
Texture Analysis using Informed Search in Graphs
Romulo L. Frutuoso, João Paulo P. Gomes, Emanuele M. dos Santos,

Joaquim B. Cavalcante Neto and Creto A. Vidal
Universidade Federal do Ceará
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Fig. 1. A schematic overview of the TAISG (Texture Analysis using Informed Search in Graphs) method. For each texture image of a training set the
following steps are performed: (a) Each original image is divided into sub-images of size li× li. (b) For each sub-image, compute feature vectors that will be
based on the paths determined by an informed search method in four directions. (c) All the feature vectors for all sub-images of different sizes are concatenated
into a single feature vector. (d) The resulting feature comprise a training set that is used to train a LDA classifier. . The full procedure is repeated adjusting
the control parameter in the informed search method until it achieves the best configuration for the image set.

Abstract—In this paper we propose a variant oisf the TASPG
algorithm for texture recognition. TASPG (Texture Analysis
based on Shortest Paths in Graphs) is a recently proposed texture
recognition method that extracts features from paths along
texture images. Although TASPG achieved promising results, its
application may be limited by its high computational cost which
stems from the extensive use of Dijkstra’s algorithm. In this
work, we propose a variant of TASPG, called TAISG, that uses an
informed search algorithm to reduce the number of visited nodes
in the search procedure. The proposed method was compared
with TASPG and other texture classification methods and showed
good results, both in recognition rate and in computational cost.
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I. INTRODUCTION

Although humans can recognize different textures in a
straightforward way, texture classification is one of the most
challenging problems in automatic pattern recognition [1].
That difficulty stems from the lack, in the literature, of a formal
definition capable of describing the concept of texture [2].

As a consequence, many strategies have been proposed for
texture recognition. Classical methods are mostly based on

second order statistics ([3], [4]) and spectral analysis ([5],
[6]). More recently, approaches based on fractal analysis [7],
graph theory [1], complex network theory [8] and gravitational
models [9] have achieved promising results.

Texture analysis methods can be seen as feature extraction
strategies, i.e., as techniques that extract meaningful informa-
tion from texture images, resulting in a vector of features.
After that, a classifier is used to assess its resulting recognition
rate.

Among those recently proposed methods, the work of
Mesquita Sa Junior et al. [1] showed superior results when
compared with both classical and novel methods on public
texture data sets. The method, referred to as TASPG (Tex-
ture Analysis based on Shortest Paths in Graphs), models
each image with a graph and searches for the shortest paths
within specific orientations. Feature vectors describing each
image are obtained by calculating statistics over those paths.
Shortest paths are found by executing the classical Dijkstra’s
algorithm[10].

Despite its remarkable performance, using TASPG may
be impractical in applications with limited memory and pro-



cessing capability. It is known that Dijkstra’s algorithm has
exponential time and space complexity [11], which might lead
to problems in large images.

In this paper, we propose a variant of TASPG that uses an
informed search algorithm. The informed search method uses
a heuristic term to guide the path search in order to reduce the
number of computations. The proposed method is compared
with the standard TASPG, and achieves similar results with a
significant reduction in time and space complexity.

The remaining of this paper is organized as follows. in
Section II, we review the related work. In Section III, the
formulation for TASPG is showed. In Section IV, we present
the proposed variant of TASPG. In Section V we show
the experiments and the results with public texture datasets.
Finally, in Section VI, the conclusions and directions for future
work are presented.

II. RELATED WORK

Many different methods for extracting image texture in-
formation have been proposed over the years. Classical ap-
proaches include methods based on second-order statistics
such as Co-occurrence matrices [3] and spectral analysis such
as Fourier descriptors [5], Gabor filters [6] and wavelets [12].

More recently, some authors proposed alternative ways of
exploring texture images in order to fill the gaps left by other
methods [13]. Some remarkable performances were obtained
by approaches based on trajectories produced by deterministic
walkers [14], gravitational models [9], [15] and graph theory
[1].

In [9], the authors used concepts of fractal geometry to ex-
tract texture features. The main idea is to extract features from
the estimation of fractal dimension under different scales. The
proposed method extracts entropy features from the deviation
of the Bouligand-Minkowski [16] descriptors computed over
several sub images.

Gravitational models are also used in Mesquita Sa Junior
et al. [15]. In that paper, the authors convert the image into a
simplified dynamical system in gravitational collapse process
whose collapsing states are described by using the lacunarity
method. The lacunarity method consists in gliding a box of a
specified size over the texture pattern and count the number
of gaps that exist in the binary pattern.

The method proposed in [14] models the image as a surface
and uses a deterministic tourist walk algorithm to identify
attractor zones. Features are extracted from the path that each
tourist walks before reaching an attractor zone.

The idea of extracting features from paths in images is
also explored in Mesquita Sa Junior et al. [1]. The proposed
method, referred to as TASPG (Texture Analysis based on
Shortest Paths in Graphs), models each image as a graph and
finds the shortest paths between several start and final pixels
using Dijkstra’s algorithm. Statistical descriptors are extracted
from each shortest path.

Considering all the presented methods, we found that some
of the most promising results were obtained by Mesquita
Sa Junior et al. [1]. Despite its remarkable recognition rate,

the use of Dijkstra’s algorithm results in a computationally
expensive method (exponential in time and space). In order
to address this problem, we propose a variant of TASPG
that reduces its computational cost significantly with a similar
recognition rate.

III. TEXTURE ANALYSIS BASED ON SHORTEST PATHS IN
GRAPHS

The TASPG method aims at characterizing a texture by
extracting features from the shortest paths between selected
points of an image. Initially, an undirected graph is built
such that each pixel is considered a vertex of the graph. An
undirected edge connects two vertices only if the Chebyshev
distance between them is less than 1. A weight w is associated
with an edge e = (v, v′) according to Eq. 1:

we = |I(x, y)− I(x′, y′)|+
I(x, y)− I(x′, y′)

2
(1)

where x and y are coordinates of a pixel and I(x, y) and
I(x′, y′) are the gray-level intensities of the neighboring pixels
associated with vertices v and v′, respectively.

After obtaining the graph, Dijkstra’s algorithm is used to
find the shortest paths in four directions as shown in Fig. 2.

Path 0º Path 45º Path 90º Path 135º

Fig. 2. The four different directions considered in the computation of the
shortest paths by the TASPG method.

The same procedure is repeated for sub-images of the
original image as a way to obtain information regarding local
textures. Each sub-image is generated by dividing the original
image into boxes of size l × l, where l is a divisor of the
original image size.

For each sub-image eight features are obtained from the
shortest paths calculated for each of the four directions (0o,
45o, 90o and 135o). Four features comprise the mean values
of the shortest paths in all directions and the other four are
the standard deviations for the same paths. The 8-dimensional
feature vectors for all sub-images generated for a given l are
concatenated, resulting in the feature vector ψl.

Several values of l are chosen so that information about
textures in different scales are obtained. The concatenation of
the feature vectors related to the n values of l results in the
final feature vector ϕ. The values of l are hyper-parameters
and can be chosen by cross validation. The TASPG method is
summarized in Fig. 3.

In a nutshell, the intuition behind TASPG is that similar
textures could result in graphs that have similar shortest paths.
The directions are included to provide rotation invariance and
the sub-images are used for scale invariance. The behaviors
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Fig. 3. Depiction of how the feature vector for a given image is generated using the TASPG method. Each original image is divided into sub-images of
size li × li, where li is a divisor of the original image size. For each sub-image, an 8-dimensional feature vector is computed using the mean values and
the standard deviations of the shortest paths in all four directions. For all sub-images generated for a given li, these vectors are concatenated resulting in the
feature vector ~ψli . As n different sizes of li are chosen, finally, all the n feature vectors ~ψli are concatenated into the final feature vector ~ϕl1,l2,...,ln .

of the shortest path are encoded in the mean and standard
deviation calculations.

IV. INFORMED SEARCH FOR TEXTURE ANALYSIS

As presented in the last section, TASPG is based on the
application of Dijkstra’s algorithm in four directions on each
image. Dijkstra’s algorithm finds a path between two nodes in
a weighted graph and it is known to be complete (i.e., it finds
a solution if it exists) and optimal (i.e., finds the shortest path).
The algorithm is part of a broad class of search algorithms,
known as uninformed (blind) search methods that do not use
any additional information to guide their search procedure
[11].

It is known that Dijkstra’s algorithm has exponential time
and space complexity [11]. In general terms, Dijkstra’s al-
gorithm will visit an exponential number of nodes (vertices)
in the search for the shortest path, and will store these
visited nodes in memory. As a consequence, its application
is unfeasible in many real problems.

A possible approach to reduce time and space complexity
relies on the use of some available information that may indi-
cate states that are most probably part of the minimum path.
Methods that use such approach are classified as informed
search methods.

In Dijkstra’s algorithm, this feature may be included by
adding an extra (heuristic) term on the cost function. The
well known A* algorithm uses such strategy, designing its
cost function as:

J(v) = g(v) + h(v) (2)

where J(v) is the cost to visit node v, g(v) is the path cost
from the start to the node v and h(v) is an heuristic that
estimates the cost from v to the goal. Choosing an admissible
heuristic (i.e., the heuristic does not overestimate the true
cost to the goal) leads to a complete and optimal algorithm.
Notice that the design of good heuristics depends on the search
problem.

Considering the problem of texture analysis, an heuristic
function can be designed since, when a search is performed,
the direction of the goal node is known. One possible option
is to use the Euclidean distance in the space of coordinates
as a measure of how many nodes should be visited from v to
the goal node. In addition, we used a multiplicative term C
that controls how directed the search shall be. The resulting
heuristic term is given by:

h(v) = C
[
(x− x∗)2 + (y − y∗)2

] 1
2

(3)

where x and y are the coordinates of v and x∗ and y∗ are the
coordinates of the goal node.

Using high values of C leads to directed searches that visit
only a small number of states, thus reducing time and space
complexity. Fig. 4 shows the effect of varying C in the search
algorithm. Each row of the picture shows a different value of
C while the columns show the search procedure’s progress.

In Fig. 4, the red pixels indicate that a node is visited
during the search procedure. Considering that, one can notice
that Dijkstra’s algorithm (C = 0) check almost all pixels of
this image as it searches for the shortest path. On the other
hand, using C = 350 results in a more directed search and
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Fig. 4. The impact of the multiplicative term C in the search algorithm:
larger values of C lead to more directed searches that visit smaller number
of nodes (shown in red), thus reducing time and space complexity.

less visited nodes. Notice that high values of C may result
in nonoptimal (do not find the shortest path) search methods
since the heuristic may be inadmissible.

Even though TASPG is based on features extracted from the
shortest paths, there are no theoretical guarantees that using
such paths will lead to the best texture classification results.
Considering that observation, it is possible that any choice
of C may lead to a better recognition performance and also
reduced time and space complexity.

In the proposed method, named Texture Analysis using
Informed Search in Graphs (TAISG), C is chosen so that the
recognition rate is not significantly affected by an increase
of C. The classification task is performed using a Linear
Discriminant Analysis (LDA) classifier. The significance of
the difference between results of TAISG with different values
of C is assessed by using the Kolmogorov-Smirnov hypothesis
test (K-S test, [17]).

The proposed method is described by the following steps.

STEP 1 - Define the values li, i = 1, . . . , n.

STEP 2 - Set C = 0.

STEP 3 - Divide the training set of texture images into ten
subsets.

STEP 4 - For each li, calculate the feature vectors ψli and
generate the final feature vector ϕ. The feature vector is
obtained for all images that belong to nine of the ten subsets.

STEP 5 - Classify the images of the remaining subset using
an LDA classifier.

STEP 6 - Repeat steps 4 and 5 changing the remaining subset
and store the classification rates obtained when each of the ten
subsets is used for testing.

STEP 7 - Repeat steps 2 to 6 for increasing values of C.

STEP 8 - Check whether the classification performance re-
sulting fron each different choice of C is significantly distinct
from the results obtained when C = 0. The statistical signifi-
cance is given by the K-S test with p−value = 0.05. Choose
the highest C that does not show a significant classification
performance reduction.

V. EXPERIMENTS AND RESULTS

We validate our technique through a series of experiments
on two texture recognition public data sets. The first data set
consists of a set of textures extracted from Brodatz’s book [18].
That database is a well-established benchmark for research
on texture analysis. For this work, we use 40 classes as in
Mesquita Sa Junior et al. [1]. Each image is 200× 200 pixels
with 256 gray levels. Several examples of Brodatz’s texture
images are shown in Fig. 5.

Fig. 5. A sample from Brodatz’s texture image data set used in the
experiments.

The second data set is a database of images obtained from
different viewpoints, with perspective distortions and non-rigid
transformations [19]. The UIUC database is a collection of
1000 grayscale texture images (25 classes with 40 samples
each) of 640×480 pixels with 256 gray levels. Sample images
from the UIUC data set are shown in Fig. 6.

An initial analysis is performed to verify the impact of C
on the recognition rate of TAISG. We define the recognition
rate as the percentage of correctly classified texture samples.
For this experiment we set l = 4, 5, 8, 10, 20, 25, 40, 50, i.e.
features were obtained from sub-images of sizes 4× 4, 5× 5,
8 × 8, 10 × 10, 20 × 20, 25 × 25, 40 × 40 and 50 × 50.
The resulting feature vectors are generated by concatenating
features for all values from l. The values in l were reported
to have the best performance according to Mesquita Sa Junior



Fig. 6. A sample from the UIUC texture image dataset used in the
experiments.

et al. [1]. In all experiments we split the datasets in training
and testing subsets (40% for training and 60% for testing).

Figs. 7 and 8 show the recognition rates of TAISG as C
is increased for both data sets. Additionally, we show the
performance of TASPG. The dotted line shows when the
classification rate of TAISG is significantly different from
TASPG’s rate.
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Fig. 7. Comparison of recognition rates of TAISG and TASPG for Brodatz’s
data set. The dotted line indicates when the classification rate for a given
C is significantly different from TASPG’s rate. In this case, the value of is
C = 280.

Notice that TAISG recognition rate decreases as C increases
and TAISG results are equivalent to TASPG up to C = 280
and C = 120 for Brodatz’s and UIUC’s data sets, respectively.
The effect of C on reducing the number of visited nodes can
be seen in Figs 9 and 10. Those figures show the reduction
rate of visited nodes when compared with TASPG.

Considering the results presented in this section, we can
state that TAISG and TASPG achieved a similar classification
rate when C = 280 and C = 120 for Broadtz’s and UIUC’s
data sets respectively. For the same values of C, TAISG
reduced the number of visited nodes to 11.54% and 37.87%
of the number of visited nodes in TASPG.
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Fig. 8. Comparison of recognition rates of TAISG and TASPG for UIUC’s
data set. The dotted line indicates when the classification rate is significantly
different from TASPG’s rate. In this case, the value of is C = 120.
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Fig. 9. Comparison of the number of visited nodes of TASPG and TAISG
for Broadtz’s data set as C is varied. The number of visited nodes for
TASPG is defined as the baseline (100%) and for TAISG results are shown
as a percentage of this baseline. The dashed vertical line indicates when the
recognition rates of TAISG and TASPG are significantly different.
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Fig. 10. Comparison of the number of visited nodes of TASPG and TAISG
for UIUC’s data set as C is varied. The number of visited nodes for TASPG
is defined as the baseline (100%) and for TAISG results are shown as a
percentage of this baseline. The dashed vertical line indicates when the
recognition rates of TAISG and TASPG are significantly different.

The reduction on the number of visited nodes and the clas-
sification performance were also analyzed when l is changed.
Tables I and II show the recognition rates and the visited
nodes’ reduction rates for several values of l. Experiments
were repeated 10 times and tables show both average recog-
nition rates and standard deviations.

Notice that, even though TAISG reduced the number of
visited states for all values of l, this reduction is more
significant when the number of sub-images is increased (the



TABLE I
RESULTS FOR BRODATZ’S DATA SET.

Sets of sub-images size
{l1, l2, ..., ln}

Recognition rate
TASPG

Recognition rate
TAISG C Nodes reduction

{4, 5} 0.9333 ± 0.0264 0.9388 ± 0.0172 445 0.7367
{4, 5, 8} 0.9562 ± 0.0162 0.9421 ± 0.0178 445 0.7789
{4, 5, 8, 10} 0.9558 ± 0.0130 0.9412 ± 0.0192 375 0.8073
{4, 5, 8, 10, 20} 0.9575 ± 0.0175 0.9437 ± 0.0150 445 0.8358
{4, 5, 8, 10, 20, 25} 0.9604 ± 0.0166 0.9483 ± 0.0172 445 0.8521
{4, 5, 8, 10, 20, 25, 40} 0.9537 ± 0.0214 0.9429 ± 0.0203 445 0.8705
{4, 5, 8, 10, 20, 25, 40, 50} 0.9925 ± 0.0076 0.9796 ± 0.0131 280 0.8846
{4, 5, 8, 10, 20, 25, 40, 50, 100} 0.9912 ± 0.0074 0.9796 ± 0.0131 445 0.8971

TABLE II
RESULTS FOR UIUC’S DATA SET.

Sets of sub-images size
{l1, l2, ..., ln}

Recognition rate
TASPG

Recognition rate
TAISG C Nodes reduction

{4, 5} 0.6760 ± 0.0225 0.6538 ± 0.0263 35 0.0775
{4, 5, 8} 0.6970 ± 0.0239 0.6683 ± 0.0262 75 0.1899
{4, 5, 8, 10} 0.6970 ± 0.0262 0.6775 ± 0.0216 45 0.1081
{4, 5, 8, 10, 20} 0.6993 ± 0.0258 0.6667 ± 0.0258 100 0.3026
{4, 5, 8, 10, 20, 25} 0.6918 ± 0.0252 0.6695 ± 0.0234 125 0.3997
{4, 5, 8, 10, 20, 25, 40} 0.7035 ± 0.0250 0.6850 ± 0.0295 105 0.3336
{4, 5, 8, 10, 20, 25, 40, 50} 0.8393 ± 0.0162 0.8193 ± 0.0160 120 0.6213
{4, 5, 8, 10, 20, 25, 40, 50, 100} 0.8385 ± 0.0155 0.8293 ± 0.0236 150 0.5631

dimension of l is increased). This is an expected result since
increasing the dimension of l implies an increase in the number
of executions of the search algorithm.

The classification rate of TAISG is also compared with
several state-of-the-art texture analysis methods. All methods
are described in the related work section.

For all methods we also used the LDA algorithm for
classification. All hyper-parameters defined for each method
were set as recommended by the method’s original reference.
Results for Broadtz’s and UIUC’s data sets are shown in Table
III.

TABLE III
RECOGNITION RATE FOR SEVERAL TEXTURE ANALYSIS METHODS

Algorithm Brodatz UIUC

Fourier descriptors 87.75 35.10
Co-occurrence matrices 82.50 41.10

Gabor filters 97.00 56.10
Wavelet descriptors 87.50 38.80

Tourist walk 95.50 48.70
Gravitation (BouligandMinkowski) 98.75 57.80

Gravitation (gliding-box) 97.00 54.10
TAISG 97.96 81.93

Notice that TAISG outperformed almost all methods
on Broadtz’s data set. Only the Gravitation (Bouligand-
Minkowski) method achieved a higher recognition rate with a
difference of less than 1%. In UIUC’s data set the performance
gap between TAISG and the other approaches is noteworthy.
The difference between TAISG and the second best perfor-
mance is around 25%.

VI. CONCLUSION

In this paper, we proposed a variant of the TASPG method
for texture recognition in images. The proposed approach,
called TAISG, adds a heuristic term to the cost function used
on Dijkstra’s algorithm so that the search procedure can be
performed in a more direct way. The use of that heuristic
function reduces the number of visited nodes, thus improving
the method’s computational efficiency.

The effect of the heuristic term on the search method’s result
is controlled by a parameter C. In TAISG, C is chosen so that
its performance is not significantly different from TASPG’s
performance. For the statistical significance analysis we used
the K-S hypothesis test.

On the basis of our experiments, we can state that TAISG
reached a significant reduction on the number of visited nodes
(11.54% on Broadtz’s data set and 37.87% on UIUC’s data
set) without significant reduction on the recognition rate when
compared with TASPG. The recognition rate is also superior
to other state-of-the-art texture analysis methods in most cases
(except for Gravitation BouligandMinkowski on Broadtz’s data
set) with even more noticeable results on UIUC’s data set.

Future work shall include the design of admissible heuristics
for the search algorithm. This may avoid the cross validation
procedure, reducing the time spent to find C, while preserving
the optimality of Dijkstra’s algorithm.
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