
Hybrid animation with spatial keyframes and
motion capture

Bernardo Fortunato Costa, Claudio Esperança
Laboratório de Computação Gráfica/PESC

COPPE/UFRJ
Rio de Janeiro, Brazil

Email: {bfcosta,esperanc}@cos.ufrj.br

Abstract—We propose a hybrid scheme for authoring char-
acter animations where key poses are collected from motion
capture data and projected on a plane using dimension reduction
techniques. Animations can then be created by drawing a
curved trajectory on that plane, where each point along the
path corresponds to a new pose interpolated from neighboring
projected poses using Igarashi’s spatial keyframing approach[1].
Furthermore, timing information contained in motion capture
timestamps are also projected on the plane, so that they can
guide the trajectory parametrization. By allowing the animator
to edit the curve path and also its temporal parametrization, we
expect the system to produce natural animations including the
original motion capture animations, but not restricted to them.

Keywords-character animation; motion capture; keyframing;
spatial keyframe;

I. INTRODUCTION

The traditional technique known as keyframing is a popular
way to produce animations. When used in computer-assisted
character animation, it consists of specifying the character pose
at certain time instants and then using interpolation functions
to obtain in-between poses. Since poses are usually specified
with the help of rigid articulated skeletons, computing in-
between poses is tantamount to interpolating joint rotations
between successive keyframes. The careful specification of the
poses and interpolation functions, together with correct timing
of a character’s actions is essential to the final quality of the
result. It requires time and effort from skilled animators to
produce good animations.

On the other hand, the technique known as motion capture
or “mocap” produces animations by recording actions of an
actor by means of a set of cameras. This data is translated into
skeleton poses to animate a character in a virtual environment.
This produces a wealth of detail, both in poses and timing,
thus producing realistic character animations. Although the
acquisition process is expensive, there is a large amount of
data available for reuse. Unfortunately, unless one is trying to
reproduce a motion which is very similar to some originally
recorded one, mocap data reuse is still a challenge.

The aim of the research discussed in the following sections
is to build a system that allows reusing mocap data in
the context of a keyframing application. Rather than using
temporal keyframes, however, we propose adopting the spatial
keyframes of Igarashi et al. [1], where key poses are associated
with points on a 2D plane. The animation itself is produced

in real time by moving a controller cursor on the plane, thus
describing a curved trajectory, where each point on the curve
corresponds to a pose interpolated from nearby key poses.
That system was originally proposed for creating quick and
non-professional animations, typically using no more than
a few key poses manually specified. The scheme, however,
can be extended by selecting key poses from mocap data
and projecting them onto the spatial keyframing plane using
dimension reduction techniques. Moreover, the original mocap
animation will, in this case, be equivalent to a trajectory which
can be edited by the animation, thus yielding significantly
different motions.

In the following sections, we review related work, state our
project goals, describe some achievements and point to further
investigation paths.

II. RELATED WORK

Since motion capture data started to become available for
reuse, several ideas have been proposed to make an alternative
use of this data, rather than simply reproduce it in the same
context it was originally built. Kovar et al. [2] had the idea of
breaking the data into smaller units which could be connected,
given that there is a plausible transition between them. A
directed graph is built and the animation is produced by
traversing this graph and applying an algorithm to smooth tran-
sitions between nodes. They achieve good animation quality
but the sketching space available to the animator is limited to
the existing database clips.

Motion capture databases can be quite large and this also
has led to research focusing on data compaction. Safonova et
al. [3] show that motion capture data has much correlation
between its degrees of freedom, making it possible to com-
press it by employing principal components analysis. Another
strategy is to discard some frames from the database, replacing
them with frames reconstructed from the remaining keyframes
by means of blending functions. Xiao et al. [4] use a strategy
based on curve simplification to choose keyframes. This is an
iterative strategy aimed at finding the most “distant” frame
in the motion, compared to the reconstructed frames, and then
adding it to the set of keyframes. Huang et al. [5] use a strategy
called matrix factorization. Here, character poses are described
as vectors and put all together in a matrix representing the full
set of frames. The keyframe extraction problem is posed as

mailto:bfcosta@cos.ufrj.br


a constrained matrix factorization problem to be solved with
least-squares optimization. Halit and Capin [6] implemented
another strategy called clustering. In this case, character poses
are grouped in clusters of poses according to some definition
of distance, and a representative pose is elected for the group.
Zhang et al. [7] use genetic algorithms to find keyframes in
motion databases. A search through the solution space is done
by combining previous solutions, giving priority to best fits.

The keyframe animation workflow consists, in essence, of
defining poses for given timestamps and using interpolation
functions to synthesize poses for the remaining time instants.
This process can be quite laborious, especially for informal
animations. Igarashi et al. [1] proposed an interface and
technique for authoring these, called spatial keyframing. Here,
the user records poses of an articulated virtual character,
associating each pose to a marker on the screen, typically a
visible point. The animation is built in real time by moving
a controller, another visible point, between the markers. The
controller trajectory creates the animation by blending the
recorded poses, using radial basis functions (RBFs) [8], such
that the pose for a given point is more heavily influenced by
the closest pose markers.

The use of motion capture data in keyframe based animation
is not spread out due to the difficulty of finding ways to make
both workflows work together to produce good animation.
Pullen and Bregler [9] use mocap data to enhance parts of
a keyframed animation, by matching the frequency analysis
of the keyframed and motion capture data. Their goal is
similar to ours but their work is aimed at traditional temporal
keyframing.

III. REUSING MOCAP DATA WITH SPATIAL KEYFRAMING

As stated earlier, we propose to reuse poses extracted
from mocap data and set them as keyframe markers within
the spatial keyframing pose plane. This requires addressing
two important problems, namely, how to choose a small but
comprehensive set of poses, and how to lay them out on the
pose plane.

A. Pose extraction

Motion capture pose extraction is a well known problem.
It considers motion as a function with time as the domain
and poses as the range. In order to extract the most relevant
poses and omitting redundant poses, most schemes define
some metric whereby the dissimilarity between two poses
can be evaluated in the form of a distance function. Two
main groups of distance functions have been proposed. One
group defines pose distance by measuring degrees of freedom
in a positional format while the other defines pose distance
mostly as a measure of rotational variance. Let A and B be
two poses, consisting of J joints (degrees of freedom). Let
P (·) be a function that maps a joint to its position, and Q(·)
a function that maps a joint to its rotation as a quaternion.
Then, equations (1) and (2) show two typical positional and
rotational definitions of pose distance functions, respectively.
Weights wj are used to assign importance to individual joints,

typically by assuming that limb extremities should have more
importance than joints closer to the skeleton’s center of mass.

Ep(A,B) =
∑
j∈J

wj‖P (Aj)− P (Bj)‖2 (1)

Er(A,B) = w0‖P (A0)− P (B0)‖2

+
∑
j∈J

wj

(
1− 〈Q(Aj), Q(Bj)〉2

) (2)

Pose distance functions can be used as error-measuring
devices. Since pose extraction consists of selecting a set of
frames that are used to reconstruct the missing ones, it stands
to reason that a good selection minimizes the error between
synthesized motion and the original captured motion. At any
rate, the evaluation of the pose extraction is usually conducted
with the aid of such functions.

Only positional and rotational data might not be able to
fully characterize the motion. Dynamic information such as
velocity or acceleration is used by some authors to better
choose keyframes in a motion frame set. Assa et al. [10] builds
a framework which takes into consideration the spatial distance
in both formats, together with velocity distance also taken in
positional and rotational format. Bulut and Capin [11], Halit
and Capin [6] and Jin et al. [12] use the motion curvature
for choosing keyframes. Motion curvature is guessed from
velocity and acceleration.

The strategy for choosing keyframes set also plays a role in
our context. Two promising strategies are curve simplification
[4] and clustering [6]. Curve simplification gives us the ability
of customizing the keyframe set size. But some adaptation
has to be considered as all of the reviewed algorithms assume
a canonical motion curve. This means that whereas in con-
ventional keyframing the domain is a set of time instants, in
the spatial keyframe environment the domain is the 2D set of
points on the screen. As a consequence, pose reconstruction
is based on a 2D neighborhood, rather than a one-dimensional
neighborhood.

B. Pose projection

Traditional temporal keyframing requires a careful posi-
tioning of poses along the time axis. In spatial keyframing,
markers are positioned on the screen. This is usually done
manually. If poses are imported from motion capture, a nice
feature is to lay out the corresponding markers on the screen
automatically. However, this placement needs not be final.
One feature of spatial keyframing is the ability to reposition
markers as user wishes. As a first guess, it is possible to
treat the character pose as a multidimensional vector and
model this problem as a projection of these vectors to a lower
dimensional space. There are algorithms capable of this task,
but we have to take in consideration some issues such as time
performance, support for repositioning and the availability of
multiple distance metrics.

A complete review of possible algorithms is beyond the
scope of this work. We shall only cite a small set of popular



solutions. Assa et al. [10] use multiple distance metrics for
comparing poses and proposes the use of a type of MDS1

called RMDS2. Jin et al. [12] use LLE3 for working with pose
data in low dimension. The main difference between them is
that LLE does his positioning just considering the surrounding
neighborhood while MDS algorithms like RMDS use all
available data. However, none of them gives support for data
repositioning in low dimension. LAMP4 [13] is a technique
for data projection in low dimension which implements data
relocation. However, LAMP needs a seed projection to work.
Usually, this is done by another approach known as force
projection [14].

C. Motion timing

Given a marker set positioning from motion capture poses,
the user has to be able to recover part of motion capture real-
ism given by its timing data. However, using this information
is not trivial. Animation timing in spatial keyframing is done
in real time by the user. To make both ends meet, we need to
find a parameterization which makes the controller trajectory
match the timing from the motion capture. Our current idea is
use a two-step approach. In a first step, the user would produce
the raw animation giving a trajectory to the controller. This
trajectory can be edited in a second step to adjust the motion
timing. The system should ensure that a controller trajectory
between two markers, which are separated by a given time
interval in the mocap data, follow the same animation timing.
Proposing a solution for editing the controller trajectory using
motion capture data is a key issue, which we hope to be able
to offer in an animation authoring environment with enhanced
realism.

IV. CURRENT STATUS

Until the present moment, most of the work targeted the
reconstruction of the motion capture animation inside a spatial
keyframe environment. In a first experiment, we tried to
rebuild motion capture frames using a curve simplification
strategy and the spatial keyframing interpolation scheme.
Markers were laid out along a single line, mimicking a time
slider. The idea of this experiment was to investigate the
adequacy of positional and rotational pose distance functions.
As a whole, the positional distance function seems to produce
a more visually faithful animation than the rotational distance
function. Fig. 1 illustrates reconstruction result with a posi-
tional pose distance. The number of keyframes used was fixed
in 10 % from the total of frames. Weights were chosen as the
level of hierarchy for each degree of freedom, being the root
joint equal to one.

In a second experiment, we tried to capture the effects of
placing markers on the screen, using a pose projection scheme
in low dimension. The scheme used was force projection [14]
and keyframes are the same chosen in previous experiment.

1Multi Dimensional Scaling
2Replicated Multi Dimensional Scaling.
3Local Linear Embedding
4Local Affine Multidimensional Projection

Fig. 1. Screenshots of a motion run rebuilt by curve simplification with 9
keyframes from a total of 141. White skeleton shows the motion capture pose
for the current frame and blue skeleton the reconstructed pose.

Fig. 2 illustrates a motion run being reproduced in this scheme.
The controller trajectory is automatically updated without user
intervention. With the same amount of keyframes we are able
to reach the same basic result of our previous reconstruction.
However, if a big number of markers are used, animation
quality degrades since the distribution will produce clusters
over-representing similar poses, which causes the RBFs to
skew the interpolated pose towards these clusters. This is to be
expected, since the pose selection was conducted in the time
domain rather than in the spatial domain.

V. FUTURE WORK

The initial tests using force projection approach seem
promising but there are other low dimension projection ap-
proaches to be tested. In fact, we only listed a few possible
projection approaches we are aware of and a more complete
review of them might show more suitable algorithms to be
used. Up to now, LAMP seems the most suited for its ability
to reposition all markers given a set of control points. In fact,
manual positioning of markers is one of the next experiments.

We should also test the current approach also more complex
motion capture data or with more than one file as input. A
more complex pose set will have a great impact on marker
positioning and also in the final result.

Most importantly, user intervention has to be considered.
All issues related to the reuse of timing information have
yet to be modeled. User input such as creating new poses
or removing some should also be taken into consideration.
One interesting feature we hope to achieve is to automatically
propose a time transition between synthetic poses, given that
they have a motion capture transition information for their
surrounding markers. User feedback should play a crucial role
in the evaluation of the system.



Fig. 2. Motion run with markers automatically positioned by force projection
scheme. On the right, white skeleton shows motion capture pose for current
frame and blue skeleton the same pose rebuilt with curve simplification. There
is a huge overlap between them. On the left, blue points represent markers
and purple point represents the controller.

ACKNOWLEDGMENT

The authors would like to thank reviewers for their valuable
feedback.

REFERENCES

[1] T. Igarashi, T. Moscovich, and J. F. Hughes, “Spatial keyframing
for performance-driven animation,” in Proceedings of the 2005 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, ser.
SCA ’05. New York, NY, USA: ACM, 2005, pp. 107–115. [Online].
Available: http://doi.acm.org/10.1145/1073368.1073383

[2] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM Trans.
Graph., vol. 21, no. 3, pp. 473–482, Jul. 2002. [Online]. Available:
http://doi.acm.org/10.1145/566654.566605

[3] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthesizing physically
realistic human motion in low-dimensional, behavior-specific spaces,”
ACM Trans. Graph., vol. 23, no. 3, pp. 514–521, Aug. 2004. [Online].
Available: http://doi.acm.org/10.1145/1015706.1015754

[4] J. Xiao, Y. Zhuang, T. Yang, and F. Wu, “An efficient
keyframe extraction from motion capture data.” in Computer
Graphics International, ser. Lecture Notes in Computer
Science, T. Nishita, Q. Peng, and H.-P. Seidel, Eds.,
vol. 4035. Springer, 2006, pp. 494–501. [Online]. Available:
http://dblp.uni-trier.de/db/conf/cgi/cgi2006.html#XiaoZYW06

[5] K.-S. Huang, C.-F. Chang, Y.-Y. Hsu, and S.-N. Yang, “Key
probe: a technique for animation keyframe extraction,” The Visual
Computer, vol. 21, no. 8, pp. 532–541, 2005. [Online]. Available:
http://dx.doi.org/10.1007/s00371-005-0316-0

[6] C. Halit and T. Capin, “Multiscale motion saliency for keyframe
extraction from motion capture sequences,” Computer Animation and
Virtual Worlds, vol. 22, no. 1, pp. 3–14, 2011. [Online]. Available:
http://dx.doi.org/10.1002/cav.380

[7] Q. Zhang, S. Zhang, and D. Zhou, “Keyframe extraction from
human motion capture data based on a multiple population genetic
algorithm,” Symmetry, vol. 6, no. 4, p. 926, 2014. [Online]. Available:
http://www.mdpi.com/2073-8994/6/4/926

[8] H. Q. Dinh, G. Turk, and G. Slabaugh, “Reconstructing surfaces by
volumetric regularization using radial basis functions,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 24, no. 10, pp.
1358–1371, Oct 2002.

[9] K. Pullen and C. Bregler, “Motion capture assisted animation: Texturing
and synthesis,” ACM Trans. Graph., vol. 21, no. 3, pp. 501–508, Jul.
2002. [Online]. Available: http://doi.acm.org/10.1145/566654.566608

[10] J. Assa, Y. Caspi, and D. Cohen-Or, “Action synopsis: Pose selection
and illustration,” ACM Trans. Graph., vol. 24, no. 3, pp. 667–676, Jul.
2005. [Online]. Available: http://doi.acm.org/10.1145/1073204.1073246

[11] E. Bulut and T. Capin, “Key frame extraction from motion capture data
by curve saliency,” Computer Animation and Social Agents, p. 119, 2007.

[12] C. Jin, T. Fevens, and S. Mudur, “Optimized keyframe extraction
for 3d character animations,” Computer Animation and Virtual
Worlds, vol. 23, no. 6, pp. 559–568, 2012. [Online]. Available:
http://dx.doi.org/10.1002/cav.1471

[13] P. Joia, F. Paulovich, D. Coimbra, J. Cuminato, and L. Nonato, “Local
affine multidimensional projection,” Visualization and Computer Graph-
ics, IEEE Transactions on, vol. 17, no. 12, pp. 2563–2571, Dec 2011.

[14] E. Tejada, R. Minghim, and L. G. Nonato, “On improved projection
techniques to support visual exploration of multidimensional data sets,”
Information Visualization, vol. 2, no. 4, pp. 218–231, Dec. 2003.
[Online]. Available: http://dx.doi.org/10.1057/palgrave.ivs.9500054

http://doi.acm.org/10.1145/1073368.1073383
http://doi.acm.org/10.1145/566654.566605
http://doi.acm.org/10.1145/1015706.1015754
http://dblp.uni-trier.de/db/conf/cgi/cgi2006.html#XiaoZYW06
http://dx.doi.org/10.1007/s00371-005-0316-0
http://dx.doi.org/10.1002/cav.380
http://www.mdpi.com/2073-8994/6/4/926
http://doi.acm.org/10.1145/566654.566608
http://doi.acm.org/10.1145/1073204.1073246
http://dx.doi.org/10.1002/cav.1471
http://dx.doi.org/10.1057/palgrave.ivs.9500054

	Introduction
	Related work
	Reusing mocap data with spatial keyframing
	Pose extraction
	Pose projection
	Motion timing

	Current status
	Future work
	References

