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Abstract—Image matching plays a major role in many
applications, including pattern recognition and biomedical
imaging. It encompasses three steps: 1) interest point selection;
2) feature extraction from each interest point; 3) features
point matching. For steps 1 and 2, traditional interest point
detectors/extractors have worked well. However, for step 3
even a few points incorrectly matched (outliers), might lead
to an undesirable result. State-of-the-art consensus algorithms
present a high time cost as the number of outlier increases.
Aimed at overcoming this problem, we present FOMP, a novel
preprocessing approach, that reduces the amount of outliers in
the initial set of matched points by filtering out the vertices that
present a higher difference among their edges in a complete
graph representation of the points. The precision of traditional
methods is kept, while the time is speed up in 50%. The
approach removes, in average, more than 65% of outliers, while
keeping over 98% of the inliers.

Keywords-Feature Point Matching; Outliers Removal; Filter-
ing; Graph-based Approach.

I. INTRODUCTION

Image matching aims at finding corresponding elements or
regions in pairs of images. It plays a major role in Computer
Vision and it can be used to integrate/fuse images from
the same scene, taken at different times or by different
devices with distinct resolution. Image matching becomes
more important when it is not possible to take a picture
of the whole scene (with high resolution), such as in micro-
scopical images [1] and in satellite/remote sense images [2],
and it is necessary to build the full scene representation.
Nevertheless, a few other applications also take advantage of
image matching/fusion, such as medical imaging [3], image
restoration [4], forensic document examination [5], content-
based image retrieval [6].

The most common approach to match a pair of images
is the feature-based methods, which encompasses three
steps [7]: (1) interest point detection, in which algorithms
such as Scale-Invariant Feature Transform (SIFT) [8] and
Speed-Up Robust Features (SURF) [9] have been widely
used; (2) feature extraction from each point, which takes
into account the relationship among neighboring pixels of
the interest point, for example, gradient orientations; (3)
matching of extracted features from each interest point be-
tween pairs of images using a distance metric, for instance,

Euclidean Distance. The main drawback of feature based
methods is that a few interest points might be incorrectly
matched (outliers). In image matching/mosaicing, it is very
import to have a precise adjustment of the points (inliers),
since outliers lead to an incorrect adjustment.

An approach to detect outliers in matched points is
the RANdom SAmple Consensus (RANSAC) method [10],
which iteratively tries to minimize the least-square error
between pairs of points from two images. RANSAC chooses
random points on each iteration to estimate parameters of a
mathematical model. The iteration that yields the maximum
amount of inliers is chosen as the answer.

Graph-based methods have been used as well. The
matched points from each image are considered as vertices
and the spatial distance among vertices are explored. For
instance, in [11] is presented the Graph Transformation
Matching (GTM) algorithm that iteratively removes points
with the highest residual difference among two median k-
nearest neighbor (k-nn) graphs. The algorithm stops at
reaching a null residual matrix. Based on the GTM algo-
rithm, in [12] is proposed a weighted version (WGTM)
that uses angular distances between neighboring features,
which are less sensitive to rotation and scale, according
to [12]. In [13] is presented a Spatial Order Constraints
Bilateral-neighbor Vote (SOCBV), which uses Spatial Order
Constraint (SOC) and k-nn density estimation to remove
outliers, presenting a higher performance than WGTM.

GTM, WGTM and SOCBV algorithms eliminate one out-
lier at a time, which increase the processing time as the num-
ber of outliers grow. Aimed at minimizing this processing
time, we propose a preprocessing approach, hereafter called
Filtering out Outliers from Matched Points (FOMP), which
reduces the amount of outliers in the set of matched points.
Our approach filters out outliers based on the difference
among edges in the complete graph representation of the
matched points on each image. The experimental results
show that the processing time is reduced, in average, by half.
Moreover, our approach removes, in average, more than 65%
of outliers, while keeping over 98% of the inliers.

The remainder of this paper is organized as follows.
Section II presents our proposed method. In Section III
the experimental results and discussion are shown. Finally,



Section IV summarizes the conclusions.

II. PROPOSED METHOD

Initially, we filter out matched points by using the edges
differences between the two complete graphs representation
of the two sets of matched points. A vertex that is an outlier,
normally presents edges with different weights between the
two graphs. However, as an edge connected to an outlier
might as well be connected to an inlier, we summarize the
differences for all edges connected to a vertex. Therefore, the
vertex that presents the highest edge difference is removed
at each iteration. Our approach, hereafter called Filtering out
Outliers from Matched Points (FOMP), is divided in three
steps, as summarized in Algorithm 1 and detailed as follows.

Let the interest points from the first image be P =
{pi, ..., pn}, where pi = (x, y) represents an interest point
coordinates and n is the total amount of points. Likewise, for
the second image, P ′ = {p′i, ..., p′n}, where p′i is matched
to point pi. The task is to find a subset of P and P ′ that
presents a spatial consensus (geometrical consistency), i.e.,
both sets of points must present a similar shape even if there
are changes of rotation, scale and affine transforms between
them. Let’s summarize the algorithm steps as follows.

Step 1: A complete weighted graph representation is
created for each set of points, Gp(Vp, Ep), where Vp =
{v1, ..., vn} represents coordinate points in P . Likewise for
the points from the second image, Gp′(Vp′ , Ep′), where
Vp′ = {v′1, ..., v′n} represents coordinate points in P ′. Each
graph is then represented by an adjacency matrix W , with
size n× n, for the first graph, and W ′, for the second one.
The sets of edges, Ep and Ep′ , are weighted, so that the
connection from vertex vi to vertex vj , or vice-versa, is
measured by the Euclidean distance between them, such as:

W (i, j) := ||vi − vj ||,∀i, j, 1 ≤ i, j ≤ n (1)

Step 2: In order to minimize the influence of outliers due
to the images scale, all edges weights are normalized by its
own mean:

Wµ :=
W

mean(W (i, j))
(2)

Step 3: The differences among corresponding edges in the
two graphs are summed up and normalized by the number
of vertices:

D(i) :=
1

n

n∑
j=1

|Wµ(i, j)−W ′µ(i, j)|, 1 ≤ i ≤ n (3)

The maximum value of D is calculated:

dmax := max
i=1...n

D(i) (4)

If dmax is greater than a threshold α, remove vertex cor-
responding to the dmax value from W and W ′ and go back

to step 2. This process continues until dmax is not greater
than α. The value of α is set to 0.5 (found empirically) for
all the results presented in this paper. In Figure 1 is shown
an example of the FOMP method applied to a set of matched
points, such that P = {{0, 0}, {0, 4}, {4, 4}, {4, 0}, {2, 5}}
and P ′ = {{0, 0}, {0, 4}, {4, 4}, {4, 0}, {2, 1}}. Note that
p5 (v5) is an outlier.
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Figure 1. Aplying FOMP method on a set of matched points. The mean
edge values for both graphs are µ = 3.4 (GP ) and µ = 3.1 (GP ′ ).
The two values shown in each edge represents the Euclidean distance
(Equation 1) and the normalized value (Equation 2), respectively. For this
example, D = {0.25, 0.18, 0.18, 0.25, 0.55} (Equation 3). Therefore, by
applying Equation 4, v5 and v′5 are filtered out.

Algorithm 1 Filtering out Outliers from Matched Points
(FOMP): Pre-processing step.

1: function FOMP(P , P ′, α)
2: W ← ||pi − pj ||,∀i, j, 1 ≤ i, j ≤ n
3: W ′ ← ||p′i − p′j ||,∀i, j, 1 ≤ i, j ≤ n
4: flag ← true
5: while flag do
6: Wµ ← W

mean(W (i,j)) ,∀i, j
7: W ′µ ← W ′

mean(W ′(i,j)) ,∀i, j

8: D(i) ← 1
n

n∑
j=1

|Wµ(i, j)−W ′µ(i, j)|,∀i.

9: dmax ← max
i=1...n

D(i)

10: if dmax < α then
11: flag ← false
12: else
13: remove vertices regarding to dmax
14: from W and W ′

15: end if
16: end while
17: end function

A. Time Complexity

Analyzing Algorithm 1, we can see that creating a com-
plete graph (lines 2 and 3) takes O(n2), since the Eu-
clidean distance from all points to all points are calculated.
Normalizing each graph weights by its own mean (lines 6
and 7) depends on the amount of edges on the network,
((n ∗ (n − 1))/2), which leads to O(n2). Summing up the
edges differences (line 8) takes O(n2) as well. Finding



the maximum value of D takes O(n). The while condition
iterations depends on the α value. However, let’s assume the
worst case, in which the algorithm iterates n times, filtering a
pair of matched points at a time. Therefore, the algorithm has
a time complexity of O(12+22+32+...+n2) = O(n3). Even
though this is a considerable high time complexity, most
consensus algorithms such as GTM, WGTM and SOCBV
eventually already calculate complete graphs in order to
generate k-nn graphs. The GTM algorithm has a time
complexity of O(n3 log(n)), WGTM and SOCBV have a
time complexity of O(n2 log(n)). However, in our case
the complete graphs calculated by FOMP can be reused
inside those algorithms, reducing the processing time at the
end. Besides, FOMP only has a few simple steps. The most
time consuming step in this algorithm is the complete graph
calculation.

III. EXPERIMENTS

In order to evaluate the performance of FOMP, we com-
pared the methods RANSAC [10], GTM [11], WGTM [12]
and SOCBV [14] with and without FOMP preprocessing.
We used RANSAC implementation available in [15]. GTM
and WGTM algorithm were generously provided by [12]
and SOCBV algorithm by [14]. We analyzed the running
time and the following measures:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
, (7)

where:
• True positive (TP): inliers detected as inlier;
• False positive (FP): outlier identified as inlier;
• True negative (TN): outlier detected as outlier;
• False negative (FN): inlier identified as outlier.

The precision (Eq. 5) is the percentage of relevant inliers
(TP) correctly detected. The recall (Eq. 6) is the percentage
of inliers correctly detected among all inliers. The specificity
(Eq. 7) is the percentage of outliers correctly detected among
all outliers.

We divided the experiments in seven parts: First we
analyzed the precision and recall with and without FOMP
preprocessing. The methods in which FOMP preprocessing
was applied is preceded by F in its name, for instance,
F-GTM implies that FOMP was applied before the GTM
method. We analyze if there are changes in precision and
recall with and without FOMP under a few variations,
such as camera movements/zoom, matching ambiguities,
deformable objects (dataset provided by [11]) and affine
transformations (dataset available in [16]). Then, we com-
pared the running time for these four experiments. We

also analyzed the individual running time, recall and the
number of iterations of FOMP. Furthermore, we analyzed the
percentage of remaining inliers (recall) and the percentage of
filtered outliers (specificity) by employing FOMP algorithm.
Finally, we discuss and analyze the α parameter in the
FOMP algorithm.

For all experiments, SURF feature points were extracted
and matched for each image pair. Even though references
[11], [14] have used SIFT for their experiments, we choose
SURF, which is faster than SIFT [16]. All outliers were
removed manually and we randomly selected sixty inliers,
which is the same number used in the experiments of [11],
[12], [14]. We added outliers percentage randomly in a
controlled manner, so that no randomly generated outlier
is equivalent to an inlier. The number of outliers added is
generated according to Equation 8 [12].

outliers =
outlier percent× inliers

100− outlier percent
(8)

where inliers represents the total number of inliers and
outliers is the total number of outliers to be added. The
outlier percentage starts from 5%, incrementing by 10%, up
to 95%. We redo this 20 times for each outlier percentage,
totalizing n× 20× 10 runs for each experiment, where n is
the total number of pairs of images in each dataset.

The experiments were performed on a desktop with 2.67
GHz Intel(R) Core(TM) i7 CPU, 6 GB memory. We used the
parameters settings defined by the authors of each method.
The k-value for GTM is set to 5, WGTM and SOCBV k-
value is set to 20. The stop condition for WGTM (ε) is set
to 0.001. β = 0.2 for SOCBV. For RANSAC, the distance
threshold for determining the outliers is set to 0.1.

A. Camera movements

This dataset is composed of 10 pairs of images, which
presents variations of translation, rotation and scale. These
images have a resolution of 640× 480 pixels. Figures 2(a)-
(b) show the precision and recall comparison with/without
FOMP preprocessing. The precision and recall are calculated
using Equations 5 and 6, respectively. For the precision,
all methods presented similar results from 5% to 85% of
outliers. At 95% of outliers, SOCBV and WGTM presented
better precision than F-SOCBV and F-WGTM, respectively.
On the other hand, F-RANSAC performed better, while F-
GTM and GTM present similar results. Analyzing the recall,
all methods presented, in general, similar results for all
percentage of outliers, leaving out F-GTM with better result.
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Figure 2. Comparison of precision and recall values for the four meth-
ods with/without FOMP preprocessing in the camera movements dataset,
considering the number of outliers manually added.

Figure 3 shows a single pair of images, considering 85%
of outliers in the initial set of matched points, comparing the
methods with/without FOMP preprocessing. Note that, for
F-GTM and F-RANSAC, a larger number of inliers (TP)
is detected. WGTM detected more inliers than F-WGTM.
However, the amount of FP are smaller for F-WGTM.
Therefore, in this example, F-WGTM has a better precision.
For SOCBV, the amount of TP is slightly bigger than F-
SOCBV. Nonetheless, the amount of FP is bigger as well for
F-SOCBV, which can be compensated by the running time of
F-SOCBV (gain of 71%). Moreover, there is a considerable
running time gain for F-GTM and F-WGTM as well (in
average, gain of 73%). On the other hand, F-RANSAC did
not present a gain considering the running time. In contrast,
the amount of true positives is drastically changed for F-
RANSAC. In addition, the running time difference is not too
big, RANSAC is only 0.11 seconds faster than F-RANSAC.

B. Matching ambiguities
This dataset is composed of 10 pairs of images, which

presents repetitive patterns leading to ambiguities in the
point matching due to duplicity of the matching features.
These images have an average resolution of 640×480 pixels.

Figures 4(a)-(b) show the precision and recall values for
this dataset, respectively. Again, all methods presented simi-
lar precision from 5% to 85% of outliers. At 95% of outliers,
GTM, WGTM and SOCBV showed better precision than F-
GTM, F-WGTM and F-SOCBV, respectively. Inversely, F-
RANSAC showed higher precision. For the recall, F-GTM
performed considerable better for all outliers percentage,
while kept similar results for the other methods from 5%
to 75% of outliers. At 85% to 95% of outliers, RANSAC
presented a considerable drop on the recall. At 95% of recall,
all methods performed better with FOMP.
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Figure 3. Image matching results for two images from the camera
movement dataset (85% of outliers in the initial set of matched points).
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Figure 4. Comparison of precision and recall values for the four methods
with/without FOMP preprocessing in the matching ambiguities dataset,
considering the number of outliers manually added.

Figure 5 shows a single pair of images, considering 85%
of outliers in the initial set of matched points, comparing the
methods with/without FOMP. Again, the amount of TP for
F-GTM and F-RANSAC is considerable greater. Besides, the
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Figure 5. Image matching results for two images from the matching
ambiguities dataset (85% of outliers in the initial set of matched points).

amount of FP is also considerable better, leading to a higher
precision. For WGTM and SOCBV, the amount of TP and
FP is quite identical to F-WGTM and F-SOCBV. However,
there is a noticeable processing time gain (in average 80%)
with FOMP. There is a running time gain of up to 82% for
F-GTM as well. RANSAC presented a really small running
time difference from F-RANSAC, 0.01 seconds.

C. Deformable objects

This dataset is composed of 10 pairs of images, which
presents deformable objects, such as papers or plastic wrap-
pers. These images have a resolution of 640×480 pixels. In
Figures 6(a)-(b) are shown the precision and recall compar-
ison for this dataset, respectively. Once again, from 5% to
85% outliers, there was no significant precision difference
among the methods. Notwithstanding, at 95%, the precision
is only better for F-RANSAC. Analyzing the recall, F-GTM
performed undoubtedly better than GTM for all percentage
of outliers. For the other methods, there was no significantly
difference from 5% to 85% of outliers. At 95% of outliers,
all methods presented a better recall with FOMP.

Figure 7 shows the results for a single pair of images,
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Figure 6. Comparison of precision and recall values for the four meth-
ods with/without FOMP preprocessing in the deformable object dataset,
considering the number of outliers manually added.

considering 85% of outliers in the initial set of matched
points, comparing the methods with/without FOMP. For this
example, the number of TP is higher with FOMP. While
the amount of FP is smaller for F-WGTM and F-SOCBV,
this number is slightly bigger for GTM and RANSAC. The
running time is incredible reduced for F-GTM, F-WGTM
and F-SOCBV, achieving in average, 72% of gain.

D. Affine transformations

This dataset is composed of 5 pairs of images, which
presents affine variations due to viewpoint changes (graffiti
dataset [16]). These images have a resolution of 800× 640
pixels. Figures 8(a)-(b) show the precision and recall com-
parison for this dataset, respectively. Analyzing the pre-
cision, all methods presented similar results from 5% to
25% outliers. From 35% to 85% outliers, GTM, SOCBV
and RANSAC presented similar results compared to F-
GTM, F-SOCBV and F-RANSAC, respectively. WGTM
presented slightly better results without FOMP. However,
at 95% of outliers, all methods presented better precision
without FOMP. For the recall, F-GTM performed a lot better
than GTM, while WGTM performed better than F-WGTM.
Comparing F-RANSAC to RANSAC and F-SOCBV to
SOCBV, there were similar values of recall from 5% to 95%
outliers. At 95% outliers, RANSAC performed better than F-
RANSAC. It is important to highlight that at 95% of outliers,
the matching process suffers anyway.

Figure 9 shows an example of a single pair of images,
considering 85% of outliers in the initial set of matched
points, comparing the methods with/without the FOMP pre-
processing. Note that, F-GTM, F-SOCBV and F-RANSAC
presented a higher number of TP and a lower number of FP
than GTM, SOCBV and RANSAC, respectively.



Image A

430 640

0

160

320

480

Image B

0 215

0

160

320

480

GTM. RT = 7.95s

TP = 35, TN = 338, FP = 2, FN = 25 
WGTM. RT = 192.42s

TP = 52, TN = 335, FP = 5, FN = 
8 F-WGTM. RT = 29.55s, 69% gain

TP = 51, TN = 338, FP = 2, FN = 9 
SOCBV. RT = 11.89s

    TP = 54, TN = 339, FP = 1, FN = 6 
F-SOCBV. RT = 3.11s, 73% gain

TP = 45, TN = 336, FP = 4, FN = 15 
RANSAC. RT = 1.01s

TP = 33, TN = 337, FP = 3, FN = 27

True Positive (TP) 
False Positive (FP) 
False Negative (FN)

   TP = 57, TN = 338, FP = 2, FN = 3 
F-RANSAC. RT = 1.76s, -42% gain

TP = 46, TN = 333, FP = 7, FN = 14

RT = Running Time

0 215 430 640

F-GTM. RT = 1.70s, 78% gain

Figure 7. Image matching results for two images from the non-rigid dataset
(85% of outliers in the initial set of matched points).
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Figure 8. Comparison of precision and recall values for the four
methods with/without FOMP preprocessing in the affine variations dataset,
considering the number of outliers manually added.

For WGTM the number of TP is the same of F-WGTM,
while the number of FP is slightly smaller. The running time
gain is considerable better for F-GTM, F-WGTM and F-
SOCBV algorithms, in average 77% of gain. In contrast, for
F-RANSAC, there was no running time gain. However, the
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Figure 9. Image matching results for two images from the affine
transformation dataset (85% of outliers in the initial set of matched points).

number of TP and FP is much better, giving 100% precision
and recall values.

E. Running time

Table I summarizes the average running time gain percent-
age of all experiments regarding outliers. Note that, FOMP
considerable reduced the processing time for GTM, WGTM
and SOCBV for all outliers percentages. The average run-
ning time gain for F-GTM and F-SOCBV is about 52%,
while F-WGTM presented the best running time gain, 98%
with a small standard deviation, when compared to the other
methods. The running time is faster for RANSAC compared
to F-RANSAC, since F-RANSAC does not take advantage
of already calculated complete graphs. However, as the
experiments have shown in the previous sections, the number
of inliers detected with F-RANSAC is considerable larger,
which means that the precision and recall of F-RANSAC is
improved.

F. FOMP alone analysis

In order to analyze the behavior of FOMP apart from the
consensus analysis, we used the measures of recall, speci-
ficity, running time and the number of iterations. Table II



Table I
COMPARISON OF AVERAGE RUNNING TIME. THE TIME IS EXPRESSED IN
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5 0.03 0.025 1.44 0.080 0.04 0.054 0.007 0.025
15 0.05 0.029 2.12 0.089 0.09 0.080 0.010 0.033
25 0.07 0.042 3.23 0.097 0.15 0.100 0.015 0.038
35 0.10 0.046 4.97 0.107 0.24 0.123 0.023 0.049
45 0.17 0.065 7.68 0.119 0.40 0.171 0.044 0.065
55 0.28 0.095 12.5 0.158 0.68 0.260 0.086 0.100
65 0.53 0.163 21.2 0.210 1.21 0.428 0.124 0.164
75 1.24 0.386 38.4 0.358 2.41 0.846 0.258 0.411
85 4.82 1.423 85.7 0.965 7.53 2.342 0.988 1.400

O
ut

lie
rs

(%
)

95 131 15.78 616 16.36 141 31.97 1.33 15.75

Gain 58% ± 19 98% ± 1.46 46% ± 30 -48% ± 23

summarizes these four measures for the four datasets (cam-
era movements, matching ambiguities, deformable objects
and affine variations). Note that, the recall is equal or higher

Table II
AVERAGE RUNNING TIME, NUMBER OF ITERATIONS, SPECIFICITY AND

RECALL FOR ALL EXPERIMENTS USING ONLY FOMP FILTERING. ±
REPRESENTS THE STANDARD DEVIATION

Running
Time (s)

Number of
Iterations Specificity Recall

5 0.016 ± 0.01 3 ± 1 0.69 ± 0.34 1.00 ± 0
15 0.019 ± 0.01 7 ± 3 0.70 ± 0.22 1.00 ± 0
25 0.025 ± 0.01 12 ± 5 0.70 ± 0.18 0.99 ± 0.003
35 0.037 ± 0.02 18 ± 8 0.67 ± 0.15 0.99 ± 0.003
45 0.057 ± 0.03 26 ± 12 0.67 ± 0.14 0.99 ± 0.004
55 0.100 ± 0.06 38 ± 18 0.66 ± 0.11 0.99 ± 0.006
65 0.171 ± 0.10 56 ± 26 0.64 ± 0.11 0.99 ± 0.026
75 0.289 ± 0.17 89 ± 42 0.62 ± 0.09 0.98 ± 0.064
85 0.882 ± 0.54 162 ± 75 0.61 ± 0.07 0.97 ± 0.081

O
ut

lie
rs

(%
)

95 16.83 ± 10.5 510 ± 231 0.57 ± 0.03 0.90 ± 0.182

Mean 1.84 ± 6.01 92.3 ± 166 0.65 ± 0.17 0.98 ± 0.07

than 90% for all outliers percentages, which means FOMP
preprocessing kept almost all inliers from the initial set of
matched points. Furthermore, for small outliers percentage
(5% and 15%), FOMP keeps all inliers while filtering out
(specificity), in average, 70% of outliers. Analyzing the
specificity, in average, FOMP removed 65% of the outliers
in the initial set of matched points, which means FOMP
filtered out more than half of the outliers. For the running
time, from 5% to 85% of outliers, the algorithm runs quite
fast, taking less than 1 second.

To analyze the effect of changing the inliers amount in
the initial set of matched points, we varied the amount of
inliers, starting from 10, incremented in steps of 10, up to
60. Figures 10(a)-(b) show the average recall and specificity
for the four datasets. Note that the recall and specificity
differences are really small over 20 inliers. When the amount

of inliers is 10, the recall drops over 45% outliers and the
specificity assumes the lowest values. Therefore, we assume
our filtering approach works better with an amount of inliers
higher than or equal to 20.
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Figure 10. Incrementing the number of inliers. The plots show the average
values for all experiments, which sums up to 35 pairs of images, totalizing
7, 000 runs for each inlier amount.

G. Discussion and Analysis regarding the α parameter in
the FOMP algorithm

The α parameter can be set according to the application
goal. For this purpose, we have conducted experiments on
each one of the four datasets described in this paper. We
varied the α value, starting from 0.1, incrementing in steps of
0.1 until 1. Figures 11(a)-(d) show the amount of remaining
inliers (recall) and the number of filtered out (specificity)
outliers for each dataset. Note that there is a trade-off
between recall and specificity. The larger the value of α, the
lower the specificity and the higher the recall. The lower the
value of α, the higher the recall and the lower the specificity.

If there is previous knowledge about the images, α can be
set so that the recall is less affected. As a rule of thumb, for
images with differences of camera movements, ambiguities
and non-rigid transformations, low values of α would work
fine. However, for images with affine transformations, a
value larger than 0.6 would be a better choice, since this
value keeps a better balance between precision and recall.

If the goal is to filter out outliers, but at the same time
keep as much inliers as possible, the best choice would be
α = 1. On the other hand, if the goal is to remove the
maximum amount of outliers as possible, while keeping at
least 50% of the inliers, the best choice would be α = 0.1.
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Figure 11. FOMP: Recall and specificity for variations in α value.

IV. CONCLUSION

In this paper, we proposed FOMP, which is a prepro-
cessing filter algorithm that can be used before applying
consensus algorithms, such as, GTM, WGTM, SOCBV and
RANSAC. FOMP filters out outliers by eliminating points
that present higher edges differences based on two complete
graphs. The stop criteria depends on the α value, which can
be set accordingly to the application goal if there is previous
knowledge about the image. Small values of α removes a
greater percentage of outliers, while it also removes a few
inliers. Larger values of α removes less outliers, maintaining
a larger number of inliers. The experimental results showed
that by applying FOMP, the precision for consensus algo-
rithms are alike most of the times and the recall, in general,
is a lot better by applying FOMP. Analyzing the FOMP filter
itself, it kept over 98% of inliers and removed over 65% of
the outliers. Moreover, the running time gain is considerable
better by employing FOMP before consensus’ algorithm,
speeding up the process by 50% of the time.
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