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Abstract—There are many algorithms for image segmentation,
but there is no optimal algorithm for all kind of image applica-
tions. To recommend an adequate algorithm for segmentation is a
challenging task that requires knowledge about the problem and
algorithms. Meta-learning has recently emerged from machine
learning research field to solve the algorithm selection problem.
This paper applies meta-learning to recommend segmentation
algorithms based on meta-knowledge. We performed experiments
in four different meta-databases representing various real world
problems, recommending when three different segmentation
techniques are adequate or not. A set of 44 features based
on color, frequency domain, histogram, texture, contrast and
image quality were extracted from images, obtaining enough
discriminative power for the recommending task in different
segmentation scenarios. Results show that Random Forest meta-
models were able to recommend segmentation algorithms with
high predictive performance.

Keywords-Segmentation algorithm recommendation; meta-
learning; image processing.

I. INTRODUCTION

Image segmentation is one of the most difficult tasks in im-
age processing [1] and also one of the most studied problems
in the image analysis and computer vision fields [2]. There are
many algorithms for image segmentation, but most of them are
not equally good for a particular type of image. Furthermore,
following something common on the Machine Learning (ML)
field by the ‘No free lunch theorem’ [3], no algorithm is the
best choice for all kind of images. The best solution is to
select different algorithms to segment different images types,
but recommending them is a difficult duty [4].

Several different approaches for image segmentation have
been emerging in the past years, and by evaluation of the
segmentation itself, it is possible to choose suitable algorithms
to a specific type or related group of images [2]. The fea-
tures from an image provide useful information for automatic
classification [5]. Thus, a suitable segmentation algorithm
to a specific problem domain may be recommended by a
representative features subset and learning-based methods, [4],
[6].

Recently, an approach used to solve the algorithm selection
problem is the Meta-learning (MtL) [7]. The main concept
is to employ the knowledge acquired from previous similar
problems to recommend one or more techniques successfully

applied, now for the new dataset. The knowledge is rep-
resented by a meta-model, in image segmentation scenario
responsible for mapping the dataset characteristics (meta-
features) from each image problem to the performance of
segmentation techniques. MtL has been employed in different
contexts, for example in ML tasks to select [8], rank [9], or
predict [10] the algorithms performance for employ on a new
dataset.

MtL has also been employed in image processing and
computer vision fields, for example, to retrieve the best set
of parameter values to perform the watershed segmentation
[11], to object detection and localization [12] and to search
similar images [13].

In this paper, we have dealt with the recommending problem
of segmentation algorithm via MtL. In other words, for a given
image, several meta-features are extracted to provide informa-
tion to recommend the appropriate segmentation algorithm.

Different from Yong et al. in [6], our proposed approach
will consider color information for both image segmentation
and description, as well real world images to build our meta-
databases. In [6], was applied a learning-based approach for
selection of a segmentation algorithm over synthetic/simulated
gray-scale images composed of simple geometric forms.

This paper is organized as follows. Section II reviews
related work. The experimental methodology is described in
Section III. Section IV presents results and a discussion of
our findings. Finally, the main conclusions and future work
suggestions are presented in Section V.

II. RELATED WORK

Meta-learning (MtL), introduced by [7], brings the concept
of learning about learning. It has a major intersection between
machine learning and data mining techniques, frequently used
to solve algorithm recommendation problems by suggesting
algorithms and its hyper-parameters. The basic idea of MtL
methods is to employ the knowledge and experience previ-
ously acquired from the application of various ML techniques
on different problems to recommend one of these algorithms
for a new dataset/problem. The meta-knowledge is represented
by a meta-model that captures the relation between a set of
characteristics (also called meta-features) from these datasets
and the performance of ML algorithms.



Meta-learning have been used to recommend [14], [15], or
optimize ML algorithms hyper-parameters [10], [16], [17]. In
[18], [19] the authors used MtL to recommend the initial
settings for search-based methods to optimize ML hyper-
parameters. Some studies were also concerned in predict
ML algorithms runtime using MtL [20], [21]. Other studies
have been using MtL to select the number of clusters [22]
or clustering algorithm [23], or even for periodic algorithm
selection in data stream environments [9].

Regarding image processing, in the past few years, MtL
have been applied to solve problems in image processing and
computer vision domains. In [11], the authors applied MtL
to relate image features with the results of the watershed
algorithm and they were able to identify the best set of
parameter to perform the watershed segmentation.

A solution for object detection and localization system was
presented in [12]. In this work was proposed the use of
AdaBoost on MtL task. Experimental results on three different
datasets achieved comparable results with the state of the art
methods but proved its generality.

The similar image search problem was discussed in [13].
The authors created a variant of the Particle Swarm Optimiza-
tion (PSO) algorithm and a MtL approach to solving the search
problem. The proposed approach was called Transfer Learning
and achieved advantages when compared to the traditional
PSO algorithm.

The segmentation algorithm can be selected by evaluating
the segmentation performance itself. In other words, by the
use of features extracted from an image and learning methods
based on segmentation results, it is possible to recommend a
specific algorithm. In this way, Fernandez et al. [2] evaluated
segmentation methods from a higher level perspective. Results
were promising, obtaining a good segmentation performance
and also detecting image regions where segmentation was less
accurate.

A learning-based approach for image segmentation selection
was proposed in [6]. Results achieved high accuracy, but only
gray-scale synthetic images were examined in the experiments.
These synthetic images were composed of simple geometric
forms.

In [4] a novel framework for intracellular image segmenta-
tion based on effective algorithm selection was proposed. The
algorithm selection was conducted by measuring similarities
between the user-supervised region and the automatically seg-
mented regions. Experimental results showed that the frame-
work could select an optimal algorithm to segment a region
that has similar characteristics to the user-supervised region.

III. EXPERIMENTAL METHODOLOGY

In this paper, we propose the use of Meta-learning to recom-
mend an image segmentation algorithms. In order to evaluate
the capability of our proposed approach, were conducted ex-
periments with different image databases. This section presents
a detailed description of the experimental setup, including
all the meta-databases, algorithms and evaluation methods
adopted.

Fig. 1. Proposed meta-recommending system for image segmentation
algorithms .

Figure 1 illustrates the proposed MtL framework. The flow
starts with the original images (A), from which the meta-
knowledge is acquired with the extraction of meta-features (B),
the images segmentation (C) and the meta-target definition by
evaluating the segmentation (D). Once the meta-database (E)
was obtained and the ML algorithm was selected as meta-
learner (F), the induction of the meta-model can be performed
(G). The meta-model (H) is the induced model ready to predict
if a segmentation technique is suitable to a new image.

A. Meta-databases

Four meta-databases with different levels of complexity
were used in the experiments. The first one (chicken),
presented in [24], comprehends chicken breast samples, a
simple segmentation task, which the Region of Interest (ROI)
is the sample muscle itself extracted from the background.
The second, wound, is composed of medical images which
the ROI regards a wound region [25] and was considered
a medium complexity task. The third, cloud (the more
complex), consists of satellite images in which the ROI is
cloud regions1 [26]. We also performed experiments with a
meta-database named as All, formed by the previous meta-
databases. The image files were Portable Network Graphics
(PNG). Examples of images and segmented ROIs of each
meta-database are depicted in Figure 2.

It is important to note that the all the meta-databases repre-
sent different real world problems. The main difference among
meta-databases focuses on ROI: size, colors, and background
contrast. Another motivation to select these image scenarios

1Images from Landsat 8 are freely available on Amazon S3. We selected
them to get only images with cloud regions.



(a) Original Image (chicken) (b) Segmented ROI (chicken)

(c) Original Image (wound) (d) Segmented ROI (wound)

(e) Original Image (cloud) (f) Segmented ROI (cloud)

Fig. 2. Examples of desirable segmentation of each meta-database:
chicken, wound and cloud.

was the recent researches about: image segmentation in medi-
cal applications (wound) [25], [27]; food quality (chicken)
[24], [28] and satellite/aerial imaging (cloud) [29], [30].

This way, our meta-databases were chosen to represent di-
verse segmentation problems. Note that different segmentation
algorithms were used in those applications, endorsing our
proposal of recommending an image segmentation algorithm
to a given image.

B. Meta-features

One of the main steps in MtL is the meta-knowledge
representation, made regarding meta-features and the meta-
target attribute. In a meta-database, each dataset/problem is
represented by a vector of characteristics called meta-features.
According to [7], the meta-features must follow tree require-
ments: they need to have good discriminative power; the
number of meta-features should not be too large to avoid
overfitting, and their extraction should not be computational
complex.

In this paper, for a given image, a set of 44 meta-features
were explored. They include histogram-based [31], contrast
and quality [32], gray-level co-occurrence matrix [33], Fast
Fourier Transform (FFT) [34] and meta-features based on
statistical information of colours [35], from ’Red, Green and
Blue’ (RGB) channels, and in the ’Hue, Saturation and Value’
(HSV) channels. A complete list of all meta-features used in

experiments is presented in Table I. The same set of meta-
features was used by the meat-learners and to represent each
image. No meta-features were used to represent the whole
dataset in this experiment.

C. Meta-target

Three widely used segmentation methods, following dif-
ferent paradigms, were explored in this experiment: Otsu’s
thresholding [36], K-means [37], and SVM [38]. K-means
and SVM were implemented for RGB values while Otsu’s
approach uses a gray-scale image as input. All images from
the three meta-databases were segmented by these three algo-
rithms.

The segmentation quality on each image was evaluated
as Adequate (AD) or Not Adequate (NAD) with respect to
each segmentation method. It was done by eight trained
observers followed by a simple voting step. Samples with tied
evaluations were considered undetermined and replaced by the
statistical mode of the column.

Thus, each meta-database has 3 different binary meta-target
attributes, one for each segmentation method. The classes’
levels were: ’AD’ indicating that the segmentation method is
adequate for the meta-example (positive class); and ’NAD’
when it is not adequate (negative class).

The main characteristics about the meta-databases are
showed in Table II. The ’nExamp’-column indicates the num-
ber examples, while ’Class distr.’ shows the class distribution
for each one of the labels/segmentation methods.

D. Meta-learners

Due to the considered small number of meta-examples,
the Leave-One-Out Cross-Validation (LOO-CV) resampling
methodology was adopted to evaluate the predictive perfor-
mance of the meta-learners. During the meta-learning level,
we predicted the probability of a meta-example belongs to
a specific meta-target value. Thus, seven ML classification
algorithms, with different learning biases, were used as meta-
learners: a linear classifier (LogReg), C4.5 Decision Tree
(used through the J48 implementation), Naı̈ve Bayes (NB),
k-Nearest Neighbors (k-NN), Neural Networks Using Model
Averaging (avNNet), Random Forest (RF) and Support Vector
Machine (SVM). All of them were implemented in R envi-
ronment using the mlr (’Machine Learning in R’) package2

and relying on the default parameters.

E. Performance measures

Each meta-learner was evaluated according to several per-
formance measures. We modeled our problem as a set of
binary problems, via a Binary Relevance (BR) strategy. BR
is the most straightforward and arguably simplest approach
to performing multi-label classification [39]. Thus, we ex-
tracted the simple Predictive Accuracy, the True Positive Rate
(TPRate), the True Negative Rate (TNRate), the Area Under
the ROC curve (AUC) and the F-Measure for each one of the
binary classification problems. The Hamming Loss value is

2https://github.com/mlr-org/mlr



TABLE I
LIST OF ALL IMAGE FEATURES AS META-FEATURES IN PROPOSED MTL RECOMMENDING APPROACH.

No. Type Name Description No Type Name Description

1 Color meanB Mean value of the B channel 23 IntenHist nNzGIntHist Amount of non-zero groups in intensity histogram
2 Color stdB Standard deviation of the B channel 24 IntenHist kurIntHist Kurtosis of intensity histogram
3 Color varB Variance value of the B channel 25 IntenHist pLgNzGIntHist Peak of the largest non-zero group in intensity histogram
4 Color meanG Mean value of the G channel 26 IntenHist pSmNzGIntHist Peak of the smaller non-zero group in intensity histogram
5 Color stdG Standard deviation of the G channel 27 IntenHist skeIntHist Skewness of intensity histogram
6 Color varG Variance value of the G channel 28 IntenHist lenLgNzGIntHist Length of the largest non-zero group in intensity histogram
7 Color meanH Mean value of the H channel 29 IntenHist lenSmNzGIntHist Length of the smaller non-zero group in intensity histogram
8 Color stdH Standard deviation of the H channel 30 IntenHist meanIntHist Mean of intensity histogram amplitude
9 Color varH Variance value of the H channel 31 IntenHist mdIntHist Median of intensity histogram amplitude
10 Color meanR Mean value of the R channel 32 IntenHist sdIntHist Standard deviation of intensity histogram amplitude
11 Color stdR Standard deviation of the R channel 33 IntenHist varIntHist Variance of intensity histogram amplitude
12 Color varR Variance value of the R channel 34 IntenHist nNzIntHist Amount of non-zero values on intensity histogram
13 Color meanS Mean value of the S channel 35 IntenHist peakIntHist Peak of intensity histogram
14 Color stdS Standard deviation of the S channel 36 CoMatrix entGMat Entropy of gray-level co-occurrence matrix
15 Color varS Variance value of the S channel 37 CoMatrix homGMat Homogeneity of gray-level co-occurrence matrix
16 Color meanV Mean value of the V channel 38 CoMatrix ineGMat Inertia of gray-level co-occurrence matrix
17 Color stdV Standard deviation of the V channel 39 CoMatrix corGMat Correlation of gray-level co-occurrence matrix
18 Color varV Variance value of the V channel 40 CoMatrix engGMat Energy of gray-level co-occurrence matrix
19 FFT engFFT FFT Energy 41 Contrast entInt Entropy of original intensity image
20 FFT entFFT FFT Entropy 42 Contrast gConstFact Global Contrast Factor
21 FFT homFFT FFT Homogeneity 43 Image Quality stNatMeas Statistical Naturalness Measure (SNM)
22 FFT ineFFT FFT Inertia 44 Image Quality measEnhan Measure of Enhancement (EME)

TABLE II
SPECIFICATION OF THE META-DATABASES USED IN EXPERIMENTS.

Dataset nExamp Class distr (AD-NAD).
Otsu K-means SVM

Chicken 142 139-3 15-127 13-129
Wound 133 56-77 4-129 33-100
Cloud 91 51-40 63-28 70-21

All 366 237-115 73-276 102-230

usually used to measure accuracy in a multi-label classification
task. The inverse of the Hamming Loss value is used as
Predictive Accuracy in this paper.

F. Baselines

A trivial meta-model (SingleBest), which always predict
the majority class, and a random meta-model (Random) were
used as baselines of our induced meta-models.

IV. RESULTS AND DISCUSSION

In this section, the main experiment results are presented
and discussed. We ran seven meta-learners, with different
learning biases in the four meta-databases. The performance
measures for each scenario are depicted trough a radar chart
in Figure 3. At the figure, each colored line represents a
meta-model, and each polygon vertex accounts for a different
performance measure. Greater the values/area better is the
meta-model. The figure also shows the performance of the
two baselines: Random (light gray line), and SingleBest
(inner black line).

Looking to the wound results, one might see that the
biggest area is generated by RF meta-model (red polygon).
It has the best values for accuracy 0.907, AUC 0.942 and
TNRate 0.961. The linear meta-model (LogReg) obtained the
best results regarding F-Measure (0.569) and TPRate (0.629).
No meta-model presented an F-Measure value greater than 0.6;

this is directly related to the class distribution of the k-Means
segmentation method: just 4 images have the label ’AD’ while
129 have ’NAD’. Even that, in the overall scenario with all
the measures, RF has a better performance than the others
meta-models.

In the chicken meta-database, the SVM meta-model was
the best one in terms of accuracy (0.960) and F-Measure
(0.786), followed by the RF algorithm (accuracy = 0.955, F-
Measure = 0.780). The linear meta-model (LogReg) presented
the best results in terms of AUC (0.917) and TPRate (0.893)
measures, and the biggest area over all meta-models (blue
region). This is interesting since the best choice regarding all
the measures for this meta-database is the simplest meta-model
(LogReg).

Analyzing the cloud scenario we may state the meta-
models performed similarly. RF and SVM were the best ones
in terms of accuracy (0.743 both), AUC (0.675 both) with
the NB, and F-Measure (0.817 both). The NB was the best
regarding TNRate (0.619 - yellow line). The avNNet was
the best in TPRate (0.994 - purple line) with the SingleBest
baseline. So, the best meta-models for this meta-database are
SVM and RF.

Finally, looking to the overall scenario (all), we can see
that when inducing meta-models with all the available images
RF reached the best values for all the evaluation measures.
The biggest region is the red one and it contains all the other
ones. The information provided by the complete meta-database
improved the RF performance, fixing some previous wrong
predictions (This is more discussed in the section IV-B).

RF meta-models performed well in 3/4 of the scenarios.
Table III compares RF meta-models results with both base-
lines. One may note that RF meta-model outperforms both
baselines regarding predictive accuracy, AUC and F-Measure.
In all the cases, the areas generated by the baseline methods
at Figure 3 (light gray and black ones) are contained by the
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Fig. 3. Radar chart with the meta-models’ performance according to five different measures: mean Predictive Accuracy, mean AUC, mean F-Measure, mean
True Positive Rate (TPRate) and the mean True Negative Rate (TNRate).

best meta-models in all scenarios. Thus, only the RF results
will be discussed in the next sections.

A. Random Forest Attributes Importance

We extracted the importance of each meta-feature at the RF
meta-models using the Mean Decrease Gini value.

RF algorithm uses the Gini Index as a measure for the
best split selection [40]. The Figure 4 depicts, for each meta-
database, the main contribution made by each meta-feature
during the recommendation.

In the wound meta-database, color features from the HSV
color space had a high importance value with the Otsu and
SVM segmentation algorithms, especially the Hue (H) and
Saturation (S) channels. It makes sense, once there is a high
difference in saturation between ROI and background as can
be seen in Figure 2. The Measure of Enhancement (EME)
also reached a high importance value in this meta-database

TABLE III
RANDOM FOREST META-MODEL’S PERFORMANCE COMPARED WITH

BASELINES RANDOM AND SINGLEBEST.

Dataset Algorithm Accuracy AUC F-Measure TPRate TNRate

chicken Random 0.51064 0.48669 0.39066 0.51154 0.47913
chicken SingleBest 0.92723 0.50000 0.48093 0.33333 0.66667
chicken RF 0.95549 0.83452 0.77959 0.73504 0.65367

cloud Random 0.50952 0.51047 0.48811 0.50985 0.50811
cloud SingleBest 0.67399 0.50000 0.40101 1.00000 0.00000
cloud RF 0.74359 0.67570 0.81606 0.89035 0.37698

wound Random 0.49599 0.49432 0.43637 0.49347 0.49402
wound SingleBest 0.76692 0.50000 0.42941 0.00000 1.00000
wound RF 0.90727 0.94280 0.52381 0.48413 0.96169

all Random 0.50413 0.50079 0.47239 0.49992 0.50633
all SingleBest 0.73406 0.50000 0.42285 0.33333 0.66667
all RF 0.88707 0.93658 0.81384 0.81264 0.88463
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Fig. 5. Prediction for each sample regarding the full meta-database (top) and each meta-database separately (bottom)

with Otsu and SVM. Regarding the K-means algorithm, only
the peak of the smaller non-zero group in intensity histogram
outperformed.

Looking to the chicken results, blue channel features
from the RGB color space performed better than the others,
mainly with the SVM segmentation algorithm. It probably
happened due to the blue background used to generate the
images. There were also some small peaks in features like
the red channel of the RGB color space, the peak of the
smaller non-zero group in intensity histogram and the entropy
of gray-level co-occurrence matrix, regarding the K-means
segmentation algorithm. Once the Gini Index is related to
the best split selection, the lack of an outperforming feature
with the Otsu segmentation algorithm is related to the class
distribution (139 NAD and 3 AD).

The cloud meta-database had a chaotic distribution of
meta-feature importance, probably due its complexity. How-
ever, overall, to the K-means algorithm, the most relevant
features were about the intensity histogram, specifically the
kurtosis and the skewness values. The Statistical Naturalness
Measure (SNM) was necessary to the K-means as well. To
the Otsu and SVM algorithms, intensity histogram features
were also relevant, followed by the Inertia, Entropy and Energy
values of the FFT.

Finally, looking to the overall scenario (all), the most
relevant feature was the Measure of Enhancement (EME) with
the SVM algorithm, followed by color information in the Blue
and Hue channels and the Homogeneity value of FFT (to the
K-means algorithm). Generally speaking, nearly all features
had their importance to the full meta-database and, although



some peaks are presented, no feature outperformed though all
meta-databases. It indicates that meta-feature selection may
not be appropriate to this problem.

B. Random Forest Predictions
Figure 5 presents the predictions obtained by each RF meta-

model. The x-axis shows each one of the samples (images)
while y-axis presents all the segmentation algorithms (Otsu,
SVM, and k-Means). At the figure, a red rectangle indicates a
wrong prediction, while white ones indicate samples predicted
correctly.

This way, problematic samples are recognized by a ’red
line’, which means that sample was wrongly predicted to
all segmentation algorithms in that meta-database. No prob-
lematic samples were found in the chicken meta-database.
In the wound meta-database, only one problematic sample
(267) was found when the meta-model was build to each
meta-database separately. This sample is showed in Figure 6.
The segmentation of sample 267 was evaluated as AD to all
the segmentation algorithms, but our meta-model failed by
predicting it as NAD.

Most of the problematic samples were found in the cloud
meta-database, the most complex meta-database to segment
and evaluate. Three problematic samples were identified
with ids = 18, 25, 38. When analyzing the whole meta-
database (all) this number have grown to nine (ids =
7, 18, 25, 26, 27, 38, 45, 50, 74). The images ids = 18, 25, 38
appeared in both cases. They were evaluated as ’NAD’ to all
the segmentation algorithms, but the meta-models failed by
predicting them as ’AD’. Those samples can also be seen in
Figure 6.

V. CONCLUSION

In this study, a framework to recommend image segmen-
tation algorithms using meta-learning was presented. A set
of 44 image-based meta-features were used to characterize
real-world images and provide information to predict the
segmentation algorithm adequate to a specific problem.

Experiments performed using four meta-datasets and seven
ML algorithms, even without meta-feature selection or hyper-
parameter tuning, achieved high accurate meta-models. RF
meta-models were able to recommend segmentation algo-
rithms at the overall scenario with high predictive accuracy
(0.887), AUC (0.936) and F-Measure (0.813) values. It indi-
cates a good discriminative power of the chosen meta-features
and represents a contribution to computer vision and image
processing fields.

As future work, besides implementing more meta-features
and segmentation algorithms, we intend to try unsupervised
segmentation methods in the evaluation step of our frame-
work. It would make possible to increase our meta-databases
significantly.
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