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Jó Ueyama
University of São Paulo

USP
São Carlos, SP, Brazil

Email: joueyama@icmc.usp.br

Luis Gustavo Nonato
University of São Paulo

USP
São Carlos, SP, Brazil

Email: gnonato@icmc.usp.br

Abstract—The urbanization process can present some chal-
lenges, such as dealing with the effects of many natural phe-
nomena. In particular, floods can turn into dangerous events.
This paper introduces an algorithm to detect and estimate the
water level of an urban stream. Using cameras and well defined
image processing techniques, we analyze several images of a real
stream, aiming at finding the water depth, with encouraging
results. Our approach differs from more traditional measurement
methods, where specialized equipment are considered, which
must be directly inserted on the measurement spot. Through
a validation using real images, we demonstrate that our method
is a viable alternative to estimate the water level, using cheaper
and generic hardware.
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I. INTRODUCTION

The high population density of modern cities, combined
with their effect on the environment, can drastically exacerbate
the catastrophic consequences of natural phenomena.

In particular, the urbanization of a region increases the
volume and frequency of floods [1]. The damage caused is
mainly correlated with two factors: the height of the water
during the flood and the warning time between the alert and
the occurrence [2]. The problem of modeling and forecasting
floods is typically carried out by means of wireless sensor
networks (WSN) [3], deployed in locations that are prone to
flooding [4]. The gathered information, such as the level and
speed of the water, are used as input for complex forecast
models in high-performance computers [5].

In this work, we explore the problem of estimating the depth
of urban streams through the use of regular cameras, image
processing methods, and photogrammetry, as an alternative to
specialized sensors. This approach can drastically reduce the
cost of a comprehensive monitoring system, as we demonstrate
that a smartphone can be used as a monitoring station. Another
very significant advantage is that the acquired image can be
inspected by a human operator to quickly detect anomalous
events, since it conveys more information than only the water
level. These images can be stored and reprocessed, improving
historical results as the algorithm evolves.

The main contribution of this work is the introduction of
a viable method for estimating the water level of streams
in urban areas, using generic equipment, which can be a

useful alternative in practice, to the more expensive monitoring
systems available.

II. RELATED WORK

The problem of monitoring floods in urban streams was
already introduced in the literature. Specialized equipment
are usually employed, such as depth, water turbidity and
speed sensors, inserted directly in the water on locations of
interest. Models such as the developed by Basha et al. [6],
DeRoure [2] and Humble et al. [7], use a complex wireless-
based architecture to broadcast predictive data captured by
sensors, covering wide areas with few sensor points. However,
the equipment may suffer from interference and accelerated
detrition from the submersion in the water stream.

Hughes et al. [8] introduce a Grid-based system that collects
information using a collection of sensors. While they use
digital cameras to measure the speed of the outflow, the
water level is still estimated using depth sensors inside the
river. A similar approach is used by Creutin et al. [9], where
the particle image velocimetry technique is used to infer the
outflow speed, identifying and tracking particles present in the
stream. These particles can occur naturally, such as the foam
generated by the water turbulence, or be artificially introduced.

Aerial images are used by Puech and Raclot [10] to de-
termine the water level in areas of flood. The images are
segmented into sectors, according to a geographical criteria,
and the method determines the maximum and minimum depths
based on the hydraulic potential of each sector. The method is
able to produce an accurate estimate of the water level within
centimetres of accuracy. However, the technique requires an
aircraft equipped with state-of-the-art high-resolution cameras
for image mapping [11].

In a different approach, Giuntoli [12] proposes the elabo-
ration of a participative web-GIS system to map the risk of
floods, where the information is not gathered through the use
of dedicated sensors but provided by groups of people.

III. PROPOSED METHOD

A digital image is usually represented as a matrix containing
discrete values of luminosity intensity, associated with physi-
cal properties of the materials involved in the scene, such as
the shape and reflectance [13]. Each element of the array is
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usually called pixel and represents the smallest spatial portion
of the considered information. Colour images are commonly
represented using three channels for each pixel, representing
the contribution of the colours red, green and blue.

The automatic processing of images of an uncontrolled envi-
ronment can pose difficult problems. To reduce the complexity
of our proposed method, we established some requirements
that need to be previously satisfied:

• The stream must be enclosed by a floodwall or an equiv-
alent regular surface. Our method searches for the line
defined by the interface of the water and its enclosure.

• The floodwall and the water must be visually discernible.
• The scene must be adequately illuminated.
• The camera must be rigidly fixed, capturing the same

spatial region at each sample, allowing the use of a single
set of scene information.

Our method can be divided into two main steps, the feature
detection and the level estimate. The feature detection step
uses image processing methods to identify all line segments
present in the image that are viable candidates for the water
level line. These candidates are then used in the next step to
estimate the water level.

A. Feature Detection

The objective of this step is to detect all the potential line
segments in the image, including the line corresponding to
the water level. The acquired colour image is converted to
grayscale, using 256 shades of gray, and preprocessed using
a contrast adjustment and a Gaussian filter [14], reducing
variations of the original image. While this simple filter was
sufficient here, more sophisticated filters can be considered for
this step, such as morphological [15] or bilateral filters [16].

The contours of the images are detected using the Sobel
filter [17], [14], resulting in a grayscale image where the
value of each pixel corresponds to the maximum variation
around it, with higher values corresponding to drastic changes
in the image. Therefore, this grayscale image represents the
spatial variation in the original image, including the interface
between the floodwall and the water, that corresponds to the
water level we aim to measure. We then threshold [14] this
image to generate a binary image. All values smaller than
the threshold are transformed into zero, all values greater or
equal into one. The appropriate threshold value varies with the
conditions of capture and should be determined case by case.
Adaptive methods [18] can also be considered.

The result of this step is a set of lines, identified using
the Progressive Probabilistic Hough Transform (PPHT) [19].
Based on the Hough Transform [20], it uses a probabilistic
approach that takes into account only a subset of random
points that are enough to detect lines. It can be interpreted
as a Monte Carlo estimate of the standard Hough Transform,
reducing its computational cost [21].

B. Level Estimate

The objective of this step is to identify the line that corre-
sponds to the water level among the lines identified previously

and generate a metric estimate of the water level.
To simplify this process, we assume that the camera is static

and we provide the method with a reference line. This line is
perpendicular to the water level and is defined by two points
located in the floodwall. The distance between these points
in the real world is known. These points are related with the
real environment in a similar way to the fiducial markers [22].
This simple step is sufficient to provide reasonable measures
and avoids the more complex process of camera calibration.

To identify the line segment that corresponds to the water
level, we remove all segments that do not cross the reference
line in a specific region. This geometric constraint removes
lines that cannot physically correspond to the water level,
such as lines above the floodwall. However, depending on
the resolution of the considered image, several lines can
be identified along this interface. In this case, we chose to
consider only the line that corresponds to the higher water
level. This criteria leads to a method that is biased towards
overestimating the water level, which we believe to be a safe
option, for false negatives can be far more dangerous than
false positives in a flood monitoring context. More complex
methods can be used for this selection without significant
changes in the rest of the algorithm.

With the selected line segment and the reference line
segment, we need to find the intersection point between them.
This issue is addressed using the LU Decomposition [23],
which consists in decomposing the square matrix formed by
the coefficients of the general equation of these lines in the
product of an inferior triangular matrix L (lower) and an upper
triangular matrix U (upper), from which the intersection point
can be easily obtained.

To estimate the water level, we compute the distance be-
tween the intersection point and the top of the floodwall. To
transform this information from pixels into a metric unit, we
use the known distance between the reference points provided.
To obtain the water level, we subtract this measure of the
wall height, known in advance. Alternatively, if the base of
the stream is visible, at any point, we can measure the level
directly from it. If such real world measurements are not
available, this conversion can be ignored and the relative
change in the water level can be measured instead.

IV. EXPERIMENTS AND RESULTS

We implemented a prototype using C++ and OpenCV [24].
The source code and the test images are available at https:
//github.com/evortigosa/water level.

We considered two different experiments, using images
from the same stream at different locations. The first experi-
ment is a preliminary evaluation, where we consider images
acquired specifically for this purpose. In the second experi-
ment, we consider monitoring images already acquired from
the real WSN AGORA deployed in the city of São Carlos, São
Paulo, Brazil [25]. In both cases, sensor based measurements
are available, allowing a direct validation of our algorithm.
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A. Preliminary evaluation
In this experiment we determine if our method is a viable

measuring tool in controlled circumstances. We considered
eight different images of the Monjolinho stream in the city of
São Carlos, São Paulo - Brazil, acquired at approximately the
same time on the 4th of May 2015 at 15:28. The images have
2592×1944 pixels, there are no shadows or other illumination
issues, and the floodwall is regular and clearly discernible
from the water. In this case, each image was captured from a
different position, on the bridge above the stream. Since the
camera was not fixed, a reference line was provided for each
image.

The intermediary results for the image 1 are illustrated
in Fig. 1. In this particular case, we used a mask with size
15 × 15 for the Gaussian filter, and threshold value 25. The
minimum length of a line and the maximum gap parameters
for the PPHT were 80 and 10 pixels, respectively.

(a) Original image 1. (b) Sobel and Threshold.

(c) PPHT result. (d) Reference and level lines.

Fig. 1. Illustration of the intermediary results of the proposed method.

To explore the behaviour of the method under different
acquisition circumstances, we also varied the angle and orien-
tation of the camera with respect to the floodwall. Image 5 was
one of such images and the original image and corresponding
result are illustrated on Fig. 2. However, such parameters had
little impact on the final result and no clear trend was found.

The results for each image are shown in Table I, including
the absolute difference from the average (A.D.) and the error
computed considering the water level sensor [25]. The average
value obtained by out method was 50.90cm, with a mean
absolute difference of 0.37cm. Since the water level was
stable, we interpolated the sensor measurement to the moment
of the image acquisition, obtaining a value of 51.22cm.

While the conditions of acquisition were ideal, we be-
lieve these results to be outstanding. Considering that we
are actually measuring the distance between the top of the
floodwall and the water level, 0.44cm corresponds to less

(a) Original image 5. (b) Resulting image.

Fig. 2. Original and resulting image for image 5.

TABLE I
ESTIMATED WATER LEVEL FOR THE PRELIMINARY EXPERIMENT.

Image Estimated (cm) A.D. (cm) Error (cm)
1 50.24 0.67 0.98
2 50.74 0.17 0.48
3 50.71 0.20 0.51
4 50.45 0.45 0.77
5 51.41 0.50 0.19
6 51.55 0.64 0.33
7 50.93 0.02 0.29
8 51.21 0.31 0.01

Mean 50.90 0.37 0.44

than 0.2% of relative error, for the height of the floodwall is
2.75m. The maximum error obtained was less than 1cm, which
corresponds to less than 0.5% of relative error. Such small
margin of error without specialized equipment can be difficult
to achieve. Moreover, the camera positioning was reasonably
realistic, albeit close.

B. Monitoring images

In this experiment, we consider monitoring images from the
AGORA WSN deployed in Brazil [25]. Their site provides
several months of sensor based measurements for locations in
the city of São Carlos, São Paulo - Brazil. For one of these
locations, they also provide monitoring images. This sensor
node is illustrated on Fig. 3

These images have 640×480 pixels and are acquired hourly.

Fig. 3. Sensor node that acquired the images.



Since this camera is used only for visualization purposes, its
positioning changed over time. Indeed, we observed small
variations between images captured on the same day. There-
fore, we provided each image with a reference line, which is
not ideal, but does not invalidate our results, for it is reasonable
to assume that a camera positioned for this purpose would not
present such variations.

We processed images of four days, with three days contain-
ing significant changes in the water level and one day in which
the level was stable. The sensor measurements and the water
level obtained using our method are illustrated in Fig. 4.

The sensor and the camera acquired information at different
times and while the images are referenced by the hour of
capture, the exact moment is unknown. Moreover, the interval
between measurements is quite large and fast events can occur
inside such intervals. Therefore, we are not able to properly
calculate error values for all instances. However, we can
conclude from Fig. 4 that our method successfully followed
the general variations of the water level, albeit a clear bias
towards overestimating the water level is noticed, as expected.

(a) 13th of December 2014. (b) 5th of January 2015.

(c) 11th of March 2015. (d) 2nd of April, 2015.

Fig. 4. Comparison between sensor measurements and results of our method.

Consider the peak value on the 13th of December 2014.
At 10:03, the sensor measured a water level of 114.61cm,
against 135.8cm from our method. While this difference is
greater than the values obtained in the previous experiment, it
represents approximately 6% of the height of the wall, which
is the reference for our method. The original and resulting
images for 10:00 are illustrated on the top row of Fig. 5.
Visually, the detected water level seems reasonable.

The tendency for overestimation is also present on the
results from the 5th of January 2015, where the water level
was mostly constant until 16:00. The original and resulting
images for 08:00 are illustrated in the top row of Fig. 6.

(a) Original image 10:00. (b) Resulting image 10:00.

Fig. 5. Illustration of results of the 13th of December 2014.

From the original image at 08:00, we can postulate that the
result was overestimated due to the low level of the stream,
which uncovers a difference in the colour of the floodwall.
The resulting image shows that the line corresponding to the
actual water level is also detected, but is discarded in favour
or the highest line present. While inaccurate, we argue that
such behaviour is harmless in a flood monitoring context, for
it only occurs when the water level is below the usual level.

The original and resulting images for 16:00 are illustrated
on the bottom row of Fig. 6. The original image was acquired
during the rain and shows a high water level. In the resulting
image we can see the influence of the rain in the edge
detection, notably under the bridge, where the contrast is
higher. However, such influence do not change the candidate
lines for the water level. The ripples on the surface have
more impact on that result, leading to the detection of several
different lines. However, the correct water line is detected.

(a) Original image 08:00. (b) Resulting image 08:00.

(c) Original image 16:00. (d) Resulting image 16:00.

Fig. 6. Illustration of two results from the 5th of January 2015.

On the 11th of March 2015, we have a high water level
around 11:00, which is correctly detected by our method.
However, the results in the subsequent hours are greatly
overestimated, with an error greater than one metre. The
original and resulting images for 13:00 are illustrated on the



top row of Fig. 7. In this case, our method detects the portion
of the floodwall that is still wet from the previous high level.
In contrast to the similar effect on the 5th of January 2015, this
one is temporary and ceases at 16:00. Again, we consider this
a minor issue, because if the water level would raise above the
wet line, the method would correctly detect the water level,
avoiding a false negative.

(a) Original image 13:00. (b) Resulting image 13:00.

Fig. 7. Illustration of results from the 11th of March 2015.

We also considered the 2nd of April 2015, a day in which
the water level was stable. The results of our method oscillated
around the values from the sensors, notably at 12:00, where
our method underestimates the water level. The original and
resulting images for that time are illustrated on the top row
of Fig. 8. From these images, we can infer that our method
detected the shadow cast closely to the water level, which
obfuscates the line of the water level while providing a
candidate line in an acceptable location with a strong contrast.
While this will cause the method to always underestimate
the water level, the difference will not be large, for it is
proportional to the distance between the shadow and the water
line. If these lines are well apart, the correct water line would
not be so heavily obfuscated and would be detected and chosen
as representative. This exact situation is illustrated on the
bottom row of Fig. 8, where the shadow moved away of the
floodwall and the correct water level line was identified.

V. DISCUSSION, LIMITATIONS AND FUTURE WORK

Our experiments show that our approach can be a viable
alternative to estimate water levels of streams in an urban
context. In a controlled environment, our method achieved
outstandingly accurate measurements, with a relative error
smaller than 0.5%. While the results considering real mon-
itoring images, in an open environment, were not as accurate,
we believe they can be accurate enough to complement other
types of sensors.

Clearly, we cannot guarantee that our approach is as reliable
as specialized sensors, but the equipment can be quite cheaper.
Indeed, it can be nearly free, if we consider traffic monitoring
cameras operating near urban streams. In this case, it might
be possible to use them for both purposes concurrently. The
innate unpredictableness of an uncontrolled environment can
be mitigated through the use of several cameras, operating
in smaller temporal intervals, and a more sophisticated data
fusion method, robust to false positives and outliers.

(a) Original image 12:00. (b) Resulting image 12:00.

(c) Original image 13:00. (d) Resulting image 13:00.

Fig. 8. Illustration of results from the 2nd of April 2015.

Even considering the use of dedicated equipment, the cost
should not rise considerably because we do not consider
specialized hardware. One of our experiments considered
images from a smartphone camera. Indeed, the acquisition,
processing and transmission of the water level can be solved
simply by using regular smartphones. Even cheap, low-end
devices usually have cameras capable of more than 640×480,
micro-SD cards are not expensive and it is already capable
of transmitting the data using the mobile network. Moreover,
such devices can possibly have enough processing power to
perform the computation of the water level on site.

There is another important advantage of using cameras for
this problem, the captured images carry more information than
just the water level. One can easily verify the measured valued
by inspecting the image, which is not possible using only
specialized sensors. Again, we cannot guarantee the method
to be as accurate as specialized sensors, but, in this context, it
can be argued that such accuracy is not necessary, that more
sensors with decimetre precision can be more relevant than
fewer with millimetre precision.

As we have seen, the reliability of our approach is related
to the camera resolution, which means that, the higher camera
resolution, the better the accuracy of the estimation. Night
images require specific equipment with capacity to work in
this conditions. Detritus, channel slope changes, confluence
between stretches, steps, bridge beams and other singular char-
acteristics present in the canal section can cause phenomena
such as vorticity, backwaters, jumps [26], and many other
hydraulic disorders which must be taken into account. Also the
installation and positioning of the cameras must be considered,
as they also introduce limitations.

The possible future developments can also include the
adaptation to slight camera movements, increased robustness
to shadows or uneven illumination, different methods to select



the correct line among the candidates, and so on. A more
comprehensive experiment, considering more than four days
should provide interesting new problems.

Since the OpenCV library was already ported to android, the
implementation of a prototype running on a smartphone should
be straightforward. Moreover, the practical application of the
proposed method would probably include several cameras and
a robust data fusion method can also be investigated.

VI. CONCLUSION

This paper introduces a methodology to study the possibility
of identifying and measuring a good estimate of the depth of
urban streams, using well-established digital image processing
techniques. The experimental results were satisfactory and
very promising for the detection and estimation of the water
position and we conclude that our method is a potentially
viable alternative to monitoring. A variation of the water level
in a short period of time may mean a flood warning should
be issued.
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