
A Genetically Programmable Hybrid Virtual
Reconfigurable Architecture for Image Filtering

Applications
M. A. Almeida

Computer Science Dept.
UFSCar

S. Carlos, SP – Brazil

E. C. Pedrino
Computer Science Dept.

UFSCar
S. Carlos, SP – Brazil

M. C. Nicoletti
Computer Science Dept.
UFSCar & FACCAMP

SP, Brazil

Abstract—A new and efficient automatic hybrid method, called
Hy-EH, based on Virtual Reconfigurable Architectures (VRAs)
and implemented in Field Programmable Gate Arrays (FPGAs)
is proposed, for a hardware-embedded construction of image
filters. The method also encompass an evolutionary software
system, which represents the chromosome as a bi-dimensional
grid of function elements (FEs), entirely parameterized using the
Verilog-HDL (Verilog Hardware Description Language), which
is reconfigured using the MATLAB toolbox GPLAB, before its
download into the FPGA. In the so-called intrinsic proposals,
evolutionary processes take place internally to the hardware,
in a pre-defined fixed way; in extrinsic proposals evolutionary
processes happen externally to the hardware. The hybrid Hy-EH
method, described in this paper allows for the intrinsic creation
of a flexible-sized hardware, in an extrinsic way i.e., by means of
an evolutionary process that happens externally to the hardware.
Hy-EH is also a convenient choice as far as extrinsic methods are
considered, since it does not depend on a proprietary solution for
its implementation. A comparative analysis of using the Hy-EH
versus an existing intrinsic proposal, in two well-known problems,
has been conducted. Results show that by using Hy-EH there was
little hardware complexity due to the optimized and more flexible
use of shorter chromosomes.

Index Terms—genetic programming; filtering images; hybrid
reconfigurable architecture.

I. INTRODUCTION

Evolvable hardware (EH) [1], [2], [3], [4], [5] is a branch
of the evolutionary computation [6], [7], [8] area, focusing on
evolving configurations of physical hardware, so its structures
can be dynamically improved according to a pre-established
performance criteria.

As an incipient research area, it has great potential for
the development of innovative applications. Several works in
evolvable hardware use genetic programming algorithms for
implementing the evolution process ([9], [10]). A Genetic
Programming (GP) algorithm [1], [11], [12] is an evolution-
based algorithm whose main goal is to find a sequence of
instructions (i.e., a program), from a pool of instructions
initially given to the algorithm, which would perform a user-
defined task. In this sense a GP algorithm can be approached
as a Genetic Algorithm (GA) [13], [14], [15], [16], where each
individual (chromosome) is a computer program, and its fitness

is evaluated by the individual (i.e., a program) performing a
given task.

EH has been lately explored using basically two strategies.
In the extrinsic EH [17], software-based simulated evolution
experiments help determining the best chromosome (for a
particular hardware related task), which is then transferred
into the reconfigurable hardware. In the intrinsic EH [18],
reconfigurable circuit blocks, inside the hardware, are used
and the process to evolve a best chromosome is accomplished
within the hardware itself, by evaluating each individual in its
own hardware, allowing for the process to explore the typical
characteristics of the hardware, such as temperature or voltage
levels, when calculating the fitness value, among others.

The intrinsic strategy [19], [16] has recently gained
more visibility due to the emergence and development of
reconfigurable-logic devices, such as FPGAs (Field Pro-
grammable Gate Arrays). However, the two strategies have
limitations. The extrinsic, usually, produces larger chromo-
somes, when small size is a mandatory design aspect, for
many EH applications; in the intrinsic case, in spite of using
simpler GP routines, a large fraction of the FPGA resources
is consumed by the GP built into the circuit. The intrinsic
strategy also has little flexibility, considering that its circuit is
fixed.

The remainder of this paper is organized as follows. Section
II describes the proposal and implementation of a hybrid
virtual reconfigurable arquitecture based on the use of ge-
netic programming and aiming at image filtering applications.
Section III gives some insights of a MatLab toolbox named
GPLAB, used as a tool for inducing a chromosome (genetic
program) for image filtering. Secton IV describes the use of the
proposed system – Hy-EH – in two traditional image filtering
problems. Results from Hy-EH and those obtained by another
proposal, described in [19], are comparatively analysed in
Section V. Conclusions and a few comments about the work
are presented in Section VI.

II. THE HYBRID VIRTUAL RECONFIGURABLE
ARCHITECTURE GENETICALLY PROGRAMMABLE (HY-EH)

In this paper an EH system based on VRA (Virtual Recon-
figurable Architecture), and described in Verilog–HDL code,
as a virtual layer for reconfiguring the FPGA, is proposed.
The process the system implements can be described, in a
general way, as: two images (noisy image and target image)
are given as input to an instantiation of the GPLAB software,
so to obtain a GP-based program that best filters the noisy
image into the target image. The obtained program (best
chromosome) is represented as a binary tree, as shown in Fig.
(1), where the nodes represent operators and the leaves, pixels.

Fig. 1. GP-based program (chromosome), represented as a binary tree, that
best filters a given image into a target image.

The binary tree is then translated into a hardware-based
representation (.mif file in Quartus II 13.0), implemented as a
memory cell, using an ad hoc MatLab based script (Fig. 2).
So far the whole process is conducted in software.

Fig. 2. A chromosome hardware-based representation, implemented as a
memory cell (.mif file).

Next, a Verilog-HDL code, for sequentially reading each
memory register (address) in the .mif file (Fig. (2)) and
translating it into a Cartesian chromosome (virtual architecture
is represented as a flexible bi-dimensional matrix – see Fig.
(3)), is executed .

Each memory address describes a particular configuration
of its corresponding matrix element (a gene). In the example
shown in Fig. (1), where the resulting binary tree codifies to a
4×3 matrix (see Fig. (3) the configuration in address 5 (gene
5), ‘005:0010 0011 00000001’, which is part of the memory
cell, codifies a matrix element (FE for function element) by

Fig. 3. Cartesian chromosome obtained from translating the memory registers
in Fig. (2).

stating its inputs and its function. Its first nibble ‘0010’ is a
binary representation of the origin of its first input (i.e., the
output of element 2) and the second nibble, ‘0011’, is the
origin of its second input (i.e., the output of element 3). The
function (represented by the last byte, in this example) is the
second function in Fig. (4).

Fig. 4. The eight functions used when codifying chromosomes.

The matrix is organized such that the outputs of the FEs in
its first column can be input operands for any FE in the next
column, and so on. The FEs in the first column receive inputs
from the environment and those in the last column provide
outputs to the environment. The whole bi-dimensional matrix
of FEs codifies a chromosome. Each FE, also known as gene
(see Fig. (4), is associated with a set of basic functions and the
selection of a particular function is conducted by a multiplexer

circuit (MUX), which is an inherent part of each gene in the
chromosome. Functions can be of any type: logical, arithmetic,
etc. FEs have been implemented as Verilog-HDL code. The
chromosome employed in Hy-EH is represented as a bit string,
that defines the functions and the connections of a specific FE
in the matrix, as presented in Fig. (2) and Fig. (3).

The hardware comprises a development board having a
FPGA from Altera [20]. For designing the circuit based on
the code in the memory cell, a computer running the Altera
software Quartus II 13.0 was used for developing a Verilog-
HDL code representing the final circuit, which was then loaded
into the FPGA. The code was developed to generate the FEs
using a “for loop”, dependent on the size of the matrix; it
reads the memory and sequentially configures the FEs; each
memory gene gives rise to a FE, as showed in Fig. (2) and Fig.
(3). The same image given to the GPLAB is converted into
a .mif file, via a MatLab script, so to make it readable under
the Quartus II. Under Quartus was also defined a memory to
be associated with the .mif file, a state machine (SM) to read
the image from the input memory as well as a first-in-first-out
(FIFO) structure to ease the reading process, as shown in Fig.
(5).

The size of the FIFO structure depends on the image size as
well as the chosen window size. For the experiments described
in this work, a 3× 3 pixel window was used. Each pixel read
from the memory is buffered into the FIFO. After filling in
the FIFO, at each clock cycle, a 3 × 3 window determines
the 9 pixels to be supplied to the circuit (that represents the
chromosome), as shown in Fig. (6). For an image of 256×256
size and a 3×3 pixel window, the FIFO structure has 2×256
pixels plus 3 extra pixels at the beginning of its third row.
Fig. (6) shows how the information contained in the window
is processed. Due to its hybrid approach, Hy-EH inherits
benefits from both strategies: short chromosome, small matrix,
lower hardware energy cost, a flexible circuit and, also, has
high reusability, since its Verilog-HDL code allows for multi-
platform use.

III. TECHNICAL BACKGROUND – THE GPLAB TOOL

The GPLAB tool [21] was configured as a GP set to find
image filters. Among the several features made available by
the GPLAB, the experiments used the full mode for tree
initialization, the criteria for stopping the tree growth was
depth = 3 (aiming at maintaining the chromosome with a fixed
size and avoiding hardware variations), the population size
was fixed with 200 individuals (chromosomes), the stopping
criteria for the evolution process was 30 generations, an elitism
of 1 individual was employed, and the genetic operators i.e.,
crossover and mutation, were used with adaptive rate. The
crossover was applied to two parents, giving rise to two
children and the mutation was applied to one individual,
giving rise to another individual. The set of ad-hoc functions
specifically designed for the application is briefly described in
Table I, where ‘a’ and ‘b’ are the inputs for a gene.

Fig. 5. The 3× 3 window construction.

IV. EXPERIMENTS

The fitness of each chromosome was determined by evalu-
ating how close the resulting image, produced by applying the
sequence of operators to the noisy image, is from the given
target image. To measure the quality of the filtered image, the
mean difference per pixel (MDPP), between the filtered and

Fig. 6. Processing the window information.

TABLE I
THE EIGHT FUNCTIONS ASSOCIATED TO FES USED IN THE EXPERIMENTS.

Function Description
0(000) f0(a,b) = a
1(001) f1(a,b) = add(a,b) >> 1
2(010) f2(a,b) = add(add(a,b),1) >> 1
3(011) f3(a,b) = max(a,b)
4(100) f4(a,b) = min(a,b)
5(101) f5(a,b) = a << 1 1
6(110) f6(a,b) = xor(a,b)
7(111) f7(a,b) = b

the target images, was calculated by Eq. (1) [19]. Considering
target image sizes of k×k, only a (k− 2)× (k− 2) region of
the image is used, since the pixels on the image borders are
not processed by the 3× 3 window employed.

The best individuals are those with lower averages. For
the GP learning process two different target images were
used, in two different experiments. They are the‘Lena’ and
‘Cameraman’ target images, both with 256 × 256 grayscale
pixels and 8 bits per pixel, shown on the left and on the right,
respectively, in Fig. (7).

Fig. 7. Target images: Lena image (left) and Cameraman image (right).

Associated to each target image, a noisy image was artifi-
cially created, by adding to the target image a Gaussian noise
with mean 0 and variance 0.008. The two images with the
added noise are shown in Fig.(8). So, two learning experiments
were run, each using a pair of images, namely: (lena noisy,
lena target) and (cameraman noisy, cameraman target).

For each pair of images, the GP was performed 100 times,
as in [19], having as input both images; the sequence of
operations represented by a chromosome was applied to the
image with noise and its result compared with the target image,

Fig. 8. Noisy images: Lena image (left) and Cameraman image (right).

using Eq. (1) [22].

fitnessMDFF =

k−2∑
i=1

k−2∑
i=1

|v(i, j)− w(i, j)| (1)

V. RESULTS AND DISCUSSION

The best individual of each evolutionary run was used for
a further comparison with the results in [19]. The simulation
of the best individual obtained by Hy-EH, in both images, are
presented in Fig. (9).

Fig. 9. Filtered images by Hy-EH: the Lena image on the left and the
Cameraman on the right.

The best individual found in the experiments in [19] was
simulated in MatLab, using the same functions given in [19],
for executing the filtering process. The simulation of the best
individual obtained in [19], in both images, are presented in
Fig. (10).

Fig. 10. Filtered images by a simulation of the best chromosome given in
[19]: the Lena image on the left and the Cameraman on the right.

Table II shows a comparison of results related to FPGA
costs, between a simulation with the Quartus II using the best
chromosome given by Hy-EH and the results published in [19].

TABLE II
FP GA COSTS (OCCUPATION). LEFT (HY-EH) ANDN RIGHT [19]

Cyclone II Occupation Virtex Occupation
XCV2000E

Logic Elem. (18,752) 1,633 (9 %) Slices (19,200) 6,711 (35 %)

Table III shows the values of the common parameters used
by both approaches, as evidence that Hy-EH employs more
compact structures. The MDPP values of both best individuals
found by Hy-EH and in [19] are in Table IV.

TABLE III
COMPARING PARAMETER VALUES.

Parameter Hy–EH Paper [19]

Size of FE matrix 4 rows, 3 columns 8 rows, 7 columns
Chromosome length 196 bits 441 bits

TABLE IV
COMPARING MDPP VALUES WHEN IMAGES HAVE GAUSSIAN NOISE.

Hy-EH Paper [19]

Cameraman Lena Cameraman Lena
12.7097 12.3826 25.9728 20.2850

The filtered images (using both, the Hy-EH and a simulation
of the use of the chromosome given in [19]) were compared,
pixel by pixel, with the target images and their respective
absolute difference of values were plotted. The simulation of
the best individual obtained by the Hy-EH, in the Lena and the
Cameraman images, are presented in Fig.(11) and Fig. (12),
respectively. The simulation of the best individual obtained in
[19], in the Lena and the Cameraman images, are presented
in Fig.(13) and Fig. (14), respectively.

Fig. 11. Plotting of results produced by comparing, pixel by pixel, the Lena
image target and the Lena image filtered by Hy-EH.

Fig. 12. Plotting of results produced by comparing, pixel by pixel, the
Cameraman image target and the Cameraman image filtered by Hy-EH.

Fig. 13. Plotting of results produced by comparing, pixel by pixel, the Lena
image target and the Lena image filtered using results given in [19].

Fig. 14. Plotting of results produced by comparing, pixel by pixel, the
Cameraman image target and the Cameraman image filtered using results
given in [19].

The hardware simulation was performed with a 100 MHz
clock, where the delay in processing each pixel was 40 ns.
Taking into account 256×256 images, the resulting processing
time was 256×256×40ns = 2,622ms, allowing to process 380
frames per second. Assuming a resolution of 1024×1024, the
image processing time will be 42ms, and the hardware would
be able to process 23.8 frames per second.

VI. CONCLUSION

The Hy-EH proposed in this paper is a hybrid method for
creating evolved hardware-based image filters, in an efficient
way. It uses an extrinsic GP for obtaining optimized short
chromosomes that codify image filters. The Hy-EH is a
convenient choice since it does not depend on a proprietary
solution for its implementation and it introduces much more
flexibility into the process than the so called intrinsic methods,
for the same task. See [23], [24] for details. As a continuation
of the work a few more tasks have been planned; among them:
(1) the method will be used with a larger set of images, so
to confirm its feasibility and adequacy; (2) a comparison with
standard image denoising methods, such as the median and
the wiener filters [25] will be conducted.

ACKNOWLEDGMENT

We are grateful to the Brazilian funding agency FAPESP –
Project No. 2015/23297-4. Our thanks go as well to UFSCar–
DC, UFSCar-DF and FACCAMP, SP, Brazil.

REFERENCES

[1] J. F. Miller, D. Job, and K. Vassilev, “Principles in the evolutionary
design of digital circuits,” J. Genetic Program. Evolvable Mach., vol. 62,
no. 1–3, pp. 8–35, 2000.

[2] R. Salvador, A. Otero, J. Mora, E. Torre, T. Riesgo, and L. Sekanina,
“Self-reconfigurable evolvable hardware system for adaptive image
processing,” IEEE Trransactions on Computers, vol. 62, no. 8, pp. 1481–
1493, 2013.

[3] F. Ni, Y. Li, X. Yang, F. Ni, and J. Xiang, “An orthogonal cartesian
genetic programming algorithm for evolvable hardware,” in Proc. 2014
International Conference on Identification, Information and Knowledge
in the Internet of Things (IIKI), 2014, pp. 220–224.

[4] R. Hrbacek and M. Sikulova, “Coevolutionary cartesian genetic pro-
gramming in fpga,” in Proceedings of the Twelfth European Conference
on the Synthesis and Simulation of Living Systems (ECAL2013), 2013,
pp. 431–438.

[5] N. Nedjah and L. Mourelle, Intelligent Data Engineering and Automated
Learning, N. Nedjah and L. Mourelle, Eds. Springer-Verlag, 2003, vol.
2690.

[6] D. B. Fogel, Evolutionary Computation: the Fossil Record. Wiley-IEEE
Press, 1997.

[7] B. R. C. Alvareza, O. Cordon, and S. Damasa, “Evolutionary multi-
objective optimization for mesh simplification of 3d open models,”
Integrated Computer-Aided Engineering, vol. 20, no. 4, pp. 375–390,
2013.

[8] J. F. Miller, P. Thomson, and T. Fogarty, Genetic Algorithms and Evo-
lution Strategies in Engineering and Computer Science, D. Quagliarella
and J. P. et al., Eds. Designing electronic circuits using evolutionary
algorithms - arithmetic circuits: a case study: John Wiley and Sons,
England, Chapter 7, 1997, pp. 105-131.

[9] Y. Wei, N. Wu, X. Zhang, and F. Zhou, “An online evolvable hardware
system based on hardware ga and pla structure,” in Proceedings of the
World Congress on Engineering and Computer Science (WCECS 2015),
2015, pp. 91–95.

[10] J. Wang, J. Liu, B. Feng, and G. Hou, “The dynamic evaluation strategy
for evolvable hardware,” in Proc. of The 2015 Ninth International
Conference on Frontier of Computer Science and Technology, 2015,
pp. 91–95.

[11] L. Sekanina and Z. Vasicek, “Approximate circuit design by means of
evolvable hardware,” in Proc. of the 2013 IEEE International Conference
on Evolvable Systems (ICES), 2013, pp. 21–28.

[12] J. Koza, Genetic Programming. MIT Press, 1992.
[13] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley Publishing Company, Reading, MA,
1989.

[14] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Springer-Verlag, 1992.

[15] H. Kim and H. Adeli, “Discrete cost optimization of composite floors
using a floating point genetic algorithm,” Engineering Optimization,
vol. 33, no. 4, pp. 485–501, 2001.

[16] N. Siddique and H. Adeli, Computational Intelligence - Synergies of
Fuzzy Logic, Neural Networks and Evolutionary Computing. Wiley,
West Sussex, UK, 2013.

[17] I. Baradavka and T. Kalganova, “Assembling strategies in extrinsic
evolvable hardware with bidirectional incremental evolution,” in Genetic
Programming, Proceedings of EuroG’2003. Springer-Verlag, 2003, pp.
276–285.

[18] Z. Jixiang, L. Yuanxiang, Z. Wei, X. Xuewen, and X. Xing, “Adaptive
combinational logic circuits based on intrinsic evolvable hardware,” in
Proc. of the 2009 IEEE Congress on Evolutionary Computation (CEC
2009), 2009, pp. 310–317.

[19] J. Wang, Q. S. Chen, and C. H. Lee, “Design and implementation of a
virtual reconfigurable architecture for different applications of intrinsic
evolvable hardware,” IET Computers & Digital Techniques, vol. 2, no.
1–3, pp. 386–400, 2007.

[20] A. Corporation, Cyclone II Device Handbook – Cyclone II Architeture.
Altera Co., 2007, vol. 1.

[21] S. Silva and J. Almeida, “Gplab – a genetic programming toolbox for
matlab,” in Proceedings of the Nordic MatLab Conf, 2007, 2007, pp.
271–278.

[22] L. Sekanina, “Virtual reconfigurable circuits for real-world applications
of evolvable hardware,” Lecture Notres in Compute Science, vol. 2606,
pp. 186–197, 2003.

[23] E. C. Pedrino, J. H. Saito, and V. O. Roda, “A genetic programming
approach to reconfigure a morphological image processing architecture,”
International Journal of Reconfigurable Computing, vol. 20, no. 3, pp.
712 494–712 503, 2010.

[24] E. Pedrino, J. Saito, V. O. Roda, E. R. R. Kato, M. L. T. Tronco, R. H.
Tsunaki, O. Morandin, and M. C. Nicoletti, “A genetic programming
based system for the automatic construction of image filters,” Integrated
Computer-Aided Engineering, vol. 20, no. 3, pp. 275–287, 2013.

[25] A. R. F. da Silva, “Wavelet de noising with evolutionary algorithms,”
Digital Signal Processing, vol. 15, no. 1–3, pp. 382–399, 2005.

