen, gray zones always labeled as background.
The black zone represent the tie-zone pixels. (c) Local Binary pattern image
of tie-zone pixels (d) Gradient direction image for tie-zone pixels (e) Gradient
magnitude image for tie-zone pixels. (f) Feature extraction of the highlighted
part of image (b). Each feature vector has 13 components and there is one
vector for each tie-zone pixel.

segmented only one CCA.

IV. RESULTS AND DISCUSSION

The five datasets used to train the random forest classifier
resulted in a total of 4, 762 samples for training. Its parameters
were set using a five-fold cross-validation procedure. The av-
erage accuracy obtained was of 0.827±0.006 suggesting room
for improvement in the tie-zone classification procedure. Fig-
ure 11 provides a comparison between the proposed method
and expert segmentation consensus. Good visual agreement
was observed. The segmentation results are summarized in
Table I.

Our method achieved the best Dice coefficient and FPR
metrics and the second best sensitivity result. There are no



Fig. 11. Representative images from four subjects in the dataset. Our segmentation (blue) is shown overlying the “ground truth” consensus manual segmentation
(green). Typically our semi-automated segmentation overlaps the “ground truth” result.

TABLE I
DICE COEFFICIENT, SENSITIVITY AND FALSE POSITIVE RATE (FPR)

METRICS. AVERAGES (MEAN ± STANDARD DEVIATION SHOWN) ACROSS
ALL FORTY SUBJECTS ARE REPORTED COMPARED AGAINST THE MANUAL

SEGMENTATION MAJORITY VOTING CONSENSUS. PERFORMANCE FOR
EACH EXPERT IS ALSO SHOWN.

Dice Sensitivity FPR
Our method 0.928 ± 0.031 0.915± 0.037 0.056 ± 0.049

Expert 1 0.911± 0.035 0.925 ± 0.025 0.059± 0.034
Expert 2 0.907± 0.029 0.899± 0.044 0.085± 0.073
Expert 3 0.912± 0.031 0.900± 0.043 0.076± 0.071

publicly available dynamic carotid segmentation methods to
compare against our method. Ukwatta et al. [21] tested their
method on static MR images also acquired on a 3 T scanner.
They achieved a Dice coefficient of 0.93 ± 0.02. Our method
achieved a similar average Dice coefficient, but our dataset
was more challenging (lower resolution and lower signal-to-
noise ratio). As currently implemented, our method tends to
underestimate the carotid. With additional refinement, these
problems could be fixed by using more accurate markers. Our
code is public available at http://miclab.fee.unicamp.br/

V. CONCLUSIONS

This work presented a semi-automatic common carotid
artery lumen segmentation method for dynamic MR images.
The method was tested on a challenging dataset. Our results
are similar to the state-of-the-art segmentation for static MR
images [21], which in our opinion are easier to segment due
to increased spatial resolution and signal-to-noise ratio. Also,
our method compared to the manual segmentation consensus
had an agreement close to individual manual segmentation.

The advantage of using dynamic images is that we can
analyze artery distensibility. As future work, we intend to
make the method fully automated and apply it to artery
distensibility analysis. We will also apply it to segmenting
more challenging vessel regions, such as the bifurcation, and
assess performance in individuals with atherosclerosis. The
challenge of making the method fully automatic is that in
the same images there may be other vessels similar in size
and shape to the carotid. Finally, the challenge of performing
distensibility analysis is that the carotid region corresponds
to only a small number of pixels within the image, thus few

pixels segmented incorrectly will have a significant impact on
any resulting distensibility analysis.
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