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(a) Interactive segmentation with 5 markers. (b) Interactive segmentation with 7 markers. (c) Interactive segmentation with 9 markers.

(d) Proposed initial automatic segmentation. (e) Proposed user correction with 3 markers. (f) Proposed user correction with 5 markers.

Fig. 1. Segmentation results of the cerebellum obtained interactively in 3D without and with the aid of our proposed approach, for user U1 and image 36
in Table I. The 3D label renditions refer to the posterior-anterior coronal view of the organ. Top row: the interactive image segmentation of the cerebellum
using a standard scribble-based methods [1], after the user added 5 markers to obtain an initial result. We depict next two other iterations when the user
attempted to correct the poor result from (a) by adding 4 extra markers in total in different slices/planes. Bottom row: the proposed approach for interactive
image segmentation assisted by a Statistical Seed Model. The result in (d) refers to the automatic segmentation using SSM without user interaction. The next
two figures show the addition of only 5 extra markers in total by the user to correct our model’s result. For comparison, the user added 15 markers in total
in the fully interactive case to achieve a similar, but very crude, result in our experiments (see Figure 5).

Abstract—Interactive 3D object segmentation is an important
and challenging activity in medical imaging, although it is
tedious and error-prone to be done. Automatic segmentation
methods aim to replace the user altogether, but require user
interaction to produce training data sets of segmented masks and
to make error corrections. We propose a complete framework for
interactive medical image segmentation, which reduces user effort
by automatically providing an initial segmentation result. We
develop a Statistical Seed Model (SSM) to this end, that improves
from seed sets selected by robot users when reconstructing masks
of previously segmented images. The SSM outputs a seed set
that may be used to automatically delineate a new test image.
The seeds provide both an implicit object shape constraint
and a flexible way of interactively correcting segmentation. We
demonstrate that our framework decreases the amount of user
interaction by a factor of three, when segmenting MR-images of
the cerebellum.
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I. INTRODUCTION

Object segmentation is one of the most crucial and chal-
lenging activities in medical imaging. The goal is to assign
a label to every element (voxel) in the image that indicates
whether it belongs to one out of multiple objects of interest
(body anatomic structures) or the background. As such, image
segmentation may be divided into object recognition and
object delineation. Object recognition involves approximately
locating the objects in the image, as well as verifying the result
of segmentation to point out errors for correction. Delineation
is the process that actually performs label assignment. In
general, object recognition is a simpler task for humans, while



the computers are often more precise in delineation.
Interactive image segmentation techniques usually exploit

the synergism between the human operator for object recog-
nition and the machine for object delineation, in order to
increase effectiveness. The user can provide input using a
few mouse clicks, often in the form of scribbles (seed voxels,
also called markers) drawn over the foreground and the back-
ground, while the computer considers this input to delineate
the objects. Many approaches follow this intuitive form of
user interaction [2], [3], [4], [5], [1], [6], but the key problem
of minimizing the amount of user intervention and the time
necessary for obtaining an accurate segmentation [7], while
maintaining the user’s control over the process, still remains.

Image segmentation is not a single shot task. It requires
the user to draw a set of scribbles to locate the object for
a first delineation to be automatically performed (Figure 1a).
Then, the user must verify if the result is correct and add more
scribbles when errors occur (Figure 1b). This is an iterative
process that may heavily burden the user (Figures 1b- 1c),
who may even have to delete markers that were inadvertently
misplaced. This is particularly troublesome in medical image
segmentation, since objects such as the cerebellum are three-
dimensional and usually connected to others with similar
texture (e.g., the spinal cord, Figure 1), thereby requiring the
user to carefully analyze multiple axes of orientation in search
for errors.

To mitigate the above problem, several approaches have
been proposed for automatic object segmentation, such as
statistical atlases [8], [9], [10], [11], fuzzy object models [12],
[13], active shape models [14], and template matching [15].
They differ from interactive methods in that they desire to
replace the user altogether, by computing a model from
prior object information (shape and/or texture) to treat object
recognition. However, interactive segmentation is still required
by automatic approaches since they consider a training data
set containing segmentation masks of the object of interest for
object modeling, which can only be accurately created under
an expert user’s supervision. Moreover, those approaches aim
to solve object recognition, but they still demand interactive
correction when errors in automatic segmentation occur.

In spite of several advances in object modeling, the per-
sistent refusal in acknowledging the user’s contribution to the
development and application of automatic approaches has left
two major open research questions. First, automatic methods
have not been designed to aid the user in the very process
of constructing the required data sets for training them, in
order to reduce the spent amount of user effort. A related
problem is that the update of the models is usually disregarded
in case more unlabeled images become available for training,
which must be once again segmented by the user from scratch.
Second, since their goal is accuracy, the output segmentation
produced by object models cannot be easily corrected by the
user when the models fail.

Statistical atlases [8], [9], for instance, produce a prior
object probability map (Figure 2a) that imposes a hard shape
constraint about where the object’s boundary may exist in

(a) (b)

(c) (d)

Fig. 2. (a) Coronal view of the prior probability map for a statistical atlas
of the cerebellum. (b) Error in atlas-based segmentation (yellow) circled in
magenta (ground truth in blue). (c) The voxels shaded in yellow and red
indicate the internal and external regions of the probability map, respectively,
and may be considered as seeds. (d) The seed set generate by the method
in [16], [17] to reproduce the atlas-based segmentation for correction (yellow
and white arrows indicate the foreground and background seed voxels,
respectively).

the test image. When errors occur (Figure 2b), one has to
convert the internal and external portions of the map into seed
voxels for interactive segmentation. However, those seeds are
too dense to allow effective corrections (Figure 2c), even if
a dilation/erosion is applied. To circumvent this problem, ad-
hoc resuming techniques such as those in [16], [17] allow the
conversion of any previous segmentation mask into a seed set
with minimum cardinality that perfectly reproduces the input
mask with a delineation algorithm. This time, the generated
seeds are too sparse and make the user lose control over the
process when she/he adds or removes seeds (Figure 2d).

As a first step towards answering the aforementioned open
research questions, we propose a complete framework for
interactive image segmentation that considers an object model
for automatic segmentation to produce an initial delineation
result (Figure 1d), which may then be evaluated and naturally
corrected by the user with reduced effort (Figures 1e-1f. To
this end, we design our framework by considering the very
interactive image delineation algorithm that will be used for
corrections in the training of our model, such that the output of
our model is a suitable seed voxel set. This set strikes a balance
between the strict object shape constraint of statistical atlases
and the sparseness of the seeds produced by the resuming
techniques in [16], [17].

We develop our framework by understanding how the user
segments an image interactively, under the following premise:
for a given object of interest (e.g., a body organ such as
the cerebellum) and a specific interactive image segmentation
method, an expert human operator places seeds roughly at
similar (critical) locations to segment a training set of images
(e.g., close to the boundary between the cerebellum and the
spinal cord). Hence, if the training images are in a same
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Fig. 3. Pipeline of the Statistical Seed Model construction and test image segmentation.

coordinate space, it should be possible to learn the statistical
distribution of those seed locations and to build a Statistical
Seed Model (SSM), rather than computing a prior probability
map as statistical atlases. Once the distribution is estimated,
our method selects a probabilistic seed set to automatically
segment new test images (Figure 4c), which implicitly models
the object’s shape in a more flexible way. Interactive correc-
tions may be directly done by the addition of new seeds and
the removal of old ones.

To estimate the seed locations, the ideal procedure would
be to have expert users segment a training set of images
while recording those seeds for posterior learning, or even to
construct our model while labeling the data set to apply it to
aid the user in this process. For simplicity, we instead assume
that some training images have already been segmented, and
propose a solution based on robot users [18], [19], [20], [21].
These robots are algorithms developed for evaluating interac-
tive delineation methods by simulating the user’s behaviour
in segmentation. Given an input segmentation mask, they try
to approximately reconstruct it with the chosen delineation
method by interacting with the method as the user would
(e.g., by iteratively placing seeds at the geodesic center of
segmentation error components [21]). Hence, the robots may
select consistent seed sets if they are carefully elaborated.

A recent method proposed in [22] overlaps with our vision
of a complete system for medical image segmentation. The
authors have developed a template matching-based model that
accepts user-drawn scribbles as hard constraints to force the
numerical optimization in their framework to fix automatic
segmentation results. However, according to their evaluation,
their object shape regularization term makes it difficult to
perform the interactive correction of large errors. We argue
that ultimately their model was not designed by understanding
how the user interacts with interactive segmentation methods.
Unfortunately, their code is not available for comparison.

Our first contribution is an interactive medical image seg-
mentation framework that facilitates user intervention, by

automatically providing an initial delineation result that can
be easily and intuitively corrected. The second is a label
reconstruction procedure-based on robot users, which may
approximately reconstruct the result of any input segmentation
mask. Our final contribution involves making seed estimation
in existing robot users [19] more robust for label recon-
struction. SSMs work for multiple objects simultaneously, if
supported by the delineation method, although we leave such
an improvement and its evaluation as future work. We compare
our method against standalone interactive image segmentation
conducted by expert users, which is the natural baseline of our
approach, on a data set with MR images of the cerebellum.
Section II describes the proposed framework, followed by our
experimental evaluation (Section III), discussions about the
method (Section IV), and conclusions (Section V).

II. PROPOSED FRAMEWORK

The next sections describe each step of our framework,
whose pipeline we illustrate in Figure 3. As in statistical at-
lases, the input to our framework is a training set of segmented
images, which must be placed in a same coordinate system.
Hence, we first elect a reference image from the training set
and perform deformable registration of the remainder with it,
as commonly done for statistical atlases. Then, we map the
segmentation masks according to the deformation fields of
their corresponding original images. Instead of building a prior
probability map by combining the mapped images as in statis-
tical atlases [8], [9], we apply a label reconstruction procedure
using robot users on each training image to reconstruct the
mapped labels. Our method evaluates the resulting seed set
locations across the training images and defines a common
probabilistic seed set as the output for SSM. To delineate a
test image, we place it in the reference image’s coordinate
space, and apply the SSM’s seed set with a certain threshold
for automatic segmentation. The user evaluates the result and
corrects it interactively if necessary.



A. Image registration

We find the reference image I∗ by selecting the one whose
segmentation mask has the highest average Dice similarity
score with respect to all other training images in the data
set, after centralizing them according to the masks’ geometric
centers. Intuitively, this criterion selects as reference the image
whose object is most similar to all others, thereby decreasing
the amount of required deformation for registration.

Deformable image registration and mapping rely on the
Elastix algorithm [23] to place the remaining training images
and masks in the reference coordinate space. The Elastix
algorithm computes a transformation T = TA ◦ TB that first
rigidly maps the image I on to the reference image I∗ with
an affine transform TA, and then deforms it with a B-spline
transformation TB to place it in the coordinate space of I∗.
Transformation T then allows to map the segmentation mask
L of I on to I∗. We apply the same algorithm to register new
unlabeled test images with the reference image I∗.

B. Robot-based label reconstruction

Label reconstruction is an important step in our framework.
As aforementioned, we intend to determine key locations for
seed placement when segmenting a given object of interest,
which depend on characteristics of the delineation algorithm
A that we rely on.

The overall idea of robot-based reconstruction is to select
an optimum seed set S by considering the input label as the
ground truth that must be achieved via segmentation. A generic
robot user works as follows, for a given image I and input
label L:

1) Select an initial seed set S ∈ I with voxels on the
object of interest in L and the background according to
a criterion C;

2) Run delineation algorithm A on I with S as input;
3) Measure the delineation accuracy of the resulting label

L′ by considering the input image L as the ground truth;
4) Select a new seed set S ′ with wrongly labeled voxels in

L′, also according to criterion C;
5) Update S ← S ∪ S ′ and iterate from 2 until a certain

accuracy is reached or S ′ = ∅.
Steps 1-5 mimic how a human user segments images

interactively. Criterion C is the core routine to be defined since
it selects which voxels must be used as seeds. In its simplest
form, C could select spherical brush strokes (markers) at the
geodesic center of the largest segmentation error components
as seed voxels at each iteration, as in [19] and [21]. This is how
a non-expert human user traditionally uses interactive methods.
However, C can be optimized for the chosen delineation
algorithm A, given that A may perform better with fewer seeds
if they are placed on strategic image locations.

In our framework, we have chosen algorithm A as the Image
Foresting Transform by optimum seed competition [1] (IFT-
SC). The IFT is a tool for the development of image processing
and pattern recognition operators based on optimum connectiv-
ity, which generalizes Dijkstra’s algorithm for multiple sources

and smooth path cost functions. The seeds in IFT-SC compete
among themselves to conquer all of the remaining voxels
in the image. Although IFT achieves state-of-the-art results,
leakages in segmentation may occur around regions of the real
object’s boundary with lower image gradient. Those are the
best locations where seed voxels may be selected to achieve
accurate segmentation with minimum user intervention [2],
[24], [1].

The robot user proposed in [19] was designed with a
criterion C that prioritizes regions of the object’s boundary
in L with low gradient magnitudes. It ranks the voxels on a
certain distance to the boundary by the gradient magnitude
value of the closest voxels to them on the object’s border in L
as candidate seed centers, and then selects at each iteration a
voxel p∗ with lowest score as the center of a spherical brush
stroke, if p∗ was wrongly segmented by A at L′. Such criterion
selects all voxels within a given radius from p∗ as seeds, as
long as they belong to the same label as p∗ in L.

We argue that by selecting seeds as spherical brush strokes
the criterion above does not follow the same principle as
expert users do when drawing scribbles close to the object’s
boundary. The user-drawn scribbles tend to follow the object’s
contour and therefore protect better those regions, if they are
selected around locations with low image gradient. Therefore,
we update criterion C with the following modifications that
compute scribble-like seed voxels in 3D:
C1. We select as candidate seed “centers” the voxels on the

object’s border in L, sorted by increasing order of image
gradient magnitude value;1

C2. The currently selected ”center” voxel p∗ must not only be
wrongly segmented in L′, but also belong to the largest
segmentation error component at that iteration;

C3. We mark a voxel q as a seed for S ′ if q is wrongly
segmented in L′, within a distance range [dmin, dmax] to
the object’s border in L, and its closest voxel q′ on the
contour is within a given radius ρ of p∗.

Conditions C1 and C2 sort the selected scribbles not only by
gradient value, but also by the size of the segmentation error
components. Hence, it mimics expert users who add scribbles
around weak parts of the object’s boundary, prioritizing largest
errors first to complete segmentation faster. Condition C3
further makes the seed voxels be selected on a geodesic band
around the border that follows the object’s contour, aiming
to simulate scribbles instead of drawing spheric markers. Fig-
ure 4b depicts examples of seeds selected over the foreground
and background by the robot user, until reaching an acceptable
reconstruction accuracy. In general, we stop segmentation
when the Dice similarity between the segmented image L′ and
the input label L is above a threshold α. In our experiments,
we have found that the generation of our Statistical Seed
Model achieves better results with our robot than with the
one proposed in [19].

1We compute our image gradient by taking into account object information
to enhance differences between the foreground and the background as in [8].
We linearly combined this enhanced gradient with the image’s using a weight
of 0.8 in its favor.
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Fig. 4. (a) Input label for robot reconstruction. (b) Reconstruction seeds
selected by the robot inside (yellow) and outside (white) the cerebellum. (c)
Probabilistic seed set image in which blue-shaded voxels were more frequently
labeled as foreground seeds, and red-shaded voxels were more frequently
labeled as background seeds. (d) The final seed set S∗ after thresholding the
SSM from (c).

C. Statistical Seed Model generation

Given input seed sets S1,S2, . . . ,Sk for each of the k
training images in a data set, the generation of a Statistical
Seed Model is straightforward. Similarly to statistical atlases,
those seed sets indicate whenever a voxel that belongs to
a same location in the body anatomy has been selected as
the background, as the foreground, or when it simply wasn’t
labeled (recall that the training images were registered). In
statistical atlases, the training masks are averaged to output
an estimated prior probability that the voxel has of belonging
to the object of interest, thereby imposing a strict shape
constraint.

The great advantage of SSMs over statistical atlases is that
we select only a subset of voxels from the training masks that
must be labeled as seeds for delineation, strictly where they
are required to obtain accurate results. Hence, SSMs provide
implicit shape constraints that might be nearly as effective
as the ones imposed by atlases, with the added bonus of
facilitating user corrections due to sparseness.

To compute an SSM, we place the seeds back in image
coordinates and average them according to their label. We
count the frequency that a voxel p has of belonging to the
foreground Mf (p) or to the background Mb(p), if it was ever
selected as seed. Let M(p) = max{Mf (p),Mb(p)} denote the
maximum label frequency between both labels, representing
the probabilistic seed set as depicted in Figure 4c, we select
voxel p as part of the final seed set S∗ if M(p) ≥ τ . We
then assign the corresponding seed label as foreground or
background depending on whether Mf (p) > Mb(p). Hence, if
a voxel has been frequently labeled as seed across all training
images and mostly as foreground, it will be selected as a
foreground seed. Figure 4d depicts the seed set S∗.

D. Model-aided interactive segmentation of a test image

To segment a new test image It, we first register it with
the reference image I∗. Then, automatic segmentation applies
algorithm A with seed set S∗ directly on It to obtain the initial
segmentation for the user to visualize. If the image registration
is perfect and the seed set S∗ is properly positioned, we expect
that the resulting segmentation be highly accurate with no need
for user intervention. When that assumption fails, the seed set
S∗ is sparse and informative enough for the user to make
corrections by removing misplaced seeds in S∗ or by drawing
new scribbles. Hence, with little effort the user may conduct
hard segmentation given the model’s implicit shape constraint.

III. EXPERIMENTAL RESULTS

It is very important to note that our end goal is to perform
interactive image segmentation. Hence, our natural baseline is
to use the same delineation algorithm applied during training
interactively, without the aid of our model. We aim to show
that Statistical Shape Modeling may reduce user intervention
while achieving high accuracy in this setting. Moreover, SSM
is a framework general enough in that we can change both the
robot user selected for label reconstruction and the scribble-
based delineation algorithm with any other existing in the
literature. Hence, the advantages we want to demonstrate
should extend to those cases as well, although we leave such
an evaluation as future work.

We have conducted both automatic and interactive experi-
ments to validate our approach, using a data set containing
37 MR T1-weighted images of the brain with voxel size
0.98×0.98×0.98 mm3 and their corresponding binary masks
for the cerebellum. The cerebellum is a particularly chal-
lenging organ for interactive segmentation, since it presents
intense connection with the spinal cord that makes it difficult
to distinguish a clear-cut boundary between them. Ground
truths were generated for all images by experts using manual
and interactive segmentation tools.

We randomly divided the data set 10 times into 70% for
training and 30% for testing to evaluate our method without
user intervention. We then executed the automatic part of our
pipeline for all folds, and measured the final accuracy of our
method as the Average Symmetric Surface Distance (ASSD)
between the segmentation result and the ground truth. Our
method achieved 1.20 mm of mean error across all images
and folds, which is state-of-the-art accuracy when comparing
with other model-based automatic methods (e.g., see [8]).

To assess our method interactively, we would have to require
the users to segment the images in each of the previously
described test folds to measure accuracy and effort, since the
resulting SSM was different for each one. Instead, we selected
among all folds of the automatic evaluation step the 10 non-
repeated test images in which the automatic method presented
worse ASSD scores, and had two expert users U1 and U2
segment them with and without the aid of the corresponding
SSM.

Given the difficulty in segmenting the cerebellum interac-
tively, to demonstrate reduction in user effort we limited the



TABLE I
EXPERIMENTAL RESULTS FOR THE CEREBELLUM DATA SET, COMPARING THE WORST RESULTS OBTAINED AUTOMATICALLY BY SSM ACROSS ALL FOLDS
FOR 10 TEST IMAGES WITH THE INTERACTIVE SEGMENTATION OF THE CORRESPONDING IMAGES BY TWO DIFFERENT EXPERT USERS, U1 AND U2, WITH
AND WITHOUT ITS AID. THE METRICS REFER TO THE ASSD SCORES IN MM OBTAINED FOR EACH SEGMENTED IMAGE. WE PRESENT THE INTERACTIVE

OBTAINED SCORES USING BOTH 5 AND 15 MARKERS WITHOUT SSM. BEST SCORES DENOTED IN BOLD.

Image
Id

Aut.
SSM

Interact. U1
(5 markers)

Interact. U1
(15 markers)

Proposed SSM-aided
Interact. U1 (5 markers)

Interact. U2
(5 markers)

Interact. U2
(15 markers)

Proposed SSM-aided
Interact. U2 (5 markers)

05 1.73 5.02 1.28 1.06 3.26 1.18 1.10
08 3.27 3.54 1.73 1.42 8.23 1.60 1.34
15 1.30 1.54 1.35 1.02 1.63 1.27 0.92
18 1.64 3.27 1.80 1.15 3.87 1.92 1.05
24 2.56 5.05 1.73 2.45 4.79 1.36 1.07
25 1.31 8.03 1.68 1.29 2.23 1.32 1.24
27 1.26 2.36 1.93 1.16 3.00 1.42 1.03
28 1.84 3.73 2.21 1.25 3.12 1.20 1.13
36 2.75 23.78 2.00 1.27 8.19 1.52 1.30
37 1.24 1.96 1.10 0.98 2.16 1.07 0.97

Avg. 1.89 5.83 1.68 1.31 4.05 1.39 1.12

amount of user intervention to the maximum addition of 5
scribbles per image in SSM-aided interactive segmentation.
For the fully interactive case with IFT-SC, we allowed the
users to add up to 15 scribbles.

Table I presents the measures obtained by SSM automati-
cally and for both users interactively with and without model
initialization. The ASSD error dramatically decreases by 0.58
mm for U1 and 0.77 mm for U2 when using SSM to initialize
interactive segmentation. This result also improves in 0.37
mm for U1 and 0.27 mm for U2 the error measure when
compared to performing interactive segmentation from scratch
using 15 markers, even though the users added three times less
markers with SSM. If we had had stopped fully interactive
segmentation at 5 markers as well, as also demonstrated in
Table I, the results would not even have been comparable since
the mean ASSD error would have risen to 5.83 mm for U1 and
4.05 mm to U2. Figure 5 depicts some results from Table I.

Note that, prior to both the interactive and automatic
evaluations, we validated SSM parameters via grid search
and 10-fold cross validation in a subset with 50% of the
data set images, which had no overlap with the test subsets
used for evaluation. This validation resulted in the following
configuration: dmin = 2 and dmax = 5 voxels for the distances
that dictate the width of the robot user’s scribbles; ρ = 10
voxels for the scribble’s length; α = 0.935 as the Dice
similarity threshold for reconstruction, and τ = 25% of the
maximum frequency value in M to determine S∗.

We performed image registration with the software
Elastix [23] with the parameter file par0000.2 All experi-
ments used a desktop computer with a Core Intel i7-3770k
CPU and 32GB of RAM, running Ubuntu Linux 14.04. Our
research code was implemented in C language with little
optimization. Overall, the most time-consuming part is the
registration, which takes between 2 and 3 minutes per image.
The model’s training and testing stage are very efficient

2http://elastix.bigr.nl/wiki/index.php/Parameter file database

afterwards, since the bulk processing time can be done offline.

IV. DISCUSSION

We have designed Statistical Seed Models for interactive im-
age segmentation, aiming to facilitate manual curation in real
applications. As such, we have experimentally demonstrated
that the required amount of user effort can be dramatically
reduced when using our method while increasing accuracy,
after training it on a data set with segmented MR images of the
cerebellum obtained from control patients. SSM was designed
with some ideas from the traditional statistical atlas model, and
may still be limited by similar drawbacks. In particular, the
registration procedure might be an issue when dealing with
pathological data. If errors in registration occur due to the
presence of anomalies such as tumors, the segmentation of
the body anatomical structure might be compromised.

We envision three possibilities to circumvent the aforemen-
tioned problem. The first one is to have the user correct errors
in segmentation when abnormalities occur. This is reasonable
to assume since we expect those errors to occur in exceptional
locations not captured by the model during training. Moreover,
our premise is that SSMs facilitate, but do not fully replace,
the user’s interaction. The second possibility is to train the
model on a data set containing pathological cases to verify
its accuracy in this setting. Since tumors and other problems
may vary in appearance and position, we believe that this
may be difficult to capture with our model. A third and
final possibility is to compute the inverse mapping from the
reference coordinate space on to the test image, and then apply
the mapping to the generated seed set. Segmentation would
then take place in the test coordinate system directly. This
alternative has the advantage of not deforming the test image,
thereby preventing the risk of missing pathologies. Since our
seed set provides a sparse, although strict, shape constraint,
we believe that corrections of the model’s segmentation in the
test space may be easier to do, since the pathology will be
more evident in this scenario.



V. CONCLUSIONS AND FUTURE WORKS

We have presented a novel framework for the interactive
segmentation of medical images, which includes an automatic
segmentation step as initialization based on Statistical Seed
Modeling. Our model trains with the help of robot users and
outputs a seed voxel set that can be used to segment test
images automatically, and which may be later modified with
the addition or removal of scribbles to correct segmentation.
We have demonstrated that our framework can decrease the
amount of user interaction by threefold, while increasing
accuracy in the segmentation of MR images of the cerebellum.

SSM is a general framework with building blocks that may
be improved in several ways. Firstly, the selected delineation
algorithm may be changed to others based on scribble selec-
tion, such as graph cuts by the min-cut/max-flow algorithm [5],
[4], random walks [25], and fuzzy connectedness [6]. Sec-
ondly, the robot user selected for adding the seeds may be
replaced as well by any other in the literature [21], as long as
the selected seed set be consistently selected for the delineation
algorithm on critical locations of the object of interest. Finally,
different strategies for creating and testing the model may be
employed, such as replacing deformable registration by simple
alignment, as in Fuzzy Object Modeling [12], [13].

We have designed our method aiming to be a first step
towards answering the following open questions. 1) Can we
develop an object model to aid in the interactive segmentation
of images, such that the very training of the model can be done
while labeling the input data set? 2) Can this model be tested
on new images and allow simple interactive corrections? We
have demonstrated that 2) is possible by starting from an initial
set of segmented images. In future works, we aim to evaluate
if 1) can be resolved by our model, which would be trained
directly with the input of expert human users. Lastly, once all
images in a data set is segmented, we may use them to train
other object model approaches for automatic segmentation.

Future works also involve extending our model to multiple
objects, and including search optimizations that may reposition
the seeds locally for improved segmentation as in [8]. We fur-
ther intend to test our model with pathological data to evaluate
the required amount of user effort spent in correcting errors,
following the three alternatives presented in Section IV.
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Fig. 5. Segmentation results of the cerebellum for four images from Table I. We depict for each experiment and for both users U1 and U2 an anterior-posterior
coronal slice of the original 3D image with the segmentation result overlayed and the corresponding 3D rendition of the result, rotated for better visualization
of errors (i.e., depicting the posterior-anterior view). The figures refer to the ground truth images (first row), the automatic result of SSM with errors (second
row), the interactive result obtained with 5 and 15 markers (rows 3/4 and 6/7), and the proposed approach with 5 markers for correction (rows 5 and 8 with
images surrounded by magenta frames).


