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Abstract—Image segmentation is one of the most important
tasks in Image Analysis since it allows locating the relevant
regions of the images and discarding irrelevant information.
Any mistake during this phase may cause serious problems
to the subsequent methods of the image-based systems. The
segmentation process is usually very complex since most of the
images present some kind of noise. In this work, two techniques
are combined to deal with such problem: one derived from the
graph theory and other from the anisotropic filtering methods,
both emphasizing the use of contextual information in order to
classify each pixel in the image with higher precision. Given a
noisy grayscale image, an anisotropic diffusion filter is applied
in order to smooth the interior regions of the image, eliminating
noise without loosing much information of boundary areas. After
that, a graph is built based on the pixels of the obtained
diffused image, linking adjacent nodes (pixels) and considering
the capacity of the edges as a function of the filter properties.
Then, after applying the Ford-Fulkerson algorithm, the minimum
cut of the graph is found (following the min cut-max flow
theorem), segmenting the object of interest. The results show
that the proposed approach outperforms the traditional and well-
referenced Otsu’s method.

Index Terms—Min Cut-Max Flow; Graph Theory; Anisotropic
Diffusion; Image Segmentation.

I. INTRODUCTION

Image segmentation can be defined as the task of partitio-
ning a digital image into two or more disjoint regions (groups
of pixels), which have specific characteristics: color, texture,
shape, among other [1]. The segmentation process divides the
image in terms of its internal semantic structures.

The image segmentation task plays an important role in
many Image Analysis applications, commonly present in our
daily activities. It is, generally, the first step in any attempt
to analyze or interpret an image. Some kind of segmentation
techniques is always found in any application involving the
detection, recognition, and measurement of objects in images.
It locates the regions of interest in the images also allowing
discard irrelevant information [2]. An imprecise image seg-
mentation may lead the subsequent methods to wrong results.

According to Maintz [2], many segmentation methods were
proposed in the last decades. However, it is possible to
classify them into some categories: threshold-; edge-; region-;
clustering-; and matching-based approaches.

One of the main challenges when dealing with digital
image segmentation consists in developing methods invariant
to noise. Unfortunately, except the synthetic images generated
through computer software, all other kinds of images, usually

extracted from the real world through different kinds of
sensors, tend to present noise.

In general, noise is originated from physical limitations
of the capture sensors. However, some distortions in the
image data can also be generated, intentionally or not, due
to the manipulation process (storage, compression, errors in
transmissions or processing, etc.).

Contributions: In this work a novel image segmenta-
tion approach robust to noise is proposed, which analyzes
neighborhood information, through the use of concepts from
graph theory and anisotropic filtering, in order to classify the
image pixels more accurately. Comparing the performance of
the proposed method with the traditional and well-referenced
Otsu’s [3] segmentation technique, the proposed approach
outperforms the latter even when varying the magnitude of the
Gaussian noise applied in the images of the evaluated database.

II. TECHNICAL BACKGROUND

The proposed method for image segmentation presents
robustness to noise since it exploits “twice” the neighborhood
information in order to classify a given image pixel. First, an
anisotropic diffusion is applied to the image in order to smooth
internal regions of objects, preserving their boundaries. After
that, a graph is built based on the generated image properties:
each pixel is mapped into a node and linked with its neighbors.
Then the minimum cut of this structure is found and the
original image is segmented, considering again the contextual
information for the segmentation.

A. Graph Cuts

Image segmentation techniques based on graphs cuts are
examples of region-based methods. Unlike techniques focused
on isolated pixels, i.e., in which the algorithms classify such
elements analyzing them alone, the methods which use graph
cuts also take into account, as mentioned, contextual infor-
mation, i.e., the neighborhood of the pixels in the images, to
classify them.

Greig et al. [4] were the first to propose that the minimum
cut algorithm in graphs could be used to minimize certain
energy functions for Computer Vision problems, i.e., tradi-
tional minimum cut algorithms on a given graph could be used
to classify different regions of the image that it represents
with minimal energy [5]. According to them, the energy of



a given image segmentation (classification of pixels) can be
represented by:

E(L) =
∑
p∈P

Dp(Lp) +
∑

(p,q)∈N

Vp,q(Lp, Lq) (1)

where L = {Lp|p ∈ P} is the classification of the pixel p of an
image P . Dp(·) is a penalty function based on the properties of
the pixel p (e.g., grayscale value) and the label Lp associated to
it (dissimilarity between the pixel characteristics and the class
associated to it), and Vp,q corresponds to the relationship of
pixel p with its neighbors, i.e., the degree of similarity towards
the adjacent pixels in the image (discontinuities are penalized).
N is the set of all neighboring pixels p and q in the image.

In other words, Dp(Lp) corresponds to the analysis of the
pixel separately, i.e., how similar it is compared to the pixels
of a particular class and Vp,q compares a given pixel with its
neighbors (local coherence in the image). The methods that
seek the image partition (classification of the pixels in the
predefined classes) attempt to minimize E(L), that is, the total
energy, ensuring, as good as possible, that similar (and near)
pixels remain in the same class.

The complex minimization of the function E(L) can be
obtained by mapping the segmentation problem of a given
image to the minimum cut problem in its respective graph.
Considering the existence of only two distinct regions in
the image (foreground and background), it is mapped to a
directed graph (digraph) G = (V,E) where each image
pixel corresponds to a vertex v ∈ V . For a given vertex v
(corresponding to a pixel p of the image) edges (called n-links)
link v to the other graph nodes that represent the neighbors
pixels of p in the given image. In addition, are inserted
into the formed graph, two special nodes called terminals: s
(source) and t (sink). Edges (called t-links) link s to all vertices
correspondents to the pixels of the image and, after, all these
vertices are also linked to the vertex t. With this the final
graph representation of the image under analysis is obtained.
The vertex s is taken as a model for the region of interest
(foreground) in the image and should contain similar features
to this region (e.g., similar grayscale value). The vertex t is
taken for represent the background region and must also have
properties similar to the pixels of this area.

A capacity (weight) value is assigned to each edge of the
graph, which represents how similar two vertices connected by
that edge are: the more similar (e.g., closer grayscale values),
the greater the capacity value of the edge linking them. Fig. 1
illustrates the basic layout of a graph representing an image
with dimensions 3×3. Thicker edges indicate higher capacity
in the edge (more similar vertices). It is noteworthy to mention
that, in the case of this work, the capacity value of the edge
(u, v) is always equal to the capacity of the edge (v, u),
although in some problems this property may not be valid.

Given a graph generated from an image, the problem of
finding the minimum cut of this structure is also quite com-
plex. However, following one of the most important theorems
of graph theory and combinatorial optimization, min cut-max
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Fig. 1. (a) Example of a graph formed from an image (size 3 × 3). The
thinner the edge, the lower its capacity (lower similarity with the neighbor
node). (b) Minimum cut, which segments the given graph (and consequently
the original image) in two regions, one associated with s vertex (yellow) and
the other with t (purple), by “breaking” low capacity edges optimally.

flow, one can prove that the minimum capacity cut of a given
graph can be found, with polynomial complexity, by solving
the maximum flow problem in such structure [6].

Most of algorithms that find the maximum flow (and hence
the minimum cut) in graphs, follow two main approaches:
methods based on the style Push-Relabel [7] and methods
based on Augmented Paths of Ford-Fulkerson [8]. In this work
the last algorithm for image segmentation was used.

The Ford-Fulkerson algorithm [8] finds the maximum flow
in a given weighted and oriented graph (edges with capacity
values) so that it is possible to obtain the minimum cut
therefore efficiently (segmenting the given image). The s
terminal node is considered as the source of the flows and the
t vertex as the sink node, i.e., where the flows are absorbed.
From the original graph G, flows are sent from s to t through
not saturated edges until there is no more unsaturated path.

After finding the maximum flow of G by means of its
residual graph Gf , applying a breadth-first search algorithm
on Gf from the vertex s, one obtains the nodes of the graph
(pixels of the image) that will be associated with the partition
of s (pixels similar to s and found by the search algorithm
mentioned). Vertices not achieved by the search are associated
with the node t (belonging to the image region similar to t).

It is possible to show that the maximum flow value fmax

allowed in Gf is equal to the sum of the capacities of the
saturated edges departing from the partition associated with
s and entering in the graph partition associated with t (this
is the minimum possible cut for the graph, that is, optimum
image segmentation into two heterogeneous regions).

B. Anisotropic Diffusion

From studies of methods for solving partial differential
equations and iterative techniques for image filtering, the pro-
cess known as anisotropic diffusion was widely disseminated
by the Image Analysis community. This is mainly due to
the pioneering work of Perona and Malik [9], who proposed
the first computational algorithm for image smoothing based



on the concept of anisotropic diffusion. This work opened
the door to the application of methods based on differential
equations in solving various problems in Image Processing.

The basic idea of the Perona-Malik [9] method involves
discretization of the anisotropic diffusion equation given by:

It = div(c(x, y, t) · ∇I) = c(x, y, t) · ∇2I +∇c · ∇I (2)

where div denotes the divergent operator, ∇ and ∇2 denote,
respectively, the gradient and Laplacian operators and c(x, y, t)
is a function that allows the diffusion coefficient to be variant
both in space and time. According to [9], it is possible to show
that, considering the discretization structure illustrated in Fig.
2, Eq. 2 may be written as:

It+1
i,j = Iti,j + λ(ctNi,j

∇NI
t
i,j + ctSi,j

∇SI
t
i,j+

ctEi,j
∇EI

t
i,j + ctWi,j

∇W Iti,j)
(3)

where Iti,j denotes the image intensity at the pixel (i, j) at
iteration t, λ ∈ [0; 0.25] is the parameter that controls the
velocity of the diffusion, and ∇NI

t
i,j , ∇SI

t
i,j , ∇EI

t
i,j and

∇W Iti,j corresponds to the difference of intensity between the
pixel (i, j) and its neighbors:

∇NI
t
i,j = Ii−1,j − Ii,j (4)

∇SI
t
i,j = Ii+1,j − Ii,j (5)

∇EI
t
i,j = Ii,j+1 − Ii,j (6)

∇W Iti,j = Ii,j−1 − Ii,j (7)

The diffusion coefficients ctNi,j
, ctSi,j

, ctEi,j
and ctWi,j

are
updated at each iteration as a function of the local gradient.
The simplest choice for the values of these coefficients is given
by [9]:

ctNi,j
= g(|∇NI

t
i,j |) (8)

ctSi,j
= g(|∇SI

t
i,j |) (9)

ctEi,j
= g(|∇EI

t
i,j |) (10)

ctWi,j
= g(|∇W Iti,j |) (11)

where the function g(·) is usually defined in one of the two
forms:

g(∇I) = e−(
||∇I||

K )2 (12)

g(∇I) = 1

1 + ( ||∇I||
K )2

(13)

where K is an empirically selected parameter that controls the
conductivity of the diffusion [9].
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Fig. 2. Discrete structure used by Perona and Malik [9]. Actually it is based
on the grayscale values of the pixels in the image - a central pixel being
analyzed (Ii,j ) and its four neighbors: Ii−1,j (north); Ii+1,j (south); Ii,j−1

(west); and Ii,j+1 (east).

III. PROPOSED APPROACH

As previously mentioned, in this work, a novel image
segmentation approach is proposed, which is robust to noise
and uses contextual information inherited from concepts of the
graph theory and anisotropic filtering. Fig. 3 illustrates how
the proposed method is organized.

source
noisy image

anisotropic
diffusion filter

graph cut
segmentation

segmented
image

Fig. 3. Main phases of the proposed method. The images are real ones, i.e.,
the traditional cameraman image with Gaussian noise and its diffused and
segmented images obtained through the proposed method. The noisy image
is filtered using an anisotropic diffusion filter and segmented by minimum cut
in its graph. As one can see, the resulting image is segmented with a good
precision despite the high-intensity noise applied.

In the first step of the proposed approach, given the noisy
original image, the diffusion filter is applied to it, generating
a diffused image, in a single iteration, i.e., in Eq. 3, t varies
from 0 (original image) to 1 (final diffused image). In order
to calculate the new grayscale values of the image pixels
(generating the diffused image), Eq. 12 is applied to find the



g(·) values. In this equation, the K parameter indicates, as
said, the conductivity (magnitude) of the diffusion, especially
in interior regions: the higher K, the higher the magnitude of
the diffusion transformation. In this work K was set to 80, a
relatively high value, found empirically but also by observing
the properties of all the images of the assessed database
(including the noisy ones): fore and background relatively
well-delimited and internal regions with homogeneous pixels
(the grayscale distribution of the fore and background pixels
are relatively different, even with the Gaussian noise applied
to the images - relatively low variance values). Some studies
analyze the definition of K for each level of noise [10].

After finding the diffused image, two regions (9× 9 pixels)
are marked on it by selecting their central pixels, one repre-
senting the object and other the background. The dimensions
of the regions were empirically defined in order to improve
the estimation of the average grayscale value of such regions
presenting better results than when working with traditional
neighborhood dimensions (e.g., 3× 3 and 5× 5 pixels). Then
the average intensity is calculated for each region, based on
the grayscale values of the selected pixels in each of them.
In a third step, a directed graph is created from the diffused
image as explained in subsection II-A.

It is important to note that the capacities of the edges (n-
links) of the graph, generated based on the diffused image, are
based on the grayscale values of the pixels in this transformed
image. As shown in Fig. 2, each graph node (pixel) is linked
with its four immediate neighbors: north, south, east and west
ones. The capacities of the edges, i.e., cN , cS , cE and cW are
calculated based on Eqs. 8 to 11.

This way and as briefly mentioned, in the proposed approach
it is emphasized twice the contextual information in the pixel
classification task (in foreground or background classes): be-
sides of considering the neighborhood information to segment
each image pixel inherited from the minimum graph cut
algorithm, since in this technique each pixel is connected
with its four adjacent neighbors and, the more similar their
grayscale values, the thicker the edges that link them (making
more difficult to separate near and similar pixels in the two
image classes - foreground and background - preserving the
homogeneous regions in the image, i.e., similar and near pixels
tend to remain together), the use of the Eqs. 8 to Eq 11 as
the capacities of the graph, improve the results since their also
encode relevant contextual information, i.e., grayscale values
near the pixel being analyzed, also considering the diffusion
coefficient of the filtering technique.

The capacities of the t-links, i.e., the edges that connect the
terminal vertices (s and t) to all inner vertices are calculated
using the likelihood function expressed by Eqs. 14 and 15:

ws =
1√
2πσ2

s

exp

{
−1
2σ2

s

(Ip − µs)
2

}
(14)

wt =
1√
2πσ2

t

exp

{
−1
2σ2

t

(Ip − µt)
2

}
(15)

where Ip represents the gray level value on pixel p and µs is
the average intensity of the marked image region associated
with object (terminal vertex s), as well as µt is the average
intensity of the marked region associated with background
(terminal vertex t).

Finally, after building the whole graph, the fourth step of
the proposed method consists in segmenting the image based
on its prepared digraph and, for this, the Ford-Fulkerson [8]
algorithm is applied, as described in subsection II-A.

IV. EXPERIMENTAL EVALUATION

For the experiments, a leaf image database [11] with 10
grayscale images of plant leaves was used. Gaussian noises
with zero mean and variance ranging from 0.02 to 0.60,
considering intervals of 0.02 (resulting in 30 different variance
values), were applied to the 10 original images, generating a
total of 300 noisy images (10 noisy images per variance value).
Tab. II shows the original images of the database and some of
their noisy versions. The proposed approach was implemented
using the Python programming language.

Given a fixed variance value, for each one of the 10 noisy
images generated from the 10 original ones, the proposed
method was applied and the resulting Kappa coefficients were
calculated. The same was done with the Otsu’s [3] technique
in order to compare their accuracies through the Kappa metric.
To calculate the Kappa coefficient for each image (and for each
method) the segmented image were compared with a ground-
truth manually segmented image, previously prepared. Kappa
was calculated following Eq. 16:

K̂ =

N
C∑
i=1

Mii −
C∑
i=1

xi+x+i

N2 −
C∑
i=1

xi+x+i

(16)

where M is the confusion matrix obtained by comparing the
ground-truth and the segmented image, xi+ is the sum of
the elements from the ith row of M , x+i is the sum of the
elements from the ith column of M , C is the number of
classes, in this work C = 2 (fore and background), and N
is the total number of observations (pixels in each image).

This coefficient, K̂ ∈ [0; 1], is commonly applied in the
assessment of image segmentation methods in the literature,
which defines an agreement level between the ground-truth
segmented image and the (semi-) automatic segmented image.
The higher the Kappa, the better the performance. Besides
the numerical quantitative analysis of the proposed approach
using the Kappa coefficient (Eq. 16), a visual analysis of the
images was also performed, considering the visual aspects of
segmentation (presence of isolated pixels, etc.).

V. RESULTS AND DISCUSSION

As mentioned in section IV, to access the performance
of the proposed method while segmenting noisy images, it
was used a leaf image database [11] with 10 original images.
Tab. III shows visual results obtained by applying both tested
methods (proposed and Otsu’s one) to segment the noisy



images generated. One can see the original images from
the database, their manual segmentation (ground-truth) and
the segmented images by the proposed approach and Otsu’s
method varying the levels of noise (values of variance).

It is possible to observe that the method of this work outper-
forms the Otsu’s segmentation technique, even visually. While
the Otsu’s method presented lots of misclassified isolated
pixels in fore and background for both low and high values
of variance of the Gaussian noise, the proposed technique,
by exploiting contextual information, eliminate these isolated
pixels, detecting with better accuracy the background (white
region), which does not present spurious pixels (it looks
“clean” in all segmented noisy images). The foreground (black
region) is also well segmented by the proposed approach:
the object is only degraded for high levels of variance (e.g.,
σ2 = 0.18) but it is important to note, however, that usually
the Gaussian noise of the real images presents low variance.

Sometimes really thin parts of the object in the images may
not be preserved by the proposed approach (e.g., the petioles of
the leaves) when their grayscale values are different from the
values of the other pixels of the object. However, it possibly
can be avoided by applying morphological operations.

Besides the visual comparison, as said, a traditional metric
was used for quantitative analysis of the image segmentation
techniques: the Kappa coefficient, which is calculated for a
given segmented image as shown in section IV. Given the
10 original images, different levels of Gaussian noise were
applied to them. For each level, the Kappa coefficients for all
the 10 noisy images generated were calculated (considering
the segmented ground-truth image) and their mean value was
found. So, for each method (proposed and Otsu’s one) and
for each level of noise, the mean Kappa for the respective 10
noisy images, generated from the original ones, was obtained.
By varying the variance parameter from 0.02 to 0.6 (intervals
of 0.02), the curves of Fig. 4 were built.
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Fig. 4. Accuracy in terms of the Kappa coefficient for the proposed and
Otsu’s methods varying the level of noise (variance value of the Gaussian
noise applied) in the images of the database. The higher the curve the better
the approach. As one can see, the proposed technique presented the best results
for all variance values, especially for low noise level.

As can be seen in Fig. 4, the proposed approach outperforms
the Otsu’s method especially for low but also for high levels
of noise. In general, real images present relative low levels of
noise - variances at low values (at the initial part of the tested
interval). At higher values (like σ2 = 0.6), it is difficult, even
to a human specialist, to segment the object of interest.

VI. CONCLUSION AND FUTURE WORKS

In this paper, a new graph-based approach for noisy image
segmentation based on contextual information is proposed.
The proposed method gives an especial emphasis to the
neighborhood information to correctly classify a given image
pixel under analysis (in fore or background), preserving, with
more accuracy, homogeneous and contiguous regions in the
images, avoiding the presence of spurious isolated pixels.

The results show that the proposed method outperforms
the Otsu’s technique, a traditional and well-referenced image
segmentation approach, even visually. The Kappa coefficients
calculated after segmenting the noisy images generated from
10 grayscale images of a leaf image database for the proposed
method are much superior than the ones obtained by the
Otsu’s technique, especially for low values of variance of the
Gaussian noise applied.

Based on all the results, it is also possible to conclude that
contextual features, as the ones considered by the proposed
method, are a rich source of information and can benefit a lot
the image segmentation process, preserving interior regions.

As future works, the performance of the proposed method
will be compared with the results of other important ap-
proaches, such as the recently proposed median-based versions
of the Otsu’s method. The proposed technique will be assessed
on other image databases. Morphological operations will be
evaluated in order to avoid elimination of thin parts of the
objects and new graph models as well as normalized cuts, for
image representation, will be studied.
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TABLE II
SUBSET OF NOISY IMAGE DATABASE USED IN THIS WORK. THE FIRST ROW PRESENTS THE 10 ORIGINAL LEAVES IMAGES. THE SECOND, THIRD AND

FOURTH ROWS PRESENT THE RESULTS FROM THE ORIGINAL IMAGES AFTER APPLYING GAUSSIAN NOISE WITH ZERO MEAN AND σ2 = 0.02, σ2 = 0.10

AND σ2 = 0.18, RESPECTIVELY.

ag01 ag02 ag03 ag04 ag05 ag06 ag07 ag08 ag09 ag10

Original

σ2 = 0.02

σ2 = 0.10

σ2 = 0.18



TABLE III
VISUAL EVALUATION OF THE GRAPH-BASED APPROACH FOR CONTEXTUAL IMAGE SEGMENTATION. IN THE FIRST COLUMN ARE PRESENTED THE 10

ORIGINAL LEAVES IMAGES. THE SECOND COLUMN PRESENTS THE MANUALLY SEGMENTED IMAGES (BY A HUMAN EXPERT), WHICH IS CONSIDERED THE

GROUND-TRUTH. THIRD TO EIGHTH COLUMNS PRESENT THE RESULTS OF THE SEGMENTATION PROCESS BY USING THE PROPOSED GRAPH-BASED

APPROACH AND OTSU’S METHOD, SIDE-BY-SIDE, ORGANIZED BY THREE NOISE LEVELS: σ2 = 0.02, σ2 = 0.10 AND σ2 = 0.18.

σ2 = 0.02 σ2 = 0.10 σ2 = 0.18
Original Manual Graph Otsu Graph Otsu Graph Otsu

ag01

ag02

ag03

ag04

ag05



Continuation

σ2 = 0.02 σ2 = 0.10 σ2 = 0.18
Original Manual Method Otsu Method Otsu Method Otsu

ag06

ag07

ag08

ag09

ag10


