
CAD Shape Grammar: Procedural generation for
Massive CAD Model

Wallas H. S. dos Santos
Pontifı́cia Universidade Católica

do Rio de Janeiro
Departamento de Informática
Rio de Janeiro - RJ, Brasil

Email: wallashss@tecgraf.puc-rio.br

Paulo Ivson
Pontifı́cia Universidade Católica

do Rio de Janeiro
Instituto Tecgraf

Rio de Janeiro - RJ, Brasil
Email: psantos@tecgraf.puc-rio.br

Alberto Barbosa Raposo
Pontifı́cia Universidade Católica

do Rio de Janeiro
Departamento de Informática
Rio de Janeiro - RJ, Brasil

Email: abraposo@inf.puc-rio.br

Abstract—This work presents a procedural modeling technique
based on shape grammars for representing and rendering massive
3D CAD models in real time. Procedural modeling is an appealing
approach to quickly generate massive scenes while maintaining
compact representation. Until now, procedural modeling has not
been explored in the domain of large industrial projects. Tra-
ditional procedural modeling techniques generate parameterized
random scenes. In order to achieve an accurate representation
for pre-existing 3D CAD scenes, we propose a specialized Shape
grammar. We used common geometric primitives found in real
3D CAD models to create a compact model representation. In
addition, we describe an efficient rendering algorithm to draw
CAD Shape Grammars in real time. We evaluated both perfor-
mance and memory consumption of our proposed technique using
real-world CAD models. Results indicate not only high rendering
performance, but a significant reduction in the memory required
to represent massive 3D CAD models.

I. INTRODUCTION

3D CAD models are important tools for planning, construct-
ing, maintaining and operating large engineering projects. A
high-precision and high-fidelity CAD model can be used as
a source of engineering information and as an analysis and
simulation tool. Examples include evaluating the viability of
plans, minimizing costs through optimization procedures and
checking for safety prior to any real operations. This work
focuses on massive 3D CAD models of industrial plants,
driven by the increasing demands of the Oil & Gas industry.

By definition, models are simplified representation of a
real entity. Nevertheless, complex engineering projects require
massive CAD models that become challenging to handle even
by modern computers. Modern industrial plants contain in
the order of tens of millions of geometric objects. Moreover,
modeling an industrial plant like an entire oil refinery, is a
time-consuming and error-prone task. Models with defects
can negatively impact planning of real activities, leading to
money expending and even safety risks. These challenges and
demands motivate the research for new solutions for 3D CAD
modeling and algorithms to handle data scalability.

Procedural modeling has been used to create 3D scenes
where specific patterns are well defined. Repetitive patterns
can be employed to represent buildings [1] and forests [2],
while recursive growing patterns can be found in the topology
of trees and fractals [3]. The benefits of this technique include

generating convincing scenes while at the same time reducing
human work to simply adjusting a few parameters. Another
advantage is the reduction of memory consumption, since
often the computational rule that express a given pattern is
more compact than its explicit geometric representation.

Within this context, shape grammars are a popular technique
due to its simplicity and power of expression. Even so, there
is still a challenge to use it for other domains like general
3D CAD models. Typical shape grammars generate param-
eterized random scenes, while CAD models must represent
real-world constructs as faithfully as possible. Nevertheless,
we have observed that 3D CAD models of industrial plants
exhibit distinct geometric patterns and repetitions. These have
motivated our research on applying shape grammars to this
new domain. In this case, the rules for model generation should
guarantee correct geometric representation of several different
CAD structures like piping, buildings and equipment.

This work proposes CAD shape grammar, a new approach
to use procedural modeling for representing 3D CAD models.
The use of a Shape Grammar on CAD is not straightforward.
We address this problem by specializing a new grammar
based on typical CAD geometries. In addition, we developed
a rendering pipeline to efficiently draw 3D scenes represented
by CAD shape grammars.

This works is organized as follows: Section II shows related
work that motivated our research. Section III presents the
original definition of shape grammar that we used as basis.
Section IV presents our proposed shape grammar for massive
CAD models. Section V describes the experiments used to
evaluate our grammar. Section VI discusses the results of our
work. Finally on Section VII presents conclusions and further
work.

A. Contributions

This work demonstrates a procedural modeling technique
that uses shape grammars to represent 3D CAD models of
industrial plants. Our contributions can be summarized as
follows:

Procedural modeling for massive 3D CAD models: we
were not able to find any previous work that uses procedural
modeling techniques for massive CAD models. This work

demonstrates its feasibility and evaluates the benefits of ap-
plying shape grammars to this new domain.

CAD Shape Grammar: we created a purpose-built shape
grammar for representing 3D CAD models. Common geomet-
ric primitives found in real models can be used to procedurally
model a vast array of scenes. This representation has memory
requirements equal or less than a typical mesh representation.

Optimized rendering: we developed a rendering pipeline
optimized for processing our shape grammar data structure.
This procedure can reach high rendering rates even for massive
CAD scenes.

II. RELATED WORK

1) Massive Model: A typical approach to describe 3D
scenes is a scene graph [4] [5]. The concept of a scene graph
is widely used on 3D game engines, simulators and other
modeling programs. In general, the data structure is a tree
of objects, where algebraic transformations and state (color,
texture) are shared from parent to descendant nodes. The
hierarchical structure also supports branch culling if we know
a priori if a parent is outside of view frustum, thus efficiently
discarding the processing of entire subtrees. Therefore, many
typical 3D scenes can be suitably represented by a scene graph.

On the other hand, scene graphs are not a scalable solution
for massive 3D CAD models. Industrial CAD models can
contain thousands objects, and processing the whole graph
for rendering can be a bottleneck to a naive renderer imple-
mentation. Another disadvantage of scene graphs is the lack
of reuse of common geometric layouts. Equipment, pipings
and buildings are a combination of small objects that share
common templates. During modeling phase, if the template is
changed, a badly designed system would oblige user to search
and change manually every derived instance.

For these reasons, many precious research have explored
alternative means to efficiently represent and render massive
3D CAD models in real time. Peng et. al. developed an out-
of-core approach to render massive models using the GPU
[6]. The method consists of a mesh simplification algorithm
implemented inside the GPU and mesh data transfers from
CPU to GPU according to the camera viewpoint. The mesh
data exchange exploits frame-to-frame coherence since objects
from a given frame have high probability to be present
on the next one. The meshes are simplified on the GPU
with information to reformulate the triangles and recover the
original geometry. The reformulation is defined by the LOD
of the object in a any given instance. The main drawback of
this method is that fast camera movements can lead to frames
with missing objects, since the system may not have enough
time to transfer newly visible meshes to the GPU.

Santos et. al. presented a method to render massive models
based on instancing of repetitive objects [7]. First the model
is preprocessed in order to find redundant meshes using shape
matching, which tries to find an optimal affine transformation
between vertices of different objects. The algorithm signif-
icantly reduces memory footprint and improves the model
rendering speed, once multiple objects share the same mesh

only differing by an algebraic transformation. Besides these
positive results, the authors admitted lack of visibility culling
and LOD support to improve performance and scalability.

Xue et al proposed [8] a framework to render massive
models using voxel representations and out-of-core algorithms.
The voxelization is also used to generate shadows in order to
increase scene realism. To handle large scenes, the authors
proposed a method to compress the data to be transferred
from CPU to GPU. Vertex and triangle data are quantized
and compressed, while normals are deleted. Once the data of
a given frame is available inside the GPU, triangle data are
decompressed by a vertex shader and normals are recalculated
generated using a geometry shader. The authors reported
good performance of the developed prototype, however the
voxelization process needed to load the scene was very time
consuming. Moreover, the voxelization and data compression
decreased the objects’ visual quality.

2) Procedural modeling: G. Stiny introduced the shape
grammar formalism in 1980 [9]. Later, Müller et. al. intro-
duced CGA shape grammars to procedurally model buildings
[1], which contain basic operators that modify a mass model
and generates various types of buildings architecture. Section
III discusses more details of this approach.

Procedural modeling has been used on various domains in
order to reduce human work and render urban environment
scenes [1], [10], [11], [12], [13]. By using shape grammars and
an L-system as data structure, other works explored the scene
generation directly on the GPU [2], [14], [15], [16]. These
approaches were capable of achieving real-time rendering of
massive 3D scenes.

These works mostly used shape grammars or L-systems to
explore repetition patterns adjusted by user-provided parame-
ters. However, most solutions are domain-specific and can not
be used as is for 3D CAD models. Random 3D CAD models
are not suitable to represent industrial projects since every
object must accurately correspond a real physical entity. The
main intention of our shape grammar is to ease the modeling
process of 3D CAD models, making this task more efficient
and storing the results in a data structure with high scalability.
The generation rules used to control the procedural modeling
define project constraints to obtain a well-formed design.

Similarly, Krecklau et. al. proposed the language G2 (Gen-
eralized Grammar) as a tool to procedurally model scenes
of different types of domain [17]. The language can express
buildings, normally done by shape grammars, and plants by L-
systems. The expression was increased by applying free-form
deformation on non terminal symbols. The authors report the
method can be used on real-time applications, although it is
not adequate for massive models 3D CAD model.

III. SHAPE GRAMMAR

A shape grammar is made of a set of symbols (terminal and
non terminal) and a set of production rules. The production
rule is in the form of L → R, where L is a single symbol on
the left side called predecessor, a non terminal symbol, and
R, on the right side, is called successor, which is composed

of one or more terminal or non terminal symbols. An initial
symbol is required to start the derivation, and derivation must
end when it generates only terminal symbols.

The production rules can be parametric. The parameters
can be used in arithmetic expressions to derive successors.
Also, the production rules can be conditional, i.e. multiple
production rules with the same predecessor symbol. In this
case, the condition that fits to the current context determines
which rule to generate.

There are two special symbols that are useful to save the
current scope and make derivation branches. These symbols
are the push and pop denoted by “[” and “]” respectively. When
a push occurs, the current scope is saved and can be freely
changed by any operation, until a pop operation restores the
previous scope.

In this work we built a procedural modeling based on
CGA shape grammar proposed by Müller et. al. [1]. The
terminal symbols generated by the derivation of the shape
grammar are interpreted similarly to a turtle interpreter based
on LOGO, as in L-systems [3]. Every symbol is processed
and generates an object or changes the state of the interpreter.
The state of the interpreter is called scope. It represents an
oriented box and can be transformed by operations like scale
(S(x, y, z)), translation (T (x, y, z)), and rotation (R(x, y, z)).
CGA shape grammars also introduced special operators to
help generate buildings: Split and Repeat, these operators
will subdivide the scope in smaller scopes and are useful
to express subdivisions and repetition patterns. Finally, the
operation instance (I(”instance name”)) generates an object
inside the scope by applying the scope transformation.

Next, we describe a typical shape grammar example with
the basic operations. The production rule axiom is the first
production rule to be evaluated, its successors are other pro-
duction rules. The production rules A, B, C, and D illustrate
scope operations, E and F split are repeat operations and
cube, cylinder and sphere represent geometries and colors
to instantiate objects during scene generation. Figure 1 shows
the output generated by the shape grammar example.

axiom -> A B C D E F
A -> cube
B -> T(2,0,0) cylinder
C -> T(2,0,0) R(45,45,0) cylinder
D -> T(2,0,0) S(1.5,1.5,1.5) cylinder
E -> T(2.5,0,0) Split("Z",0.25,0.25,0.25,0.25)

{cube cylinder cube cylinder}
F -> T(2.5,0,0) Repeat("XYZ", 27){ sphere }
cube -> C(1, 0, 0)I("cube")
cylinder -> C(0, 1, 0)I("cylinder")
sphere -> C(0, 0, 1)I("sphere")

IV. CAD SHAPE GRAMMAR

This Section describes our proposed CAD Shape Grammar
and an optimized renderer for it.

Fig. 1. Render output of an example shape grammar.

A. Grammar definition

Our shape grammar overcomes the problem of geometry
scalability by specializing object instances. We call these
object instances as parametric objects. A large portion of a
3D CAD scene can be expressed solely by these parametric
objects, as shown on Figure 2. We extended the shape grammar
described on the previous section to fit the CAD domain. The
operations Repeat and Split remain as the original definition.

1) Scope: Scope operations generate a transformation for
a 3D object. We define scope operation as two types: relative
and absolute. Absolute operations receive absolute parameters:
current scope will not influence the output of the transfor-
mation. For example, we can set the translation to a specific
position independently of the current scope while the scale and
rotation remain the same. Relative operation will transform the
current scope by appending transformations. The summary of
the Scope operation is as follows:

• T (x, y, z) Relative translation: translate the current scope
by (x, y, z).

• M(x, y, z) Absolute translation: translate the scope to
coordinates (x, y, z).

• R(x, y, z) Relative rotation: rotates the current scope by
(x, y, z) in Euler angles in yaw pitch roll convention.

• G(x, y, z) Absolute rotation: set the rotation to (x, y, z)
in Euler angles in yaw pitch roll convention.

• S(x, y, z) Relative scale: scales the current scope by
dimensions (x, y, z).

• E(x, y, z) Absolute scale: set the scale by dimensions
(x, y, z).

Absolute scope operations are useful to transform a single
object without the influence of any previous generation. In
certain cases it is not possible to take advantage of the
procedural modeling expression. Hence, the absolute operation
will just instantiate the 3D object at its particular algebraic
transformation on the scene.

2) Instance: The operator instance (I(“instance name”))
is used to generate an object of label “instance name”.
Typically, the instance name leads to a mesh to be rendered in
the current scope. In order to reduce the memory footprint for
massive models it is interesting to define built-in primitives to
be reused. For CAD models there are several types of common
primitives useful to represent the 3D scene. Therefore, our
grammar incorporates these specialized primitives as built-in
objects. The specialized primitive types of our grammar are
as follow:

• Cube
• Cylinder

Fig. 2. Left image shows the distribution between parametric objects (blue) and meshes (green). Right image shows primitives of the same type with same
color: blue for box, green for cylinders, yellow for cones, red for torus, magenta for dish, and gray for meshes.

• Cone
• Sphere
• Dish
• Torus
The primitives cube, cylinder, sphere and dish are what

we call normalized primitives. These primitives do not have
explicit parameters, because we can obtain any variation by
applying only scope transformations. For example, we can
generate a box with dimensions (10, 1, 1) by applying a
scale S(10, 1, 1) and invoke I(“cube”). By the other hand,
cone and torus must have explicit parameters. The cone has
bottom radius, top radius, x offset and y offset. The torus has
sweep angle, inner radius and outer radius. To maintain these
primitives normalized, the parameters must be relative to the
scope. These objects can be generated by invoking instance
operator as follows:

I(”torus sweep angle inner radius outer radius”) (1)

I(”cone bottom radius top radius offset x offset y”)
(2)

3) Color: In typical 3D CAD models, the colors contain
semantic information that identify specific types of compo-
nents. We can add the color property to the scope as C(r, g, b)
or C(c), where r (red), g (green), b (blue) are the color
components or c is a 32-bit integer color ID.

B. Optimized Renderer

This section describes the developed rendering algorithm
to efficiently draw a 3D scene represented by a CAD shape
grammar. To handle large scenes, we optimized the rendering
of our specialized primitives. In this pipeline we were able
to send minimal data to generate a 3D geometry and use
traditional optimization techniques like view-frustum culling
and level-of-detail.

Interpretation. First, the shape grammar is interpreted on
the CPU side as described in Section III. From the axiom,
production rules generate symbols until only terminal symbols
remain. Afterwards, the terminal symbols are processed to
generate primitive objects or generic meshes by invoking
instancing operations. There is a buffer for each type of object
that contains the instance data, and it is drawn by binding
the respective shader programs for the specific type. Repeated
generic meshes can be rendered using geometry instancing,
while unique meshes are appended to the buffer and are drawn
as usual. The instance data are: scope (a float matrix 4x3), solid
color (3 floats) and, to the torus and cone, their respective
additional parameters (a float for each parameter). Figure 5
illustrates the buffer layout to be sent to GPU.

Parametric surface. The specialized primitives of our
grammar can be rendered as parametric surfaces. We use
tessellation shader programs available on modern GPUs to
generate a regular grid and deform it as a parametric surface,
see Figure 4. For every instance we can use only the basic
information to generate the triangles by the shader, reducing
memory and processing. After the tessellation performed by
the GPU hardware, the tessellation evaluation shader receives
the grid and deform it applying parametric equations of
the respective surface. Figure 3 shows the overview of the
rendering pipeline for these primitives.

LOD and Frustum culling. In our CAD shape grammar,
the scope is analogous to a model matrix from a traditional
rendering pipeline. However, unlike a typical model matrix,
the scope must represent the bounding box of the current
instance. For example, the mesh may already be transformed
to world space and its corresponding model matrix would be
an identity matrix. Therefore, if we ensure the scope is the
oriented bounding box of the instance, we can estimate where
the object will be placed to cull it or choose the proper level
of detail for rendering.

The shader performs view-frustum culling by checking the
scope against the current viewpoint and setting an empty or

Fig. 3. Rendering pipeline of CAD shape grammars. It starts by the invocation of an instance and by getting the current scope. The data is passed to the
GPU where each specialized shader will process the parameters and draw the instantiated primitive.

Fig. 4. Base grids and generated spheres by deforming it using parametric
equations. On the top a coarser representation of a sphere and on the bottom
a smooth version.

Fig. 5. Layout of the buffer to send to GPU to render parametric surfaces.
Above the buffer for normalized primitives and below for primitives that need
additional parameters.

null tessellation. If the object is not culled, then the shader
sets the tessellation level based on the object’s size on screen.
Figure 4 shows a parametric surface with different levels
of detail and their respective base grids generated by the
tessellation shader.

V. RESULTS

We tested our CAD shape grammar by converting pre-
existing 3D CAD models and re-modeling common structures
present on them. All tests were executed in a desktop PC with
an Intel Core i7 2.93 GHz Quad Core processor, 6GB of RAM
and an Geforce GTX 770 graphics card running Windows 10
as operating system.

A. Modeling

To evaluate our proposed shape grammar, we explored the
features that it offers to generate some types of recurring
structures in large industrial projects.

Tank reservoir. The first shape grammar example models
a tank reservoir. We used the split operation to divide the
scope based on the specified length parameter of the rule.
In this example, the parameter of split operation with suffix
“r” will be relative to the amount of scope in axis Z left
from the other absolute parameters. The front and the back
will always have the scope size fixed. The length can be
estimated by the volume of liquid desired to storage in this
model representation, then the parameter can have a semantic
relation to the project specifications. Figure 6 shows the output
generated by this shape grammar.

tank(length) ->
E(2.3,2.3,length+1)
Split("Z",0.5,1r,0.5){front body back}

body -> I("cylinder")

front ->
R(0,180,0)I("dish")
front_connector
[support][bottom_connector]

back ->
I("dish")
[support] bottom_connector

front_connector ->
T(0,0,0.25)E(0.6,0.6,0.25)I("cylinder")
T(0,0,0.125)E(1,1,0.1)I("cylinder")

bottom_connector ->
T(0,1.3,-1.3)R(90,0,0)E(1,1,0.1)I("cylinder")
T(0,0,0.17)E(0.7,0.7,0.25)I("cylinder")

support ->
T(0,0.95,-2.1)E(2.1,0.1,0.8)R(90, 0, 0)
I("support_mesh")

Stairs. The next shape grammar generates a staircase with
lifeline. In this case we explore the repeat rule that generates
the desired quantity of equally spaced steps. Based on the
step count the rules also resize the cylinders to be placed as
the stairs’ lifeline. Figure 7 shows the output generated with
several different parameters.

Fig. 6. Output generated by production rule tank. On the left with length =
8 and on the right length = 20. Note that both objects have the same cylinder
radius, the size difference is due to different viewing perspectives.

Fig. 7. Output generated by production rule stairs. On the top with
step count = 5; bottom left with step count = 10; bottom right with
step count = 100.

stairs(step_count) ->
lifelines(step_count)
E(20, 4, 1) Repeat("", step_count){step}

step -> I("cube")T(0, 4, 4)

lifelines(step_count)->
[T(10, 0, 0) lifeline(step_count)]
[T(-10, 0, 0) lifeline(step_count)]

lifeline(step_count) ->
E(1, 1, 20)
base_lifeline(step_count)
lateral_lifeline(step_count)

base_lifeline(step_count) ->
[T(0, 0, 10)I("cylinder")]
[T(0, step_count*4, step_count*4+10)
I("cylinder")]

lateral_lifeline(step_count) ->
S(1, 1, 0.2828*step_count)
T(0, step_count*4*0.5, step_count*4*0.5+20)
[R(-45, 0,0)I("cylinder")]
[T(0, 0, -6)R(-45, 0,0)I("cylinder")]
[T(0, 0, -12)R(-45, 0,0)I("cylinder")]

B. Memory footprint and Rendering

To evaluate the performance of the renderer and memory
footprint for the generated scene of our grammar we converted
three existing 3D CAD models. The models are tagged as
small, medium and large. Figure 8 shows the evaluated models.

Table I shows object counts by type. The small model has
more generic meshes than the primitive ones. In contrast, the

medium and large models have more primitive types than
meshes, around 69% and 79%. These specialized primitives
allowed for a reduced the memory footprint: in Table II we
can see that the large model originally have 4.85GB of data,
and represented as parametric primitives the memory footprint
dropped to 499MB, a reduction to 10%.

In Table II the interpretation time is the time to generate
the scene after parsing of grammar. The results indicate that
all models take less than a second to be interpreted. The FPS
was measured rendering the whole scene at once. The large
model is rendered at 22 FPS, which is equivalent to drawing
a scene with over 900K objects and 145M triangles.

Object type Small Medium Large
Box 22,475 176,578 248,276

Cylinders 14,924 221,377 389,589
Dishes 984 3,986 6,858
Cones 4,704 23,825 38,897

Spheres 0 600 2,706
Torus 3,109 22,395 53,931

Meshes 115,206 193,914 192,753
Total Parametric 46,196 448,761 740,257

Total 158,293 642,675 933,010
TABLE I

COUNT OF OBJECTS PER TYPE.

VI. DISCUSSION

modeling. Procedural modeling techniques are commonly
used to generate well defined patterns. Typical 3D CAD
models contain variety of patterns that can be exploited by
procedural modeling to generate the 3D scene. However,
sometimes it is not possible or worthwhile to create rules
to generate specific objects. To overcome this problem, our
solution uses absolute scope operations. With this approach,
the user can place an object anywhere without extra memory
consumption. We present the following example of an absolute
operation:

A -> M(10,0,0)E(2,5,1)G(0,0,90)I("cube")

An advantage in using procedural modeling for industrial
CAD models that the procedural formalism can be used to rep-
resent industrial project specifications. The user can define a
set of rules to be a template of common structure types, so the
grammar promotes reuse in order to gain productivity on mod-
eling. Moreover, the rules can add semantic and constraints
to the modeling. For example, we created rules to generates
stairs, and we defined the distance between each step. These
constraints can be defined by engineering specifications such
as safety or cost minimization. By using shape grammars, the
user can express these specifications intrinsically during the
modeling workflow. In addition, changing structure templates
is both easy and fast: since the rules are reused, a change
in project specification would be automatically propagated
for every instance. For example, if we have a systematic
repetition pattern of a box, and there is a need to change it to
a cylinder, it can be done by just replacing the box instance by
cylinder instance in the production rule that is being repeated.

Fig. 8. 3D CAD scenes generated by the proposed CAD shape grammar. On the top left the small model with 159K objects and 11M triangles, on the top
right the medium model with 641K objects and 74M triangles. On bottom the large model, it contains over 900K objects and is rendered at 22 FPS

Model Triangles Objects Parametric Memory Full Reduced Memory Interpretation Render
Small 11M 158K 43K 455MB 196MB 127ms 154 FPS

Medium 74M 641K 447K 2.56GB 293MB 422ms 35 FPS
Large 145M 933K 736K 4.85GB 499MB 673ms 22 FPS

TABLE II
RESULTS OF OUR PROPOSED TECHNIQUE: REDUCED MEMORY FOOTPRINT FOR EACH MODEL, INTERPRETATION TIMES IN MS AND RENDERING

PERFORMANCE MEASURED IN FPS.

In summary, the CAD shape grammar can help to specify
industrial CAD models following accurate design guidelines.

Memory footprint. In Figure 2 we show how the basic
primitives are very often present in industrial CAD models.
These primitives can represent CAD components in a very
compact form: essentially the scope and in some cases a few
additional parameters. Additionally, for generic meshes we can
also reduce memory by grouping multiple object instances that
share the same triangle mesh in a similar way how is done
in [7]. Since our grammar promotes reuse of rules, generic
meshes are drawn instanced, where each instance differ only
by the scope.

Rendering performance. By taking the benefit of special-
ized primitives we can efficiently generate triangle meshes in
the GPU using tessellation shaders. We evaluated the perfor-
mance of the renderer using real massive models and found

it suitable for interactive 3D applications. Also it is possible
to extend the renderer to support another types of parametric
surfaces. LOD and culling would be easily implemented by
following the ideas in Section III.

Visual quality. Most CAD systems draw surface objects
with a “good enough” discretization, and sometimes contours
do not accurately match the corresponding physical entities.
Since we use parametric objects and control their LOD, we
can also setup the renderer to tessellate the primitive objects
to obtain very smooth surfaces.

Limitations. The first obvious limitation is writing shape
grammar rules to procedurally generate 3D models. A first
look on a shape grammar text file can be not very engaging to
a user. Ideally, the user that will create the rules should have
a basic programming background. A good practice is to write
production rules naming successors with intuitive description

to facility changes and “debugging”. However, once the rules
are well formed, the modeling workflow could be very efficient
by just reusing existing parametric rules. Nevertheless, a user-
friendly abstraction layer such as well-designed modeling
graphics interface could facilitate the creation and edition of
the CAD shape grammar.

To improve rendering performance the model should have as
many parametric objects as possible. In an ideal scenario, the
modeling should start using our proposed grammar. However,
in some cases, to maintain interoperability with other system,
a conversion must be performed. Many design systems already
contain similar basic objects but their usage depends on
the project modeler. Possible solutions to this problem are
trying to convert the internal format of a similar primitive
to our grammar or reverse engineering triangle meshes to our
primitive objects.

Another limitation is how we handle generic meshes. We did
not implemented LOD or frustum culling in order to improve
their rendering performance. However, since most massive
data of the models can be represented by the primitive objects,
the absence of these feature did not harm substantially the
interactivity of the scene.

VII. CONCLUSION

This paper proposes a new shape grammar capable of repre-
senting and rendering 3D CAD models of industrial projects.
Until now, procedural generation has not be applied on the
modeling of massive industrial engineering projects. Using
procedural generation brings many advantages to improve the
productivity of designing massive CAD projects. We found a
strong correlation between procedural rules and engineering
specifications, which can be intrinsically represented by our
shape grammar. We also identified common objects to this
domain and incorporated them in our grammar for reduced
memory consumption and efficient rendering. The optimized
rendering results demonstrate that is possible to efficiently
navigate massive 3D CAD scenes generated by our proposed
grammar.

As future work we suggest implementing grammar gener-
ation fully inside GPU as in [2], [14], [15], [16]. A compact
shape grammar could be transferred from the CPU to GPU
to reduce overhead and allow editing on the fly. We also
suggest investigating alternative methods to modeling some
types of structures to improve memory consumption and/or
human readability. The L-system approach could be used to
generate piping or similar structures, which are very common
on industrial CAD models.

Another interesting contribution to the grammar is incor-
porating new primitives. We showed that the built-in objects
help reducing memory footprint and improving visual quality.
NURBS is a strong candidate to be the next primitive to be
added to the grammar vocabulary. Its incorporation would fit
well within our rendering pipeline and would take naturally
take advantage of LOD and frustum culling.

VIII. ACKNOWLEDGMENTS

We would like to thank CNPq, Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico - Brasil for the
financial supporting of this work. We also wish to thank Petro-
bras for providing the 3D CAD models and for supporting
scientific research and development in its partnership with
Tecgraf Institute at PUC- Rio. We thank the reviewers for
their helpful comments and suggestions.

REFERENCES

[1] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, “Procedural
modeling of buildings,” in Acm Transactions On Graphics (Tog), vol. 25,
no. 3. ACM, 2006, pp. 614–623.

[2] M. Lipp, P. Wonka, and M. Wimmer, “Parallel generation of multiple
l-systems,” Computers & Graphics, vol. 34, no. 5, pp. 585–593, 2010.

[3] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants.
Springer Science & Business Media, 2012.

[4] R. Osfield, D. Burns et al., “Open scene graph,” Library–OSG.
http://www. openscenegraph. org, 2004.

[5] D. Brutzman and L. Daly, X3D: extensible 3D graphics for Web authors.
Morgan Kaufmann, 2010.

[6] C. Peng and Y. Cao, “A gpu-based approach for massive model rendering
with frame-to-frame coherence,” in Computer Graphics Forum, vol. 31,
no. 2pt2. Wiley Online Library, 2012, pp. 393–402.

[7] P. I. N. Santos and W. Celes Filho, “Instanced rendering of massive
cad models using shape matching,” in Graphics, Patterns and Images
(SIBGRAPI), 2014 27th SIBGRAPI Conference on. IEEE, 2014, pp.
335–342.

[8] J. Xue, G. Zhao, and W. Xiao, “Efficient gpu out-of-core visualization
of large-scale cad models with voxel representations,” Advances in
Engineering Software, vol. 99, pp. 73–80, 2016.

[9] G. Stiny, “Introduction to shape and shape grammars,” Environment and
planning B, vol. 7, no. 3, pp. 343–351, 1980.

[10] Y. I. Parish and P. Müller, “Procedural modeling of cities,” in Proceed-
ings of the 28th annual conference on Computer graphics and interactive
techniques. ACM, 2001, pp. 301–308.

[11] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, Instant architecture.
ACM, 2003, vol. 22, no. 3.

[12] P. Merrell, E. Schkufza, and V. Koltun, “Computer-generated residential
building layouts,” in ACM Transactions on Graphics (TOG), vol. 29,
no. 6. ACM, 2010, p. 181.

[13] F. Bao, M. Schwarz, and P. Wonka, “Procedural facade variations from
a single layout,” ACM Transactions on Graphics (TOG), vol. 32, no. 1,
p. 8, 2013.

[14] J.-E. Marvie, C. Buron, P. Gautron, P. Hirtzlin, and G. Sourimant, “Gpu
shape grammars,” in Computer Graphics Forum, vol. 31, no. 7. Wiley
Online Library, 2012, pp. 2087–2095.

[15] M. Steinberger, M. Kenzel, B. Kainz, P. Wonka, and D. Schmalstieg,
“On-the-fly generation and rendering of infinite cities on the gpu,” in
Computer graphics forum, vol. 33, no. 2. Wiley Online Library, 2014,
pp. 105–114.

[16] M. Steinberger, M. Kenzel, B. Kainz, J. Müller, W. Peter, and D. Schmal-
stieg, “Parallel generation of architecture on the gpu,” in Computer
graphics forum, vol. 33, no. 2. Wiley Online Library, 2014, pp. 73–82.

[17] L. Krecklau, D. Pavic, and L. Kobbelt, “Generalized use of non-
terminal symbols for procedural modeling,” in Computer Graphics
Forum, vol. 29, no. 8. Wiley Online Library, 2010, pp. 2291–2303.

