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Fig. 1. Searching for similar 3D models. A query model is given as input. A DCTH descriptor is computed for this shape, which corresponds to a 2D
histogram containing depth complexity and thickness information. Using The query database is searched comparing pre-computed descriptors of each model
against the query descriptor, which produces a ordered ranking of closest shapes, from left to right. We illustrate above results for a human and ship shapes.

Abstract—Geometric models play a vital role in several fields,
from the entertainment industry to scientific applications. To
reduce the high cost of model creation, reusing existing models
is the solution of choice. Model reuse is supported by content-
based shape retrieval (CBR) techniques that help finding the
desired models in massive repositories, many publicly available
on the Internet. Key to efficient and effective CBR techniques are
shape descriptors that accurately capture the characteristics of a
shape and can discriminate between different shapes. We present
a descriptor based on the distribution of two global features
measured in a 3D shape, depth complexity and thickness, which
respectively capture aspects of the geometry and topology of
3D shapes. The final descriptor, called DCTH (depth complexity
and thickness histogram), is a 2D histogram that is invariant
to the translation, rotation and scale of geometric shapes. We
efficiently implement the DCTH on the GPU, allowing its use
in real-time queries of large model databases. We validate the
DCTH with the Princeton and Toyohashi Shape Benchmarks,
containing 1815 and 10000 models respectively. Results show that
DCTH can discriminate meaningful classes of these benchmarks
and is fast to compute and robust against shape transformations
and different levels of subdivision and smoothness.

Keywords-Shape matching, Shape analysis, Depth complexity,
Thickness, Histograms, Content-based retrieval.

I. INTRODUCTION

Advances in 3D modeling and scanning techniques marked
the last few years. Powerful modeling tools have emerged

along affordable laser scanners that can rapidly generate 3D
mesh models of real-world objects. The increase in mesh
details and the ability of Graphics Processing Units (GPUs) to
render high-resolution 3D models has increased the demand
for 3D content in several fields, from medical and engineering
applications to games and movies. As a result, an explosion
in the number of 3D models available publicly occurred.

Today, there are on-line databases with thousands of free 3D
models Retrieving 3D models from such databases increases
the reuse and interchange of 3D models, avoiding the expense
of creating 3D content from scratch, which is usually a
laborious task that requires skill, time, and dedicated tools.
Moreover, models in many such databases have high mesh
quality, sampling resolution and are free of meshing defects,
which only increases their reusability appeal.

Content-Based Retrieval (CBR) tools play a key role in
supporting such model reuse. Central to CBR is the usage
of shape descriptors to capture the characteristics of 3D
models. Given a descriptor, ‘searching by example’ accounts to
comparing the example descriptor to descriptors of all models
in the database (Fig. 2). Many such descriptors have been
proposed in the last decade [1], [2], [3], [4]. However, no
such proposal could present a definitive result to become a
standard. One main reason for this is CBR is much harder
for 3D shapes than for text or image retrieval [1], due in



Fig. 2. Conceptual diagram for a content-based shape retrieval system

turn to the large dimensionality and variability of 3D shapes.
For instance, 3D shapes are rarely easy to parameterize and
can have arbitrary topologies. Such inherent 3D shape aspects
prevent methods used to analyze other data types, e.g. Fourier
analysis, to be generalized to create 3D shape descriptors.
Separately, the scalability and quality of many of the CBR
techniques for 3D shapes have not been tested with a massive
number of models. This is due to the lack of shape databases
containing classification information to be used as ground
truth for computing CBG precision and recall [5]. Until recent
years, benchmarks contained less than 1000 shapes, such as the
Princeton shape database [6], created in 2004, which contains
907 models. Only more recently, in 2010, the large Toyohashi
benchmark, containing 10000 models, was published [7].

In this work we propose a 3D shape descriptor called the
depth complexity and thickness histogram (DCTH). DCTH
uses a 2D histogram of depth complexity and thickness
measured from a 3D shape, which captures both topological
(depth-complexity) and geometrical (thickness) shape charac-
teristics. DCTH is rotation, translation, and scale invariant,
and can be quickly computed on the GPU. We validate DCTH
using both the Princeton and Toyohashi benchmarks.

A. Related work

Much effort has been put in designing content-based re-
trieval (CBR) systems. Early work focused mainly on text-
based document retrieval systems [8], [9]. More recently,
CBR systems also have been developed for other types of
media, such as images [10], audio [11], video [12] and 3D
models [1], [13], [14], [2]. Since then, many approaches
defining signatures to use in 3D shape matching emerged in
the literature [15]. An extensive list of feature-based, graph-
based and other types descriptors is given in [5].

Osada et al. [1] used a distribution of global features to
describe a 3D object. Distributions were evaluated using a
pseudo-metric to obtain a dissimilarity measure. They also
proposed five simple descriptors computed by measuring char-
acteristics such as angle, distance, area and volume using
a random uniform distribution of points over the 3D shape
surface. Their D2 distance measure presented the best results
among the studied descriptors. Kazhdan et al. [2] proposed
the spherical harmonics descriptor. They used a rotationally-
invariant set of spherical functions based on the original

spherical harmonics descriptor in [16]. Rotational invariance
is obtained by decomposing the functions into their spherical
harmonics and summing the harmonics for each frequency
component. Results show that a rotationally-invariant descrip-
tor is better than one that requires pose normalization obtained
using principal component analysis (PCA). However, this
descriptor does not explicitly capture topology information.
Unlike [1], we propose using two distributions to capture
both geometric and topological features. Hence, our work
can be considered a feature-based technique that uses feature
distribution to find measure shape dissimilarity.

The DB-VLAT descriptor produced very good precision-
recall plots testing with models from the Toyohashi Shape
Benchmark. Their state-of-the-art technique outperformed es-
tablished descriptors proposed in the literature, such as the
D2 [1] and the Spherical Harmonics [2]. For the six classes
tested by Tatsuma et al., the only one that did not perform
well was a vehicle-like ’tank’ class. The authors stated that
the geometry of this vehicle was harder to discriminate due to
its oblong cannon. No information was given about the compu-
tational cost and scalability of their descriptor. The descriptors
listed above focus on shape matching. Other descriptors also
exist, e.g. for partial matching [17], local description [18],
object poses [4] or deformable 3D shapes [19].

II. THE DCTH SHAPE DESCRIPTOR

A shape descriptor is a compact way to represent features
of 2D or 3D shapes. One use of a shape descriptor is
to compare shapes using a dissimilarity function. Besides
computation speed, good shape descriptors should satisfy
additional application-specific features. For shape retrieval, the
following features are considered relevant [20], [5], [21], [22]:

• discriminative accuracy, or the ability to capture subtle
geometric and topological differences between shapes;

• invariance to translation, scaling, and rotation, collec-
tively known as pose normalization;

• robustness against small-scale shape perturbations or
noise and sampling resolution;

• scalability in terms of computational speed and memory.

Guided by these desirable features, we propose DCTH, a
statistical descriptor based on two measures: a depth complex-
ity (DC) distribution and thickness (T) distribution, explained
in Secs. II-A and II-B respectively. The two measures attempt
to capture the geometric and topological features of a shape
respectively, thereby increasing the descriptor’s discriminative
power. Both measures are robust in the presence of transfor-
mations and can be efficiently implemented on the GPU.

A. Depth Complexity Distribution Descriptor

The first component of the DCTH is a histogram of depth
complexity (DC) information. To explain the DC, consider a
ray r in 3D space. The depth complexity of a 3D model with
respect to r is defined as the number of intersections of r
with the model. Now, consider a bounding sphere around our
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Fig. 3. DC function sampled for rays r1, r2 and r3 for a simple shape.
(a) For each ray, the number of colored shape-ray intersection dots gives the
DC value. (b) Corresponding DC distribution

given shape. Each ray that intersects the shape also has two
intersection points with the sphere, described by their polar
coordinates θ1, γ1 and θ2, γ2. Hence, the depth complexity
for a given ray r = (θ1, γ1, θ2, γ2) can be encoded as a
function DC(θ1, γ1, θ2, γ2) → N of four variables. The 4D
shape function DC, defined over the space of oriented rays,
thus captures the depth complexity of the entire shape. Fig. 3
(a) shows the DC function values along three rays r1, r2 and
r3 for a simple shape, sketched on 2D for illustration purposes.

We compute a depth-complexity distribution by using a
uniform random sapling of the DC function over its ray space.
To obtain an optimal balance between sampling density and
computational speed, we computed distributions for varying
sample counts on several models and using them further in
performing CBR of 3D shapes. From our experiments, 500K
ray samples provided sufficient resolution while being fast
enough to compute (see Sec. III). Fig. 3(a) shows such a
distribution for the shape in Fig. 3(b). Note that geometrically
closed (watertight) shapes mostly have even values in their
distributions, since intersections with the shape occur in pairs
for all rays except those touching the shape at vertices.

The DC distribution has several desirable properties. First,
it is invariant to translation, rotation and scaling. Secondly,
its computation does not impose any constraints on the mesh
type used to represent the input shape (e.g. triangle, general-
polygon, polygon soup) or mesh quality (clean structure vs
having duplicate or T-vertices or very thin triangles). This
allows its direct application on all models of shape databases
without requiring expensive clean-up operations. In contrast,
shape descriptors that perform geometric computations on the
mesh surface, such as [1], [2], [23], may require preprocessing
to enforce such mesh constraints.

B. Thickness Distribution Descriptor

The second component of the DCTH descriptor is the
thickness (T) distribution. Unlike the DC descriptor, thickness
discriminates shapes according to their geometrical properties.
As a starting point, we use the definition of shape thickness
along a given ray r given in [24]: A ray r having 2n inter-
sections xi, 1 ≤ i ≤ 2n, with a shape generates n thickness
values ti = ‖x2i+1 − x2i‖, 1 ≤ i ≤ n as being the distances
between consecutive intersection points on the ray. We capture
thickness only using t0, i.e. using the distance between the
first and second ray-shape intersections. This arguably does

not decrease the description quality, since deeper intersections
are (a) either captures by t0 values computed for other rays, or
(b) pertain to ‘deep’ shape details which are hardly visible (or
not visible at all) from outside the shape from any direction.
Moreover, this allows an efficient and simple GPU-based
implementation for the thickness descriptor (see next Sec. III).

Liu et al. proposed a related technique called Directional
Histogram Model (DHM), where they define thickness as
the distance between the first and last ray-shape intersection
points [25]. DHM can be easily computed in a two-pass
OpenGL-based rendering process – front-facing polygons are
rendered first, followed by back-facing polygons (for con-
vex shapes). This can be easily implemented in the fixed
OpenGL pipeline, by placing the camera at the desired position
(sphere sample point) and orienting it towards the center
of the bounding sphere. However, as [24] argues, the main
disadvantage of DHM is the loss of internal geometrical
shape properties, which occurs for complex models having
concavities, such as buildings or CAD models. A similar
GPU-based technique to the DHM was used to compute
the medial axis, or curve skeleton, of 3D shapes [26], with
similar limitations for concave shapes. Separately, we note
that more accurate and geometrically-motivated methods to
estimate the local thickness of a shape exist, such as using the
distance between a surface point and its closest medial surface
point [27]. However, such methods require the computation of
the 3D medial surface, a process that is slow and delicate.

Similarly to the DC descriptor, we next convert the thick-
ness (T ) values to a distribution, using the same number and
position of sample rays. Thickness is obtained during the
same rendering pass that computes depth complexity, thus
adding only a small overhead to the total computation (see
Sec. III). However, in contrast to the DC measurement, a
scaling normalization must be used for the T measurement.
For this, we proceed as follows. First, we define the distance
between znear and zfar of the OpenGL near and far clipping
planes as being the diameter of the bounding sphere around
the shape. This can be done by casting a ray along the viewing
direction and retrieving the intersections against the bounding
sphere. The two intersection points are then used to define the
near and far clipping planes. This way, the z (depth) values,
retrieved from the OpenGL Z-buffer, are all in the same range
for different scales of the same shape. A second aspect to
consider is the fact that the Z-buffer uses a nonlinear scale,
which gives more precision objects near the near clipping
plane. Hence, we find thickness values by converting ‘raw’
z values from the Z-buffer to linear depth values zlinear by

zlinear =
(2 ∗ znear)

(zfar + znear − z ∗ (zfar − znear))
. (1)

C. DCTH descriptor

The DCTH shape descriptor is a 2D histogram of depth
complexity and thickness obtained by joining the 1D DC
and T histograms. DCTH correlates frequency values of both
above histograms to obtain a better discrimination than using
each histogram separately. Fig. 6 (bottom row) shows the



Fig. 4. GPU computation of DC for a given view direction. The shape is
rendered for the each viewing direction. Using a fragment shader, the number
of fragments for each pixel position (x, y) is counted and saved into a texture.
The texture is bound to an OpenGL image unit that allows to perform atomic
increments inside the shader program.

2D DCTH histograms for three different 3D models, with
thickness mapped to the x−axis and depth complexity mapped
to the y-axis respectively, and frequency (counts) mapped to
color, using a blue-to-red logarithmic color map.

D. Dissimilarity Measures

Once the DCTH descriptor is computed for a set of 3D
shapes, dissimilarities between shape-pairs can be computed
using various distance metrics based on the shapes’ de-
scriptors. Common distance metrics include the Minkowski
LN norms, match distances [28], the earth mover’s distance
(EMD) [29], and the Hellinger distance [30], which is closely
related to the Bhattacharyya distance [31]. Given two DCTH
histograms H1 and H2 and a distance metric d, we assume that
distance values are normalized, i.e. d(H1, H2) ∈ [0, 1], with 0
implying perfect similarity and 1 maximal dissimilarity.

We tested the L1, Hellinger, Chi-square, correlation, and
EMD distance metrics, aiming to optimize the trade-off be-
tween computational performance and retrieval precision. The
best results were given by the Hellinger distance.

III. EFFICIENT GPU IMPLEMENTATION

We next describe the efficient GPU-based computation of
the DC and T distributions. The proposed algorithm al-
lows the DCTH descriptor to be scalable for large databases
containing thousands of complex 3D shapes. Our approach
has three steps: shape sampling (Sec. III-A), data collec-
tion (Sec. III-B), and normalized histogram construction
(Sec. III-C).

A. Shape sampling

Points are uniformly sampled over the bounding sphere
around the model. At each sample point, an OpenGL camera
is pointed towards the sphere center. For each camera
position, the 3D object is rendered, and the DC and T values
are computed. Camera parameters are configured as follows:

Projection: We use orthogonal rather than perspective
projection to avoid precision loss due to perspective
distortions that occur in distant parts of the scene, e.g.,
triangles becoming very small. As such, each rendering pass
samples rays that are parallel to the viewing direction.

Frustum size: We use a view frustum that best fits the shape
to prevent losing depth precision during rendering. For this,
we use a 3D bounding box of the input shape to define the
camera coordinate system and also set the frustum size.

Resolution: The viewport resolution offers a trade-off
between precision and speed. A resolution of 2562 pixels
gave good results for all tested models. Larger resolutions are
better for high-precision queries for a database having many
complex objects with small detail polygons.

Clipping planes: As mentioned in Sec. II-B, thickness values
must be normalized for different shape scales. To obtain depth
values within the same fixed range, we set the near and far
clipping planes to (a) encompass the entire object and (b)
have fixed values for all viewpoints. For this, we set the
distance between the near and far planes to the diameter of
the bounding sphere around the shape.
Finally, we note that the view up vector, which controls the
camera rotation around the viewing direction, is irrelevant
since both depth- complexity and thickness values for a 3D
shape depend only on the viewing direction and distance to
the object, and not the camera rotation around this direction.

B. Data collection

In each rendering pass for a different viewpoint, OpenGL
fragment shaders are used to compute the DC and T values
from that viewpoint. Our shader uses two textures. The first
texture has an integer channel to store the DC values. The sec-
ond one has two floating-point channels to store the z values
of the first and second intersections. We found this solution
to be significantly faster than using an array of 2D textures
inside the shader. The two textures are bound to OpenGL
image units, allowing us to perform safe atomic writes into
the textures in the shader Fig. 4 shows the procedure used to
find the DC values for each ray by counting the number of
fragments rendered at each pixel of the viewport. Similarly,
for the thickness T , the depth value of each fragment is used
to compute the distance between consecutive fragment-pairs.

C. Normalized histogram construction

In the last step, data collected from all sampled viewpoints
is normalized by the total number of drawn rays, creating
the DCTH histogram, containing both T and DC values.
These steps are performed after each sampled viewpoint is
rendered to avoid creating many separate textures. This step
is performed on the CPU. Apart from this step, the DCTH is
entirely computed on the GPU. Since the texture resolution is
relatively small (see Sec. III-A), computing the final histogram
normalization on the CPU does not incur significant penalties.

IV. EVALUATION

The evaluation of the DCTH descriptor is an important
aspect to validate the proposal. Given a query model M and
a shape database D, we call relevant retrievals all models
in D to which M should match. More specifically, for a
given M , a perfect descriptor should return all shapes in D



marked as being in the same class, or of the same type, as
M . The definition of a relevant retrieval is subject to user
choices or application scope. For example, in some cases a
wide retrieval may lead to many matches of M in D, whereas
narrow matches might be preferred in other cases.

A. Precision-Recall Curves

In information retrieval, precision P and recall R are
defined in terms of a set of retrieved instances S and a set of
relevant instances SR, both belonging to a given database D.
Precision is the fraction of retrieved instances that are relevant
to the query while recall is the fraction of relevant instances
retrieved by the query. Precision and recall are computed as

P =
|SR

⋂
S|

|S|
, R =

|SR

⋂
S|

|SR|
. (2)

The order in which objects are returned to the user in a
query is also important. Ideally, more relevant objects (from
the query perspective) should appear earlier in the query
result S. The Average Precision (AP) metric is used for this
purpose. Precision and recall are computed for each position
of the ranked sequence S. The precision P (R) is defined as
a function of recall R, for all sequence positions. Typically,
the function P (R) varies over R ∈ [0, 1]. When the recall R
is small, precision P (R) is often large. When the recall R is
large, precision P (R) tends to be small. The AP of the query
corresponds to the average of P (R) over the entire range of
R for that query.

The Mean Average Precision (MAP) evaluates the effective-
ness of a set of Q queries, rather than a single query. MAP is
equal to the mean of the AP for each query:

MAP =
1

Q

Q∑
q=1

APq (3)

where APq is the AP of the q-th query in the sequence of Q
queries. MAP is a standard metric for ranked results in text
retrieval [32] and retrieval evaluation benchmarks [33].

V. EXPERIMENTAL RESULTS

Several experiments were designed to evaluate the robust-
ness, shape discrimination and efficiency of the DCTH shape
descriptor. The implementation was written in C++, using g++
version 4.7. Results were measured on an Intel Core i7 PC,
with 12 GB RAM, running Linux Ubuntu 12.04.

Accepted input formats for 3D models include .obj or .off,
which are common formats for publicly available 3D shape
databases. For our tests, we used the Princeton and Toyohashi
benchmarks. Princeton has 907 models for testing and 907
models for training for typical shape retrieval algorithms.
Since the DCTH algorithm does not need a training step,
all 1814 models were used in our tests. These models are
further divided into 80 different shape-classes. Toyohashi has
10000 models, organized in 352 classes. During testing, only
classes containing at least 20 models were used to avoid a
small number of samples in the MAP plots. Typical classes
include humans, plants, airplanes, quadrupeds, chess pieces,

Fig. 5. Each row displays the model and the DCTH histograms after applying
rotation, anisotropic scaling, mirroring, and shape subdivision-smoothing. In
each row the histograms are similar before and after transformations.

among others. The list of distance metrics used to compare
DCTH descriptors is given in Tab. III). All metrics, except the
simple L1 norm, were computed using the optimized imple-
mentations provided in the OpenCV library. The evaluation
of the descriptors uses three criteria: robustness (Sec. V-A),
performance (Sec. V-B), and efficiency (Sec. V-C).

A. Robustness

The robustness of the DCTH descriptor was measured
by testing its invariance to affine transformations and mesh
resolution issues. Three generic shapes from the Princeton
database were selected and subjected to one of the following
transformations:

• rotations of 45 degrees around the z, y and z axes
respectively;

• anisotropic scaling by factors of 2.5 in the x-axis and
0.25 in the z-axis;

• mirroring against the x− y, y − z, and x− z planes;
• surface subdivision using the Catmull-Clark algo-

rithm [34] with two iteration levels.
The 2D DCTH histograms were computed after applying each
transformation. As shown in Fig. 5, these histograms remain
almost unchanged after each of the tested transformations, thus
demonstrating the robustness of DCTH.

B. Retrieval Performance

Measuring the retrieval performance of DCTH requires
querying the database and evaluating precision-recall plots.
We implemented a shape retrieval tool to generate the average
precision-recall plots. As a reference, we used the shape-
class descriptions provided in the Princeton Shape Benchmark.
Descriptors are compared using the Hellinger distance, which
gave the best trade-off between quality and speed.

Plots of the separated components of the DCTH descriptor
can give insight on how the DCTH changes according to
a given shape. Fig. 6 shows the DC and thickness (T) 1D
histograms, as well as the combined 2D DCTH histogram
for three different models. The DC histogram is similar for
the panther and the chess piece, as both shapes have few
concavities and an average local thickness. The DC histogram
for the tree is quite different, as this shape has a very different
topology. In this example, the DC histogram is not enough



Fig. 6. Comparison of DC, T, and DCTH histograms (bottom three rows)
for three objects of typical classes in the Princeton Shape Benchmark (shown
in the top row). The DCTH histogram combines the discriminative power of
both DC and T histograms (Sec. V-B).

Fig. 7. DC and T histograms for five shapes in the classes humans and chess
pieces. Same-class objects have similar histograms (Sec. V-B).

to discriminate the three shapes. In contrast, the T histogram
is more discriminative, revealing the fact that the geometric
(local thickness) properties of these objects are quite different.
The DCTH histogram for the tree looks quite different from
the DCTH histograms of the other two shapes, which reflects
its combined discriminatory power.

Fig. 7 reveals insights about the discriminatory power of
DC and T histograms. Five objects belonging to the humans
and chess pieces were tested. As can be seen, the same-
class DC and T histograms are quite similar. Differences exist
between the DC histograms and T histograms of different-class
objects. However, if we combine the DC and T histograms in
the DCTH descriptor, an increased discriminatory power is
obtained. Fig. 8 shows how the DCTH descriptor separates
three objects in the humans and chess pieces classes.

Fig. 9 shows the precision-recall plots for queries pertaining
to objects located in six different shape classes. The best result
was achieved for the faces class. One explanation for this
result is that face shapes are obtained from 3D scanners. As
such, shapes have a simple topology consisting of an open
surface, and a DC histogram having a peak around 1 (most
rays have one intersection with the shape). The DC histograms

TABLE I
DCTH DESCRIPTOR COMPUTATION TIME FOR PRINCETON DATASET.

Princeton shape benchmark 1815 models

Model Vertices Faces Time (ms)

Largest model 160940 316498 32884
Smallest model 31 35 206
Typical model 7691 15294 652

Average time per model 0.968 sec
Total running time 1757 sec

for other shapes have quite different forms since such shapes
are typically closed (watertight). The DCTH descriptor is
successful in separating faces from other shapes.

Similar tests were performed on the Toyohashi shape bench-
mark, which contains 10000 shapes organized in 352 classes.
Fig. 10 shows the average precision-recall plots for the same
shape-classes as in Fig. 9 (Princeton benchmark). Precision-
recall results are worse for the Toyohashi benchmark than
for the Princeton Benchmark. Upon closer analysis, it was
observed that the Toyohashi benchmark contains degenerated
models, and many models were disassembled or had many
missing or duplicated triangles. Such models lead to spurious
or missing ray-shape intersections, thereby introducing noise
in the DC and T histograms.

We also run our descriptor for the same classes tested by
Tatsuma et al. [7] to evaluate their DB-VLAT descriptor. In the
specific classes discussed in their work DB-VLAT presented
better precision-recall results than DCTH. The main reason
is the lack of robustness of our technique when 3D models
present missing or duplicated triangles, which happens in the
majority of the models of these classes. More conclusive
comparisons could not be performed since we were not able
to obtain an implementation of their descriptor. In addition,
no information was given about the computational cost and
scalability of the DB-VLAT descriptor. Although, retrieval
quality is very important, factors such as speed and ease of
implementation are also essential for a scalable approach.

C. Computational Efficiency

A CBR system following the pipeline of Fig. 2 was used
to measure the efficiency of the DCTH descriptor using the
Princeton and Toyohashi databases. Descriptors were gener-
ated for each database model and stored in its respective
database. As a query, we used either a shape of the database
or a third-party shape. For each query shape, we computed the
DCTH descriptor and compared it against all stored descrip-
tors. Matches were returned in increasing order of dissimilar-
ity. Clearly, this query process is suboptimal in terms of query
speed as its complexity is linear in the number of database
models. Hierarchical structures can speed up the search by
avoiding unnecessary descriptor comparisons. Since our goal
was the design of an efficient and computationally effective
descriptor, rather than a computationally effective database
search structure, we did not implement such structures.

Tables I and II show DCTH computation time for the



Fig. 8. DCTH histograms for objects of the human and chess pieces classes in the Princeton Shape Benchmark. The histograms clearly discriminate between
the two classes. Although shapes in both classes have many rays with DC = 2, the chess pieces have a higher thickness T (Sec. V-B).

(a) Quadrupeds (b) Plants and trees (c) Airplanes

(d) Chess pieces (e) Humans (f) Faces

Fig. 9. Precision-recall plots of six shape-classes in the Princeton Shape
Benchmark using the DCTH descriptor and Hellinger distance.

(a) Quadrupeds (b) Plants and trees (c) Airplanes

(d) Chess pieces (e) Humans (f) Faces

Fig. 10. Precision-recall plots of six shape-classes in the Toyohashi Shape
Benchmark using the DCTH descriptor and Hellinger distance.

Princeton and Toyohashi benchmarks. The parameters used
were the same as those for the results in this paper, i.e.

TABLE II
DCTH DESCRIPTOR COMPUTATION TIME FOR TOYOHASI DATASET.

Toyohashi shape benchmark 10000 models

Model Vertices Faces Time (ms)

Biggest model 181912 362935 25377
Smallest model 6 8 122
Typical model 12858 24685 785

Average running time per model 0.601 sec
Total running time 6013 sec

TABLE III
TIME TO COMPARE A QUERY DESCRIPTOR WITH ALL DESCRIPTORS

Princeton dataset Toyohashi dataset

Total time (ms) Total time (ms)

L1 165 722
Hellinger 44 216
Chi-square 36 196
Correlation 35 188
EMD 882090 4410000

RS = 500K ray samples and W = 2562 screen resolution.
Our implementation took 1757 seconds to generate DCTH
descriptors for the Princeton database and 6013 seconds for
the Toyohashi database. As both databases have similar models
with respect to the numbers of vertices and faces, a linear
performance in the model count was observed.

Table III shows the time required to compare a query
descriptor with all descriptors stored in the two databases
using 5 different distance metrics. The relative low speed
of the L1 metric is explained by the fact that no optimized
data structures to store 2D sparse histograms was used. In
contrast, the Hellinger, Chi-square and correlation metrics used
such optimizations, provided by OpenCV, and showed a better
(and comparatively similar) performance. Finally, the EMD



distance was considerably slower than all other metrics, given
its inefficiency when dealing with sparse histograms.

VI. CONCLUSIONS

In this paper, we presented DCTH, a new 3D shape descrip-
tor based on the distribution of depth complexity and thick-
ness information. The result is a 2D depth-complexity-and-
thickness (DCTH) histogram, aimed at generic shape retrieval
under translation, rotation and scale invariance. The descriptor
has proven to be computationally efficient and robust. The
DCTH descriptor exhibits a promising retrieving power, in
terms of capturing shape geometry and topology, as tested on
the well-known Princeton and Toyohashi benchmarks. DCTH
can easily be implemented on the GPU and delivers perfor-
mance rates compatible with online and interactive retrieval
rates, even when using a linear search algorithm.

One avenue for future work is to extend DCTH to measure
additional global shape features, such as the geodesic distance
between ray-shape intersection points. This can be computed
using GPU methods [35] and skeleton properties.
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