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Fig. 1. Our technique enhances the analysis of projected data. Each bar chart (one per cluster in the figure) shows how data attributes behave in
each dimension. The higher the bar of an attribute a, the more a contributes to data dispersion. In other words, the plot shows which set of attributes
are more or less relevant to data clustering. Left: manual clustering of the Iris dataset. The user has selected three groups of projected points. The
visualization can be used to identify attributes that mainly contribute for clusters formation/separation on the visual space. Middle: DBSCAN clustering
of the Bananas dataset. The box plot gives more details about the distribution of each attribute and shows important differences between both groups
such as min/max values, mean and interquartile range. Right: proposed variance vector clustering over the Circle dataset, which represents a circle
inscribed in a square. Our algorithm has found three clusters. Two clusters identify cells containing mainly horizontally and vertically distributed
points (sides of the square), and another identifies cells with a similar variation of the points attributes (circle).

Abstract—Multidimensional Projection techniques can help
users to find patterns in multidimensional data. However, while
the visualization literature is rich in techniques designed to
improve the projection itself, only a handful of papers shed
light into the attributes that contribute to cluster formation or
the spread of projected data. In this paper, we present a web-
based visualization tool that enriches multidimensional projection
layout with statistical measures derived from inputted data. Given
a set of regions to analyze, we used statistical measures, such as
variance, to highlight relevant attributes that contribute to the
points’ similarities in each region. Experimental tests show that
our technique can help identify important attributes and explain
projected data.

Keywords-attribute-based clustering; high-dimensional data vi-
sualization; interactive visual analysis

I. INTRODUCTION

Visualizations play an important role in multidimensional
data analysis. One strategy for visual data analysis consists
of methods that show all attributes (dimensions) simultane-
ously, e.g., scatterplot matrices [1] and parallel coordinates
[2]. Another, Multidimensional Projections (MP), reduces data
dimensionality by using most representative attributes [3], [4]
or mapping from high to low-dimensional spaces (2D or 3D)
using some projection technique [5], [6], [7]. However, the
“curse of dimensionality” makes the analysis of such data
challenging. As the number of dimensions gets bigger, both
methods suffer from clutter, outlier sensitivity and loss of
information, thus jeopardizing the data interpretation.

In this paper, we introduce a web-based tool combining
both statistical and visual analysis to help users understand the
variability of the clustered data. Our pipeline allows users to
project, group and explore the data using variability measures.
Our main contribution is to enrich standard MP techniques
with variability to provide information on the projection,
which helps to highlight relevant attributes that contribute to
the points’ similarities in each cluster (see Fig. 1).

The remainder of the paper is organized as follows. Sec-
tion II introduces state-of-the-art attribute analysis techniques
found in the literature. We present our attribute analysis
methodology in Section III. Results and validations are pro-
vided in Section IV. Discussion and future work are in
Section V. We conclude in Section VI.

II. RELATED WORK

Point clouds resulting from MP methods allow visual
analysis of groups and neighborhood structures. However,
they do not convey information related to the content of
the underlying data by its own. Two main alternatives have
been proposed to tackle this issue, namely, summarization and
attribute analysis. Summarization methods rely on information
derived from MP layouts to group similar instances while
visualizing a summary of each group contents. Examples of
such visualization resources are word tags [8], [9], [10], textual
and image snippets [11], [12], and thumbnail pictures [13],
[14]. Attribute analysis techniques (the focus of this paper),
on another hand, group points in the visual space according to



their original similarity, focusing on visually revealing relevant
attributes in each group.

When dealing with attribute analysis, recent methods have
been proposed to define important dimensions. Kandogan [15]
ranks the attributes of instances in each group using a set of
metrics, highlighting the top ranked attributes as “annotations”.
One of the main drawbacks of this technique is the demand
of well-structured and separated clusters in the visual space.
Joia et al. [16] make use of singular value decomposition
and word clouds to identify and visualize important attributes.
Nonetheless, projection errors can lead to completely wrong
conclusions. Broeksema et al. [17] resort to color coded
Voronoi partitions to uncover salient attributes from groups
of similar instances. Turkay et al [18] create a dual space
representation, analyzing both instance and dimension space
simultaneously. The main influence of their work was the di-
rect statistical exploration in the visualization, as the brushing
and linking reflection in both spaces. Yet et al. [19] modi-
fied Turkay’s approach by creating a matrix/tree visualization
that hierarchically explores subgroups of both dimension and
instance spaces. Seo et al. [20] proposed a tool where users
can select one and two-dimensional rank features to explore a
dimension and a pair of dimensions, respectively; however, no
correlation between all attributes and clusters were made. Cao
et al. [21] use Voronoi diagrams [22] and Treemaps [23] to
model projected groups attributes and mainly facilitate clusters
comparison. Henry et al. [24] combine a graph matrix and tra-
ditional graph representation to find patterns and relationships
between selected nodes.

Recently, Stahnke at al. [25] proposed a Web-based tool for
analyzing dimensionality reduction results. Their tool enables
the analysis of attribute distribution in the visual space using
a monochrome heatmap, which consists of a grid where each
cell is colored according to the mean value of a particular
attribute of the points projected withing that cell. In contrast
to our approach, visualizing several attributes simultaneously
is not viable with Stahnke’s methodology.

III. ATTRIBUTE-BASED DATA EXPLORATION

When exploring multidimensional data, some data attributes
may bring data points closer whereas others contribute to their
dispersion. Our goal is to map the variability of those attributes
onto the projected data. This map can be visualized by
enriching the projected data with attribute-based information
derived from the original data. We describe the six stages
of our technique, namely: i) multidimensional projection;
ii) projection filtering; iii) region definition; iv) variability
computation; v) clustering; and vi) data visualization and
exploration. Our input data is a CSV file composed by a set
of instances X ⊂ Rn, where each instance x ∈ X is a row
of the file. Each element of x represents a data attribute or
dimension.

The data projection is a mapping p̂ : Rn 7→ R2 of points
in n-dimensional space onto the 2D plane. Poorly projected
points, i.e., points whose neighborhood relations in Rn are
not preserved in the projection, can be removed by applying

a filter b̂ : R2 7→ R2. Next, a set of regions onto the 2D
plane is defined as a map r̂ : R2 7→ R. This can be done
manually or automatically. Later, a variability measure (such
as variance) is computed for every region as v̂ : R 7→ Rm,
where m is the dimension of the variability measure. Given a
set of regions R enriched with variability measures, we group
regions with similar variability measurements into clusters C,
a map ĝ : Rm 7→ C. The last step is to map data to graphs.
Putting all together, our mapping can be described as:

Rn b̂◦p̂7−−→ R2 r̂7−→ R v̂◦p̂−1

7−−−−→ Rm ĝ7−→ C 7→ RGB. (1)

This mapping can be improved by exchanging some of its
steps without requiring a new data flow. The whole pipeline is
shown in Fig. 2. Next, we describe each stage in more details.

A. Multidimensional Projection

The multidimensional projection (MP) step maps high-
dimensional data onto a two-dimensional visual space. In our
implementation, we use the Local Affine Multidimensional
Projection (LAMP) [6], although other projection techniques
can be used. Besides preserving neighborhood structures,
LAMP allows changes to the projected data by direct ma-
nipulation of the projected points.

LAMP uses a set of control points to perform the mapping
of a set of high-dimensional data X to the two-dimensional
space. The set of control points is typically a small subset
XS ⊂ X whose counterpart YS in the visual space is known
a priori (XS can be mapped to the visual space using distance
preserving optimization scheme as proposed in [26]). The
mapping of each instance x ∈ X to a point y in the visual
space is carried out by finding the best affine transformation
y = fx(p) = pM + t that minimizes:∑

i

αi‖fx(xi)− yi‖2 subject to MTM = I, (2)

where the matrix M and vector t are unknowns, I is the
identity matrix, xi ∈ XS is the i-th control point, yi ∈ XS is
the mapping of xi in the visual space, and αi = 1/‖xi − x‖2
is a scalar weight. The orthogonality constraint MTM = I
enforces that the resulting affine transformation behaves like
a rigid transformation, thus preserving distances as much
as possible and ensuring that errors introduced during the
positioning of control points are not drastically propagated
during the projection step. We refer the interested reader to
[6] for details.

B. Projection Filtering

The projection technique should preserve as much as pos-
sible the neighborhood relationships among data instances
while reducing them from high space to points onto the
visual space. In some cases, however, some points may be
poorly projected, creating misplaced structures that jeopardize
the original relations. To overcome this situation, we used
the Smooth Neighborhood Preservation (SNP) [27] quality
metric to guide the user. For each instance x ∈ Rn and its
corresponding projection y ∈ R2, SNP takes into account
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Fig. 2. Pipeline stages. First, the original data is projected onto the visual space using an MP technique. Second, the user may remove poorly projected
points. Later, clusters group regions of interest based on some variability measure. The final step consists of interaction, exploration, and analysis.

false negatives and false positives to compute a quality score
in the range [0, 1]. False negatives are the neighbors of x
that were not mapped onto the neighborhood of y, while
false positives are the instances that do not belong to the
neighborhood of x and were mapped as neighbors of y. As
a poorly projected point y receives a lower score, we use it
to remove the corresponding instance x from any variability
computation while keeping y in the visualization. The user
decides the confidence level he/she is comfortable with (see
Fig. 3).

Fig. 3. Poorly projected points (red) are disregarded from the analysis. From
left to right: 1, 0.5 and 0.25 as quality confidence.

C. Defining Regions

We define “regions of interest” (henceforth “regions”) as
the portions of the visual space where the analysis will be
held. Our system provides three ways for defining regions
(see Fig. 4): manual selection, automatic selection via DB-
SCAN [28], and automatic selection via 2D uniform grid. We
discard from analysis regions containing only 3 points or less,
and outliers.

Fig. 4. Left to right: manual selection, DBSCAN, and uniform grid.

DBSCAN can be used to automatically build regions of
data in arbitrary dimensions. Given a set of points in Rn, the
algorithm defines points that are ε-close as regions if they have
at least δ points, therefore assuming sparse points as outliers.
One advantage of this technique is that DBSCAN can run in

two different ways: either grouping points based on the pair
(ε, δ) or until it reaches k regions.

The 2D uniform grid can be useful in cases where the input
data does not make well-defined data groups. In this case,
a region is defined by the set of points that fall within a
single grid cell. With this approach, the segmentation of visual
space into uniform grid cells and further analysis provide an
overview of how attributes behave over the projected points
on a per-cell basis, such that relevant attributes responsible
for local point dispersion can be seen. With such approach,
we notice that the analysis is dependent on the grid size and
how points are projected. To mitigate those issues, we allow
the user to control the grid cell size, such that increasing this
parameter (and decreasing the number of grid cells) will reveal
important attributes over a wider region. Also, our system
automatically runs PCA [4] over the projected points to re-
orient the projection, making the two principal components
point to the same direction of principal axes of the visual
space (see Fig. 5).

Fig. 5. The uniform grid leads to different regions depending on how the
data are projected. The left image shows how regions would be created if
the projected points were rotated 45o. On the right, we mitigate this problem
by re-orienting the projected points such that the principal component (red
arrow) has the direction of the horizontal axis of the visual space.

Regions defined by manual selection are useful either the
inputted data do not form well-structured groups or users have
previous knowledge on the dataset and want to analyze a
specific set of regions from the projected points. As proposed,
the user may create regions by directly selecting points or
using the uniform grid to specify region cells.

D. Variability Computation

Given a set of regions ri ∈ R from the previously step,
we compute two variability measures, namely, k-minimum
variance and variance vector. Other statistical measures can be
also applied. We define relevant attributes in terms of variance



since it is directly related to the Euclidean distance, which is
the metric used in most projections techniques and assumed
in this paper.

Assume the values of the a-th attribute of the points
contained in a region ri is an independent random variable
Xa

i , 1 ≤ a ≤ n. The variance of each attribute is defined as
v(Xa

i ) = E((Xa
i − E(Xa

i ))2), being E the expected value.
The k-minimum variance variability of region ri is defined
as vkmin = mink{v(Xa

i )}. In attempt to correlate all region
attributes simultaneously, the variance vector is defined as
x = [v(X1) v(X2) · · · v(Xn)]. We normalized the attributes
on both variabilities to fairly compare them.

When using the regular grid, the user has the option to
consider as neighbors of a point x ∈ ri not only the other
points into the cell ri, but also those e.g. inside the influence
radius of some kernel function [29], [30] centered at x. One
can see this as a fair approach to correlate projected points.
Thus, when computing the variance of the cell ri, we use the
k nearest neighbors (KNN) of each point x ∈ ri to perform
this smoother analysis. The idea is to mitigate problems where
close projected points are apart from each other by an edge
of neighboring cells.

E. Clustering

This stage may be skipped if regions are created manually or
by using DBSCAN. In such cases, the regions themselves may
be considered as clusters in which subsequent analysis will be
performed. Otherwise, the user selects a variability measure
to be applied to R to form clusters C with similar variance.
As proposed, clusters may be disjoint groups of regions.

When the k-minimum variance variability is selected, re-
gions are grouped accordingly to argmin vkmin , i.e., regions in
which the a-th attribute defines the k-th minimum variance are
identified as beginning a group. The user can choose different
values for k to see different levels of details. As proposed,
variability is mapped to colors in a categorical scale. As an
example, we apply the k-minimum variance variability on the
Haberman’s Survival three-dimensional dataset [31]. Using
this variability, each attribute color, red, green and blue in
Fig. 6 represents, respectively, the following dimensions: Age
(patient’s age at the time of operation), Year (patient’s year
of operation), and Positive (number of positive axillary). This
analysis can be useful to identify which attributes are more
relevant in each region.

Fig. 6. Each color represents an attribute of the data. Left: 1-minimum
variance identifies that the Age attribute has the lowest variance over all
regions. Middle: the 2-minimum variance reveals that the Year attribute is
rather relevant. Right: the Positive attribute has the greatest variability per
region (3-minimum variance).

In addition, users can see the weight of individual attributes
on the dispersion of all projected points. For instance, suppose

one is interested in the variability of the a-th attribute per
region. In this case, only one cluster is formed, and the color
transparency of the selected attribute is used to show how
much such attribute contributes to the points’ dispersion in
each region. Regions with low dispersion are more opaque
(see Fig. 7).

Fig. 7. Individual attribute relevance over all regions. Stronger colors indicate
regions where the selected attribute vary the least.

Fig. 8. Groups formed by the variance vector clustering algorithm. New
groups are created as the user decreases the DBSCAN ε value, identifying
similar variance regions.

On the other hand, if the variance vector variability is
selected, we propose a novel algorithm to cluster regions based
on their variance attributes, called variance-based clustering.
We use DBSCAN with the cosine similarity (more suitable
to compare vectors) to group regions based on the pair (ε, 0),
ε ∈ [ε−, ε+], where ε−, ε+ means the smaller and bigger edge
lengths to create 1 and |R| clusters, respectively. Fig. 8 exem-
plifies the clustering of regions with attributes simultaneously
similar to each other. As the user decrease ε, new clusters are
formed with even more similarity. Using this variability, each
cluster receives a randomly selected color (with no relation to
any attribute color).

F. Visualization

Our layout follows traditional projection-based visualization
techniques. A 2D canvas is used to display the results of the
multidimensional projection. The user can zoom in and out of
the projected data, select and move data points, and visualize
attributes of each data point x.

The user can also use GMaps [32] to represent each cluster
boundary as illustrated in Fig. 9. While not being essential,
this mode of visualization provides a way to see clusters more
continuously than if the uniform grid was used.

After the projection, variability definition, and clustering,
the user can study the cluster properties by using bar charts
and boxplots. The bar chart and boxplots show the variance
and mean of each individual dimension per region. In addition,
the boxplot shows the interquartile range and outliers per
dimension. Both are linked so that hovering on one dimension
on the bar chart details its statistical information on the
boxplot (see Fig. 10). They can be applied to both clusters
and individual regions.



Fig. 9. Left: visualization of regions with similar variance using the 2D
uniform grid. Each cluster is mapped to a different color. Right: instead
of displaying uniform grid cells, one can represent regions with smoother
transactions with blob-like shapes.
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Fig. 10. An example of statistical details of the red cluster.

IV. RESULTS AND VALIDATION

A. Validation Experiment I – Synthetic Dataset

We apply the pipeline described in Section III to a synthetic
dataset. Our visualization describes the content of the projected
data whenever the projection is successful. Otherwise, it
describes the variability introduced by the projection itself.
To show that, we perform a quantitative evaluation using a
synthetic dataset as follows.

We build the synthetic dataset with n attributes (dimensions)
and |C| = 2n − 1 distinct clusters, being C the set of
clusters in the input data. Each cluster c ∈ C is generated
by sampling a multivariate Normal distribution N(µc,Σc)
centered at µc and covariance Σc. Even though each point
x ∈ c contains n attributes (x ∈ Rn), we defined only a
combination of dimensions of x to be nonzero. For exam-
ple, for n = 3, let Xa be the set formed by the a-th
attribute, we obtain seven sets of attributes that are nonzero,
namely {X1}, {X2}, {X3}, {X1, X2}, {X1, X3}, {X2, X3}
and {X1, X2, X3}. By doing so we guarantee to have a cluster

Fig. 11. Projection of two distinct, normally distributed points in R3. The
left (resp. right) dataset composed by several sparse (resp. dense) clusters (see
Section IV-A for details).

in each possible subspace of the Rn. The covariance matrix
is built by setting Σc = UDU−1, where U is a random
unitary matrix and D is a random diagonal matrix containing

the eigenvalues of Σc. We generate two datasets: one with
dense cluster (i.e., low eigenvalues) and another with sparse
clusters, as shown in Fig. 11. We expect the denser cluster
to be projected with fewer errors, allowing our visualization
to reveal the attributes that contribute to cluster dispersion in
each dimension.

Let us take the second dataset as an example. Recall that
the dataset consists of seven well-defined clusters. To find
those groupings, we create regions with the uniform grid and
applied the vector-based clustering, as illustrated in Fig. 12.
All seven clusters were correctly found. The bar charts show
the combination of attributes that defines each cluster. For
highly-correlated points (leftmost plots) the projection can
easily distinguish clusters. As the groups begin to share
some attributes with same distribution (rightmost clusters), the
projection loses accuracy.
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Fig. 12. Clustering detection and analysis. The plot shows how the attributes
vary in each cluster.

B. Validation Experiment II – Wisconsin Breast Cancer
We have used the well-known Wisconsin Breast Cancer

(Original) dataset in our second experiment. The dataset con-
tains 699 instances of both malignant (cancerous) and benign
(non-cancerous) cells. For this example 16 instances were
removed, for lack of information. Table I formalizes all cell
attributes based on the features described in [33] (σ denotes
standard deviation).

TABLE I
BENIGN AND MALIGN CELLS ATTRIBUTE

Attribute Malign Benign
Clump Thickness high σ low σ
Uniformity of Cell Size high σ low σ
Uniformity of Cell Shape high σ low σ
Single Epithelial Cell Size high value low value
Marginal Adhesion high value low value
Bare Nuclei high value low value
Bland Chromatin high σ/value low σ/value
Normal Nucleoli high value low value
Mitoses high value low value

As observed, both cell types present distinguish variance
patterns, the ideal scenario for the vector-based clustering,



which has correctly found the regions belonging to each
cluster, as illustrated in Fig. 13. The user can understand the
set of relevant attributes responsible for the points’ similarities
in each cluster, as well as the outliers in each dimension.
The visualization also tells that the Clump Thickness attribute
presents less variance and lower values in normal cells,
while the Uniformity of Cell Size and the Uniformity of
Cell Shape attributes present higher variance on cancerous
cells. In addition, the excessive number of outliers noted in
the Mitosis attribute, for both cells types, suggests that the
procedure applied to acquire/measure such attribute may be
rather imprecise and should be reevaluated.
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Fig. 13. Our algorithm has found two clusters, identified in the plot by green
and beige colors. Each box plots and bar charts gives more details of how
distributed attributes are in each grouped data. For viewing them, the user
can easily understand, for instance, that normal and cancerous cells differ
in almost all dimensions, being the determinant dissimilarity caused by the
Normal Nucleoli and Bare Nuclei attributes.

As shown by the bar charts and box plots, all attributes
information, such as variance, mean and values, are corre-
sponding to those expected, and the visualization can explain
why and where the clusters differ the most, being the Normal
Nucleoli and Bare Nuclei the major attributes to differing one
cell type from each other.

C. Validation Experiment III – Inverse Anscombe’s Quartet

We also propose the analysis of a dataset collected from a
user experiment. This synthetic dataset contains three classes
of objects, namely, A, B and C, where A is a group of points
created from a uniform distribution on the open interval (0, 1),
and B and C are groups of points formed by scaling the
points in A by factors r and 2r, respectively, r 6= 0. The idea
is to create three different groups of the same variance, but
indistinguishable for the multidimensional projection, since the
distances among points in each group are the same. Fig. 14
shows the groups clustered by manual selection, using r = 10.

The motivation behind this study is to show the inverse
scenario of the Anscombe’s quartet [34], where identical visu-
alizations represent different data. The aim is to highlight that
exploration of multidimensional projections can be improved

by using statistical analysis, which is provided by our tool. In
this context, the bar charts reveal why a group is equal to each
other (same variance), but also shows why they are projected
separately (different mean).
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Fig. 14. All groups present the same individual distance among their points.
Despite the correctness of the projection, the variance by itself cannot clarify
what distinguishes one group from another. As an example, above the red bars
are shown the values of the variance/mean of the corresponding attributes.

D. Case Study

We have applied our clustering method and exploratory
techniques in the Wine dataset collected from the UCI Ma-
chine Learning Repository [35]. This dataset is formed by
178 instances of three types of wine, each one having thir-
teen components. The Wine dataset results from a chemical
analysis of wines from the same region in Italy but derived
from three different wineries.

The vector-based variability has correctly identified the
three classes of wine (Fig. 15). The analysis of the boxplots
(Fig. 16) of each dimension shows that the Magnesium and
Proanthocyanins attributes contain a large number of outliers,
suggesting those attributes are not relevant enough to ade-
quately represent the different types of wine. The user could
reevaluate the process of obtaining such data attributes or
perform further analysis without those dimensions.

The use of the uniform grid together with the k-minimum
variance can also be applied to reveal other types of informa-
tion. Fig. 17 shows the relevant dimensions of three individual
cells (top), confirming the idea that attributes variances are
directly related to data similarities, and as a consequence,
to distances among projected points (see points dispersion in
each cell). The bar charts (bottom) show that the Malic Acid
attribute varies accordingly with the k-minimum variability
opacity in all regions.

V. DISCUSSIONS

It is worth mentioning that the region definition stage plays
an important role in the analysis since statistical measures
will be applied on the subsequently formed regions. Consider
regions defined by a 2D grid for instance: different cell sizes
may lead to different analysis as more or fewer information
details will be captured in each region. However, our tool
allows user interaction in order to tackle this issue, since he/she
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Fig. 15. Vector-based clustering. The bar charts show the main differences
among groups of wine. For instance, if a sampled group of wines presents
high variance (more than 0.5) for the attributes Alcohol and Proline, this
sample can be labeled as the first (superior) type of wine. In the same way,
the remaining groups (middle and inferior) can be identified by the lower
variance of those attributes, being differentiated by low and high variance in
the Color attribute, respectively.
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Fig. 16. Boxplots of the Wine dataset attributes.

can appropriately adjust the cell size, in this case, as well
as any other parameters involved in the analysis, such as the
values of KNN and DBSCAN ε. Fig. 18 illustrates the idea.
The higher the KNN, the most likely each region variance
tends to be equal to each other. The higher the DBSCAN ε,
the lower the number of clusters.

Future work includes other statistical measures in order
to improve analysis and cluster comparison, such kurtosis
and skew, covariance matrices and PCA. Functionalities to
automatically remove outliers or irrelevant dimensions can
be also investigated, as well as space-filling-based strategies
(e.g. [36]) to smoothly visualize relevant attributes over the
projection.

VI. CONCLUSION

Multidimensional Projection (MP) techniques are useful to
find patterns and correlate multidimensional data instances.
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Fig. 17. Most relevant dimensions (top) and specific relevance of Malic
Acid attribute (bottom). The k-minimum variance variability can reveal how
attributes behave in each cluster, while the bar charts show an overview of
all attributes simultaneously.

However, being able to visualize the original data relations
may not be enough to user analysis. Indeed, many questions
arise after projection, such as “what are the relevant attributes
that contribute to cluster formation or point dispersion?”. In
order to help answer this question, we have proposed a pipeline
to discretize projected data into regions and group them in
clusters according to attribute variability. We mainly focus
on using attribute variance, since it is directly related to the
Euclidean distance, a metric largely used in MP techniques.

The proposed pipeline summarizes our visualization tool, a
mixture of plots and traditional statistical measures to improve
MP-based analysis. We have presented experiments and a case
study that demonstrate our technique can correctly identify
important sets of attributes over the projected data, which may
be used to explain clusters and points dispersion.
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Fig. 18. When using the 2D grid, different cell sizes can lead to different
analysis. However, by adjusting the KNN and DBSCAN ε parameters the user
can achieve similar results.
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