ECLeS: A Flexible and General Method for Local
Editing of Parameters with Linear Constraints

Elisa de Cdssia Silva Rodrigues, Jorge Stolfi
Institute of Computing, University of Campinas (UNICAMP)
Campinas, Brazil
Email: {erodrigues, stolfi} @ic.unicamp.br

Abstract—We describe ECLeS, a general method for interac-
tive editing of objects that are defined by real parameters subject
to linear or affine constraints. In this method, the constraints and
the user editing actions are combined using weighted constrained
least squares instead of the usual finite element approach. We
use exact integer arithmetic in order to detect and eliminate
redundancies in the set of constraints and to avoid failures due
to rounding. We are using this technique for the user-friendly
editing of Cl-continuous deformations of the plane, defined by
splines of degree 5 on an arbitrary triangular mesh.

Keywords-parameter editing; linear constraints; exact integer
arithmetic; deformations.

I. INTRODUCTION

Many computer applications require the interactive adjust-
ment of parameters subject to linear or affine constraints.
Typically the user adjusts the value of some parameters, and
the applications is supposed to adjust other parameters in order
to preserve the constraints. An example of such applications is
the manual editing of spline surfaces or spline deformations
subject to smoothness constraints. In this paper, our goal is
to define mathematical and software tools for this task in a
general, robust, and efficient way.

Contributions: This paper proposes the interactive and
general method for local editing of parameters with linear con-
straints, called ECLeS (Editing by Constrained Least Squares).
At each editing action, the user specifies a subset of the
parameters that can be changed, new required value for some
of them, and hint (desirable but not required) values for the
others. Our algorithm uses exact integer arithmetic to detect
and eliminate redundancies among the constraints that are
relevant to that set and to avoid failures due to rounding. The
parameters are then adjusted so as to satisfy all constraints
and required values, and be as close as possible to the hints.
We use weighted and constrained least squares instead of the
usual finite element approach. Thanks to the use of fraction-
free methods in the linear system solving, we are able to avoid
the bit size explosion that is often a serious limitation of this
type of algorithm.

A. Related work

There are many systems for editing objects under linear and
affine constraints. Typically, they recompute all parameters at
each user editing request, and use penalty terms in order to
minimize the changes to non-edited parameters.

Knuth’s 1979 Metafont [1]] is a programming language
where function parameters may be subjected to linear and
affine constraints. It lets the user specify any subset of inde-
pendent parameters, automatically solving for the others when
enough parameters have been specified. In 1985, Nelson [2]
described Juno, a constraint-based graphics system. Later, this
system was extended to the drawing editor, Juno-2, by Heydon
and Nelson [3]]. With Juno-2 the user can define constraints
graphically, which are solved by a non-linear equation solver
combined with some symbolic techniques. The user could
define hints for unknown parameters.

For linear and affine constraints (which we consider here),
a common approach is to pre-compute a finite element basis
of parameter change vectors that has small support and spans
the space of all possible changes; and then give the user a
separate “knob* for each finite element. A typical example
is the editing of splines with specified continuity. Each basis
element has exactly one editable Bézier control point, the other
Bézier points are then computed from those. This problem
was extensively studied by Schumaker [4] and others; an
exposition can be found in Xu’s doctoral thesis [5]. One
particular case of the finite element technique is the B-spline
approach [6], where there is only one control point for each
patch, and the resulting spline is automatically continuous to
the maximum possible order. B-splines are well defined for
tensor (quadrangular or hexahedral) type meshes with regular
topology [7]], [8]]; extending them to irregular and simplicial
meshes is possible, but rather complicated [9].

Another technique for editing the Bézier control points
(which we adapt and extend in this paper) uses the criterion of
least squares with first-degree constraints [[10]]. This technique
was used, for instance, by Masuda et al. [11] for surface mesh
editing. It allows editing any control point and computes the
remaining points by solving a linear system that combines the
criterion of least squares and the constraint equations.

Our method differs from Masuda’s by assuming that the
application provides, at each editing event, a small subset of
parameters that can be changed. Moreover, we use exact arith-
metic to reliably detect inconsistent or redundant constraints.

B. Overview of the method

The general method described in this paper operates on a
set P of variables (the control parameters) of an application,
subject to a fixed set R of linear equations with integer

coefficients (the constraints). We assume that the set R of
all equality constraints is denoted by a matrix equation

RP=Q (D

where P is the vector of all control parameters, R is a constant
coefficient matrix and () a constant vector (often zero).

The ECLeS method is used when the user has attempted
modify some of the control parameters through some editing
software (the user interface). Its goal is to adjust other control
parameters so that all constraints remain satisfied.

The method consists of two procedures, [Initialize and
Update. The Initialize procedure is called when the user
chooses the parameters to be adjusted. The Update procedure
is then called one or more times to modify those parameters.

Specifically, the Initialize procedure receives the set R and
two disjoint subsets of P:

o A (anchor): one or more control parameters whose values
will be set by the user;

e D (derived): zero or more control parameters that may
be adjusted if necessary to satisfy the constraints.

The procedure then identifies the set £ of relevant constraints
consisting of the equations of R that depend on any parameter
in AUD. The set F is the set of all fixed relevant parameters,
that occur in some equation of £ but are not in A or D.

The set D of derived parameters must be large enough to
allow all the relevant constraints in £ to be satisfied. That
is, for any combination of new values assigned to the control
parameters in A it must be possible to satisfy all constraints
in £ (and therefore in R) by assigning appropriate new values
to all control points in D. We refer to this requirement as
the solvability condition. If this condition is not satisfied, the
Initialize procedure fails and the user interface is expected
to take appropriate action. Otherwise, Initialize pre-computes
certain matrices and other information to be used by the
Update procedure.

For each control parameter p in AUD the Update procedure
receives a new value p’. For the parameters in A, the new val-
ues are specified by the user and assumed to be mandatory. For
the parameters in D, the new values are only suggestions. The
Update procedure then computes, for each control parameter p
in D, a new value p” that is close or equal to p’, in such away
that all constraints are satisfied. The procedure then updates
each parameter p with the new values p’ or p”. For every
parameter p ¢ AU D, the desired value p’ and final value p”
are assumed to be equal to the current value p.

II. SOLVING LINEAR SYSTEMS

In this section, we describe the technique used to solve
linear systems with integer coefficients. We assume in general
that the system is

Ax=b (2)

where A is a known rectangular m X n integer matrix, x is
an unknown column vector of n rational numbers, and b is
a known vector of m integers. We need to solve the system
exactly in order to check for linearly dependent equations.

A straightforward implementation of the LU decomposition
algorithm with exact rational arithmetic is very inefficient
because the sizes of the numerators and denominators grow
exponentially with the number of equations m. This problem
was solved by the so called fraction-free method of E. H.
Bareiss [12]. This method was extended by others authors [13]],
[14], [15], [16].

Most of these methods are restricted to square invertible or
full-rank matrices. In this paper, we use the method proposed
by D. J. Jeffrey [17] which can perform fraction-free Gaussian
LU factoring of arbitrary rectangular matrices of any rank.

A. Factoring the matrix

Specifically, let r be the rank of A. Factoring the rectangular
matrix A gives five integer matrices L (m x r), U (r X n),
D (r x r, diagonal), T, (m X m, permutation matrix of rows)
and T, (n X n, permutation matrix of columns) such that

A=T,LD7'UT,. (3)

In this equation, the structures of the matrices L and U are
L .~
L=(5) ad U= (U U) “)

where L is an r x r lower triangular matrié, Q isanr X r
upper triangular matrix, both invertible, and L, U are arbitrary
integer matrices with sizes (m — r) x r and r x (n — 1),
respectively.

B. Solving the system
Substituting formulas (3) and @) into system (2, we have

T, (%) D! (U ﬁ) T.z =b. (5)

Letting B = T7'b, X = T.z and y = UX, equation
becomes

Bt o

where B and B consist of the first 7 and last . —r elements of
B, respectively. We can split the system (6)) into two systems

LD 'y=B and LD 'y=B. (7)
Since LD~ is an r x r invertible matrix, we can solve the
first system for y

y=DL'B. (8)

The second system ZD_ly = Bin equation (7)) is non-empty
only if the rank r of A is less than the number of rows m,
in which case either some constraints are redundant, or there
are incompatible constraints. To verify whether the original
system (2) is consistent, it is necessary and sufficient to check
if the bottom half of the equation (6)) is satisfied with this
value y, that is

LL™'B=B. 9)

To solve (3)), we can find X by solving the system
<o\ (X
(0 0) (5() —Y

(10)

that is, by solving

UX=y-UX (1)
where X can be chosen arbitrarily. Setting X =0, we get
X=U (12)
and then
r=T,'X. (13)

III. CONSTRAINED LEAST SQUARES

The other main tool that we use is the quadratic optimization
(least squares) method with affine constraints, that we describe
in this section. Given a vector 2’ = (z,...,x}) of desired
values, we want to find a vector © = (x4, .., x,,) of values that
minimizes the distance between each new value x, and the
desired value z’,, while satisfying a set of constraints Az = b,
where A is any m X n matrix and b is a vector of m elements.
More precisely, we want minimize the goal function

S() =D wilws — 2]

where the coefficient wy is a user defined weight that indicates
the importance of the desirable value 2, (the bigger the weight
value wg is, compared to the other weights, the more the
algorithm will try to honor the value 7).

We use the technique of section to perform Gaussian
factoring of the matrix A and the vector b. If this process
terminates with success, we obtain the rank r and integer
matrices U, L, D and permutation matrices 7, and 7, such
that A = T, LD 'UT,. If r < m, the system Az = b has
redundant equations, and can be replaced by

Az =B 15)

where A is the first 7 rows of LD~'UT. and B is the first r
rows of T, 1b.

In order to minimize the goal function (I4) while satisfying
the constraints (I3), it is necessary that the gradient V.S of
the goal function be perpendicular to the solution set of the
constraints. The gradient consists of the derivatives

(14)

oS
= 2wz, — 16
oz, ws[Ts — x] (16)
for s = 1,2,...,n. To be perpendicular to the constraint

solution space, the gradient V.S must satisfy
98 N
== Medis
k=1

O,
where each variable \j is an indeterminate real coefficient, the
Lagrange multiplier [18] of the constraint expressed by row
k of the system (I3). Therefore

a7

2wems + Y ApAps = 2w, (18)

k=1

Equation (I8) can also be written in matrix form
Mz+ A"\ = Mz’ 19)

where M is the n x n diagonal matrix with My, = 2w; and
A is a column vector with the Lagrange multipliers Ay, ..., Ap,.

We can combine equation (I9) with the constraints (I3)
obtaining the least squares linear system

Mz =Mz — AT\
Az = B.

(20)
2L

The new values x of the variables can be computed by solving
the system (ZI)) in two steps; namely, solving

AM—AT A= A2’ — B (22)
for A\, and then computing = by solving
Mz =Mz — AT\ (23)

IV. DETAILS OF THE ECLES METHOD

In this section, we describe in detail the Initialize and
Update procedures of the ECLeS method.

We can partition the matrix R, and the vectors P and () into
sub-matrices and sub-vectors according to their rows and/or
columns being in &, A, D or F, and then write the relevant
constraint equations of £ in matrix form Ax = b, where A =
Rep, v = Py and b= Q¢ — ReaP; — RerPy.

The matrices Rgp, Reaq and Rgr are m X n, m X s and
m x t matrices of coefficients of the derived parameters D,
anchor parameters A and the fixed relevant parameters F in
the equations &, respectively. The vector lev/ will consist of
the n computed values p” of the derived parameters. The
vector (¢ contains the m elements of the constant vector ()
corresponding to the equations £. The vector P:L\ contains the
user-specified values p’ of the s anchor parameters; and Pr is
a vector with the values p of the ¢ fixed relevant parameters.
Each row of Rep is a subset of the elements of some row
of R, corresponding to the D parameters. The same row of
Re 4 consists of the elements of that row of R corresponding
to the anchors. Finally, the same row of Rgr consists of the
elements of that row of R corresponding to the F parameters.

A. The Initialize procedure

The Initialize procedure receives the sets A, D and Rgp.
It then uses the method described in section [[I-A] to isolate
redundant or inconsistent equations and obtain the system (15).

B. The Update procedure

If Initialize succeeds, the values x = Pj of the derived
parameters are computed by the Update procedure, each time
the suggested values ©’ = Py, are given by the user interface.

When the solvability condition (9) of the system is not
satisfied, choices of the anchor parameters by the user must
have included incompatible constraints in the original system.
In this case, the Update procedure returns a message to user
interface notifying that the specified anchor parameter values
are not valid, that is, the solvability condition is not satisfied.

Then, for example, the procedure cancels the editing action
and the user must select a new set of anchors.

The Update procedure solves the least squares system, as
described in section [T} equations (22) and (23), obtaining the
new computed values Pj, for the derived parameters.

V. APPLICATION: 2D DEFORMATION

We are using the ECLeS method as part of an editor for 2D
deformations that are defined by triangular splines of degree 5
with C! smoothness constraints [19]. A deformation is edited
by displacing the Bézier control points of the spline. The
constraints are quadrilateral conditions which represent C!
continuity constraints. If the coordinates of the vertices of the
domain mesh are rational, each quadrilateral constraint can be
expressed by a linear equation with integer coefficients.

In Fig. each C! continuity constraint is represented by
a gray quadrilateral. The quadrilateral formed by the control
points qi41, G125 452159111 on the deformed mesh must be
an affine image of the quadrilateral formed by their nominal
positions w111, Up12, Up21, V111 on the original mesh. Fig. |Z|
shows a deformation specified by the preliminary version of
our editor.

(a) Original mesh. (b) Deformed mesh.

Fig. 1. Quadrilateral C! continuity constraints for the Bézier control points
of a spline deformation ¢ of degree 3.

]

(a) Original mesh.

(b) Actual image [20]. (c) Deformed mesh.

Fig. 2. Example of deformation specified by our editor.

VI. CONCLUSION

In this paper, we described the general ECLeS method for
interactive editing of parameters subject to linear or affine con-
straints. We use exact integer arithmetic in order to detect and

eliminate redundancies among constraints and avoid rounding
failures. In the ECLeS algorithm, the constraints and the user
editing actions are combined using weighted constrained least
squares, instead of the usual finite element approach, thus
providing more flexible control to the user.

ACKNOWLEDGMENT

This work is supported by Brazilian government grants
CNPq 140780/2013-0 and 301016/92-5 (NV).

[1]
[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

D. E. Knuth, Tex and Metafont, New Directions in Typesetting. Stanford:
American Mathematical Society and Digital Press, 1979.

G. Nelson, “Juno, a Constraint-based Graphics System,” SIGGRAPH
Comput. Graph., vol. 19, no. 3, pp. 235-243, Jul. 1985. [Online].
Available: http://doi.acm.org/10.1145/325165.325241

A. Heydon and G. Nelson, “The Juno-2 Constraint-Based Drawing
Editor,” in Technical Report 131a, Digital Systems Research, 1994.
M.-J. Lai and L. L. Schumaker, Spline Functions On Triangulations.
New York, NY, USA: Cambridge University Press, 2007.

D. Xu, “Incremental Algorithms for the Design of Triangular-based
Spline Surfaces,” PhD in Computer and Information Science, Faculties
of the University of Pennsylvania, Philadelphia, PA, USA, 2002.

G. Farin, Curves and Surfaces for CAGD: A Practical Guide, 5th ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002.

C. de Boor, “Splines as Linear Combinations of B-splines. A Survey,”
New York, N, USA, pp. 1 — 47, 1976.

Y. Cui and J. Feng, “Technical Section: Real-time B-spline Free-form
Deformation via GPU acceleration,” Comput. Graph., vol. 37, no. 1-2,
pp. 1-11, Feb. 2013. [Online]. Available: http://dx.doi.org/10.1016/j.
cag.2012.12.001

Y. He, X. Gu, and H. Qin, “Fairing Triangular B-splines of Arbitrary
Topology,” in In Proceedings of Pacific Graphics 05, 2005, pp. 153 —
156.

W. H. Press, Numerical Recipes: The Art of Scientific Computing, 3rd ed.
Nova Iorque, NY, EUA: Cambridge University Press, set 2007.

H. Masuda, Y. Yoshioka, and Y. Furukawa, “Interactive Mesh
Deformation Using Equality-constrained Least Squares,” Comput.
Graph., vol. 30, no. 6, pp. 936-946, Dec. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.cag.2006.08.012

E. H. Bareiss, “Sylvester’s Identity and Multistep Integer-preserving
Gaussian Elimination,” Mathematics of Computation, vol. 22, pp. 565—
565, 1968.

P. R. Turner, “A Simplified Fraction-free Integer Gauss Elimination
Algorithm,” Tech. Rep., 1995.

G. C. Nakos, P. R. Turner, and R. M. Williams, “Fraction-
free Algorithms for Linear and Polynomial Equations,” SIGSAM
Bull., vol. 31, no. 3, pp. 11-19, Sep. 1997. [Online]. Available:
http://doi.acm.org/10.1145/271130.271133

W. Zhou and D. Jeffrey, “Fraction-free Matrix Factors: New
Forms for LU and QR Factors,” Frontiers of Computer Science
in China, vol. 2, no. 1, pp. 67-80, 2008. [Online]. Available:
http://dx.doi.org/10.1007/s11704-008-0005-z

D. Dureisseix, “Generalized Fraction-free LU Factorization for Singular
Systems with Kernel Extraction,” Linear Algebra and its Applications,
Jul. 2011. [Online]. Available: http://dx.doi.org/10.1016/j.1aa.2011.06.
013

D. J. Jeffrey, “LU Factoring of Non-invertible Matrices,” ACM
Commun. Comput. Algebra, vol. 44, no. 1/2, pp. 1-8, Jul. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1838599.1838602

C. E. Pearson, Handbook of Applied Mathematics: Selected Results and
Methods, 2nd ed. New York, NY, US: Van Nostrand Reinhold, 1990.
E. C. S. Rodrigues, A. Gomide, and J. Stolfi, “A User-editable
C'1-Continuous 2.5D Space Deformation Method For 3D Models,”
Electronic Notes in Theoretical Computer Science, vol. 281, no. 0,
pp. 159 — 173, 2011, selected papers of the 2011 Latin American
Conference in Informatics (CLEI). [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1571066111001812

S. P. Library, “LM of the Nematode Worm, Caenorhabditis Elegans,”
available at: http://www.sciencephoto.com/media/366424/enlarge. Ac-
cessed on Jun 29, 2015.

http://doi.acm.org/10.1145/325165.325241
http://dx.doi.org/10.1016/j.cag.2012.12.001
http://dx.doi.org/10.1016/j.cag.2012.12.001
http://dx.doi.org/10.1016/j.cag.2006.08.012
http://doi.acm.org/10.1145/271130.271133
http://dx.doi.org/10.1007/s11704-008-0005-z
http://dx.doi.org/10.1016/j.laa.2011.06.013
http://dx.doi.org/10.1016/j.laa.2011.06.013
http://doi.acm.org/10.1145/1838599.1838602
http://www.sciencedirect.com/science/article/pii/S1571066111001812
http://www.sciencedirect.com/science/article/pii/S1571066111001812
http://www.sciencephoto.com/media/366424/enlarge

	Introduction
	Related work
	Overview of the method

	Solving Linear Systems
	Factoring the matrix
	Solving the system

	Constrained Least Squares
	Details of the ECLeS Method
	The Initialize procedure
	The Update procedure

	Application: 2D Deformation
	Conclusion
	References

