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Abstract—In this paper we study the use of computer vision
techniques for visual tracking of futsal players. In the sports
field, player tracking is an important task, as it can provide an
estimate of the position of the athlete in a given time and thus
compute his/her trajectories. This information can be used by
coaches and sport professionals on tactical and physical analyses.
We use adaptive background subtraction and blob analysis to
detect players, as well as particle filters to predict their positions
and track them using data from a single stationary camera.
Experimental results show that our approach is capable to track
players and compute their trajectories over time with errors
below 20 cm, thus demonstrating a high potential to be used in
a wide range of futsal match analyses.

Keywords-Player Tracking; Particle Filter; Futsal; Tactical and
physical analyses.

I. INTRODUCTION

The interest on sport analyses has growth large over the past
years. In futsal, as in other team sports, tactical and physical
analyses are fundamental to understand what is happening
in the game, to identify and correct errors and to plain
improvements. Through those observations, sportsmen can
verify players physical efficiency, refine strategies and better
adapt training routines [1]. To make such analyses possible, it
is necessary to estimate players positions at a given instant of
time and, consequently, track them [2]. From that, it is possible
to compute players trajectories over time, as seen in Fig. 1,
which are the core data of such analyses [3].

Unfortunately, a major part of this work is performed man-
ually by staff members or specialized companies [4], [3], [2].
The matches are recorded in video and reviewed exhaustively
so that observations are made, registered and passed later
to coaches. That makes the player position estimate a time-
consuming task, which is prone to human error and can
demand on significant financial costs.

Even though the development of some technological solu-
tions in recent years has helped sportsmen to track players in
a automatic [5] or semi-automatic way [6], their adoption by
futsal teams is still difficult, by their complexity and monetary
costs. In this context, we propose a vision-based approach
to automatically detect and track multiple futsal players with
minimum human intervention, in such a way their positions in
a given time can be estimated and their trajectories computed.

A. Related work

Many efforts have been applied to detect and track players
using computer vision techniques in several kinds of sports.
The images sources used by researchers differ from fixed
cameras images, as in [7], [8], [4], [2], [9], [10] (which are
capable, in most cases, to monitor all game actions) to moving
cameras or broadcast images, in [11], [12], [13], [14], [15],
[16], [17] (which are most likely easier to obtain). Each of the
images sources used presents different challenges to overcome.

For player detection, some papers use techniques based
on segmentation and morphological operations. A commonly
adopted approach is to build a model of the player or the
background based on colour information, using the predom-
inant game region colour [7], [13] or histograms and colour
distributions of players [18], that allow the extraction of re-
gions that contain the athletes. The detection step using colour-
based techniques is usually fast, despite the fact they are very
sensitive to illumination variations which may reduce they
precision and robustness. Adaptive background subtraction
methods based on mixture of gaussians, in turn, are more
resistant to illumination variations [19]. On the other hand,
they are slower than colour-based methods, and if the target
stays static for sufficient time, it can be incorporated by the
background model and, consequently, not be detected.

Another widely used technique to locate players in images
is the use of trained detectors (e.g. Cascade classifiers or
Deformable Part Models (DPM)). The authors in [2], [11]

Fig. 1. Trajectories of three players highlighted in red and green: with
trajectory data one can derive information about speed, distance travelled,
occupancy heatmaps of the athletes, among others useful for the analyses.



use manually extracted samples from game scenes to train
a haar classifier, which is used to detect players instances
in images effectively. However, the training phase has, in
most cases, a high complexity cost and demands on a big
number of samples. Furthermore, the detection process with
this technique is usually slow, which results in poor processing
frame rates.

To increase the robustness of detection, some works make
use of probabilistic approaches together with some of the
aforementioned techniques in multi-camera or single-camera
setups. Using multiple cameras, the authors in [2] combine the
detections made by haar detectors in images from each camera
in a multiple-hypothesis function, that represents the likelihood
of a player be found in a certain court position. This function
is built through the projection, in a virtual calibrated court
plane, of the player location image coordinates. Similarly, the
authors in [9], [10] use background subtraction together with
the Probabilistic Occupancy Map (POM) technique to detect
the players in different situations. Considering a single-camera
setup, the authors in [12] make use of likelihood maps based
on colour distributions of players to estimate their locations.

At the same time, different approaches can be found in
the literature regarding multiple players visual tracking. One
widely adopted technique is the use of predictive filters, as
Kalman Filter or Particle Filter. To estimate the speed and po-
sition of players and link their trajectories, the authors in [20]
use Kalman Filter. However, Kalman Filter is not adequate for
multiple-hypothesis processes and, for this reason, numerous
authors choose to use Particle Filter to track players and model
their motion [11], [13], [14], [15], [4], [2]. In such cases, the
complexity cost increases proportionally with the numbers of
players tracked.

There are also works that explore trajectory analyses and
graph-based multiple-hypothesis to perform player tracking. In
that case, graphs that represent the possible player trajectories
are built, modelling their position in a given instant of time
along with their transitions between frames [8], [7], [16], [9],
[10]. The trajectories of players are then searched in the graph
using a similarity measure [8], linear programming [9], multi-
commodity network flow [10] or modelled as a minimum
edge cover problem [16]. Commonly, graph-based methods
have a high complexity cost, so it is difficult to achieve good
processing frame rates using this type of technique to be used
in real time applications.

B. Contribution

In this paper, we explore some of the aforementioned
techniques to detect and track players allying high processing
frame rates with acceptable robustness levels. Fig. 2 presents
an overview of the proposed approach and the necessary
steps to compute players trajectories. Unlike most part of the
previous works, we use a single stationary camera, c, placed
so its optical axis, o, is approximately perpendicular to the
ground. In such configuration, the camera can monitor the
entire court area and capture top-view images of the court,
consequently minimizing the undesired effects of occlusions

Fig. 2. Overview of our approach and the steps necessary to calculate players
trajectories.

among players. To capture the entire court, we make use of
wide-angle lens, but they undesirably causes substantial spher-
ical distortion on the images. We estimate camera parameters
using the algorithm proposed in [21] and undistort the images
to increase the precision of our approach.

In the players detection step, we use an adaptive background
subtraction method based on a mixture of gaussians [19] and
on geometric constraints to check blobs sizes in the resulted bi-
nary image. To track players in successive frames and estimate
their positions at a given time, we use particle filters. Each
player detected is automatically tracked by a separate particle
filter. The data association between detections and trackers in
each frame, present in multi-target tracking problems, is solved
using the well-known Hungarian Algorithm [22]. If a detection
is associated to a tracker, it is used to guide the particles of
the associated tracker. Otherwise, filters prediction is used to
estimate the position of the player at that time.

That said, the main contribution of this work consists in to
present a simple yet efficient low cost approach to track futsal
players, as shown in our experimental results, that is capable of
providing trajectories of players to be used in a wide range of
analyses. The remainder of this paper is organized as follows.
Section II presents the details of our player detection approach.
Section III describes the tracking methodology used in this
paper. Experimental results and discussions are presented in
Section IV, followed by the conclusions and suggestions for
future work in Section V.

II. PLAYERS DETECTION

In our methodology, the first step for detecting players con-
sists in to perform a background subtraction to segment them
from the game region. In general, the background presents
some regular behaviour that can be described by a model. With
this model, it is possible to detect a moving object by searching
image pixels that does not fit the model. The background



subtraction result is an image that highlights the regions of
non-stationary objects in the scene.

In this paper, we make use of an adaptive background
subtraction technique, based on Gaussian Mixture Models
(GMM), as proposed in [19]. In this technique, the background
(BG) model is estimated from a training set denoted as
χ. This training set is built from pixels values ~x sampled
over a time adaptation period T , so that at time t we have
χT = {~x(t), ~x(t−1), ..., ~x(t−T )}, and the estimated background
model is denoted by p̂(~x|χ,BG) [19].

Each new sample is incorporated to the set and the old ones
are discarded, so the model is updated in order to adapt to
changes. In the recent samples, however, there could be some
values that belong to background as well to foreground (FG)
objects. This estimative should be denoted by p(~x(t)|χT , BG+
FG) and in a GMM with M components, is given by [19]:

p̂(~x|χT , BG+ FG) =

M∑
m=1

π̂mN (~x; ~̂µ, σ̂2
mI), (1)

where ~̂µm is the estimate of the mean of the mth Gaussian
component and σ̂m is the estimate of the variances that
the describe the mth Gaussian component. The covariance
matrices are assumed to be diagonal and I , the identity matrix,
has proper dimensions [19]. The mixing weights (the portion
of data accounted by the mth Gaussian), denoted by π̂m, are
non-negative and normalized so they sum to one.

To estimate the background model from the mixture, the
algorithm assumes that Gaussian components having the most
supporting evidence and the least variance are most likely be
part of the background. In a clustering approach, static objects
tend to form large and concise clusters of pixels with the same
value, while moving ones tend to form sparse clusters. This
way, the intruding foreground objects will be represented, in
general, by some additional clusters with small weights π̂m
[19]. The background model can be approximated by the first
B largest clusters:

p(~x|χT , BG) ∼
B∑

m=1

π̂mN (~x; ~̂µm, σ
2
mI). (2)

Sorting the components by their weights π̂m in descending
order, we obtain:

B = arg min
b

(
b∑

m=1

π̂m > (1− cf )

)
, (3)

where cf is a measure of the maximum portion of data
that can belong to foreground objects without influencing the
background model [19]. This way, the first B of the ranked
components whose weights exceed (1− cf) are deemed to be
the background.

A limitation present in earlier background subtraction based
on GMM approaches was caused by the use of a fixed
number of Gaussian components for each pixel over the time.
To increase the accuracy and reduce computational cost, the
technique in [19] applies an online procedure to constantly

update not only the GMM parameters but also the number of
components to be used. Given a new data sample ~x(t) at time
t, the recursive update equations are:

π̂m ← π̂m + α(o(t)m − π̂m)− αcT (4)

~̂µm ← ~̂µm + o(t)m (α/π̂m)~δm (5)

σ̂2
m ← σ̂2

m + o(t)m (α/π̂m)(~δTm
~δm − σ̂2

m), (6)

where ~δm = ~x(t) − ~̂µm. The constant α describes an expo-
nentially decaying envelope, used to limit the influence of the
old samples and, approximately, α = 1/T . For a new sample,
the ownership o(t)m is set to 1 for the “close” component with
the largest weight π̂m and the others are set to zero. A sample
is said “close” to a component if the Mahalanobis distance
from the component is for example less than three standard
deviations. The squared distance from the mth component is
calculated as D2

m(~x(t)) = ~δTm
~δm/σ̂

2
m. If there are no “close”

components, a new component is generated with π̂M+1 = α,
~̂µM+1 = ~x(t) and σ̂M+1 = σ0, where σ0 is some initial
variance with appropriate value [19]. If the maximum number
of components is reached, the component with the smallest
weight is discarded. Finally, cT is the negative Dirichlet prior
weight, which will suppress the components that are not
supported by the data. If a component has negative weights,
it is discarded. After each update, the weights are again
normalized.

At the beginning of the execution, the GMM is started with
one component centred on the first sample. New components
are added or discarded as aforementioned, so the number
of components is dynamically updated and the background
model is effectively estimated. In the detection process, only
regions inside the court area are considered, to avoid that
the movement of coaches, referees or even supporters lead
to wrong detections.

After the background subtraction, we get an image as shown
in Fig. 3b. To increase robustness, it is necessary to detect
moving shadows pixels upon pixels labelled as foreground.
In the background subtraction process, a pixel is detected
as shadow if it is considered as a darker version of the
background, defined by a threshold τ . As shadows pixels are
marked with a specific value in the resulted image (127 in
the present case, resulting in grey pixels), they can be easily
removed with a simple threshold operation. Then, we have a
binary image where black pixels represent the background and
white pixels represent foreground objects.

The second step of our player detection approach is to
perform some morphological operations, as opening (to re-
move noise pixels and small objects from the foreground)
and closing (to remove small holes on foreground blobs). The
result of this operations can be seen in Fig. 3c. At this moment,
bounding rectangles are also assigned to each blob as possible
players locations creating a set R of regions of interest.

Lastly, all regions in set R must be checked against some
geometrical constraints, to verify if they really correspond
to players, given their respective width and height and their



(a) Source image (b) Background subtraction result (shadows in gray)

(c) Morphological operations result (d) Detection result (bounding rectangles in red)

Fig. 3. Player detection process.

positions. The i-th region in R is discarded if wi < wmin

or hi < hmin, where wi and hi denote the width and height
of the i-th region, respectively, and wmin and hmin are the
minimum values for width and height that a region may
assume to represent a potential player in the scene. Similarly,
our approach evaluates if wi > wmax or hi > hmax, where
wmax and hmax are the maximum values for width and height
for a region that may represent a player. In those cases, if
wi > wmax or hi > hmax, the approach recursively splits the
region into smaller rectangles until they meet the dimensions
constraints and, in the following, updates the set R.

To consider only detections that are inside the court area,
we use a homography matrix H previously estimated to
make a perspective transformation between two planes, that is,
transform points in image coordinates to court coordinates. To
estimate H , we choose a set of known points in the court (e.g.
the centre of the court, its corners, the penalty mark, among
others) whose positions is given by a chosen referential and
find their corresponding image points positions in pixels. With
those matches, we can estimate a matrix that can maps points
in the image plane to points in the court plane. Then, we use
H to transform the centroid of the i-th region in R and check
if its position in the court plane is inside the limits of the
court. If it is not, the detection is discarded.

Fig. 3d shows detected players on the source image as a
result of the detection step.

III. PLAYERS TRACKING

After the detection process, the next step in our approach is
to track players and estimate their positions at a given time,
linking their detections over successive frames. Player tracking
can be seen as an iterative process, which analyzes the image
sequence to describe players motion. In this work, we make
use of Particle Filter for this task.

Particle filter is a predictive filter, which uses information
from the present state of an object to infer its state in the
next instant of time [23]. To make this possible, the filter uses
a motion model which describes the motion dynamics of the
objects. Through this model, the filter can make a prediction
of the position of the object in the next instant of time, which
is corrected by an observation model (e.g. the position of the
detected player), since it is not exactly known how the object
is moving at that moment. With this adjustment, we minimize
the effects of accumulated errors that can lead to erroneous
predictions in the future. Whether it is not possible to directly
observe the object (for example, in a miss detection), the filter
uses only the prediction to keep tracking it until the object can
be detected again.

To work with multimodal functions, as in the present case,
the filter models its probability functions using a set of N
samples, or particles – hence the origin of its name. Each
particle i has in a time t a state Xi

(t), which contains an
information that represents the player. Each particle has also



a weight Wi
(t), which account how good that sample is, or, in

other words, what is the likelihood of the player to be found
in that position if an observation is made at that instant. In the
proposed work, we use a vector with four variables to model
the state of a player, so Xi

(t) = {x, y, vx, vy}, where the first
two variables are the position in 2D space, vx is the velocity
on x axis and vy is the velocity on y axis. The mean state of
the player tracked, X̂(t), is given by:

X̂(t) =

N∑
i=1

Xi
(t)Wi

(t). (7)

We start tracking a player from its first detection. To each
new detection is associated a tracker, consisting of its own
particle filter, the player identification and a position history.
The tracker is considered “valid” if the player associated to
it is detected on a minimum number of frames, denoted by
γmin. By “valid” we mean that the tracker can compute the
trajectories of the player, to avoid computing trajectories of
some tracked objects generated by noise detection. In the same
way, a tracker can only live without an associated detection
for a limit number of frames, γlim, being removed after that.

When a new tracker is created at time t0, a set of N particles
is generated with states Xi

(t0) = {x, y, vx, vy}. The values
of x and y are computed according to a normal distribution
around the centre of the rectangle of the associated detection
with variance σ2

(x,y). On the other hand, vx and vy are
initialized with values equal to zero. All particles have the
same weight, that is Wi

(t0) = 1/N .
From this moment, an iterative process begins, which is re-

peated for every new frame in the images sequence, consisting
of the Resample, Propagation and Observation phases. Next,
we describe each one of those phases, considering t as the
current time.

A. Resample

In this phase, particles are resampled according to their
weights in order to build a new set with N samples based on
the previous one. In a [0, 1] closed interval, we map portions
of this interval to each one of the particles, in such a way
that those with greater weights receive larger portions. We
then generate a random number n and we choose the particle
that has the interval which contains n. This way, we benefit
particles with greater weights, but we still admit repetitions
and also allow small weight particles to be selected.

B. Propagation

In this phase, we propagate the particle set by using the
motion model to build the estimate of state X(t+1). That is,
we basically make a prediction of the next state. We employ
the constant velocity motion model in this work, as proposed
by the authors in [2], motivated by the fact that the variations
between frames are very small when images are captured at
30 frames per second. In this model, we have:

(x, y)(t+1) = (x, y)(t) + (vx, vy)(t)∆t, (8)

(vx, vy)(t+1) = (vx, vy)(t), (9)

where ∆t is the time step. However, as the particle filter
deals with the likelihood of an event, there are uncertainties
that should be consider. Those uncertainties can be seen as
the process noise and we model it as random errors from a
zero mean normal distribution with variance σ2

(vx,vy)
, that are

included in the particles. Such errors help differentiate the
state of repeated particles, improve the representativeness in
that point and avoid repetitions that can break the tracking
step.

With a time step ∆t = 1/30, the model can be rewritten in
matrix terms as:

X(t+1) =


1 0 1/30 0
0 1 0 1/30
0 0 1 0
0 0 0 1





x
y
vx
vy


(t)

+


0
0
evx
evy




(10)
where evx and evy are the process noise.

We set the initial variance σ2
(x,y) for the position based on

the average size of the player in images. During tracking,
that variance decreases inversely proportional to the number
of successfully tracked frames for a player (down to a lower
limit θl). Hence, the longer a player is tracked successfully,
the less the particles are spread. In the same way, when it is
not possible to detect the player associated to a tracker, we
increase the variance up to a higher limit θh, to spread the
particles and to make better estimates.

C. Observation

In this phase, the estimates are adjusted by an observation
model Z of the object, to confirm or correct them. At this
moment, we compute the new particle weight, which denotes
how good that representation is. In other words, what is the
likelihood of the player be found in that position if an ob-
servation is made at that moment, denoted by P (Xt+1|Zt+1).
As we are tracking players and estimating their positions, we
adopt a model where Z(t+1) = [x y ]

>(t+1)
, so only the

position information is considered.
However, as we deal with multi-player tracking, it is nec-

essary, at first, to decide which detection in an image should
guide each tracker, to adjust its prediction in this phase. This
way, each tracker should be associated with one detection at
most and this problem is called an association problem. To
solve it, we applied the well-known Hungarian Algorithm [22].
This technique calculates the cost of all association possibili-
ties, given in our work by the Euclidean Distance between a
position of one detection (the centroid of the rectangle) and
the position of a tracker. The algorithm makes the appropriate
associations in such a way each tracker is associated with one
detection at most with the smallest possible cost, in polynomial
time.

With all associations made, we check if the each cost given
is smaller then a threshold λ, which controls the maximum
acceptable cost. We do this to minimize unreal situations,
most likely cause by false positive detections (e.g. a player
that is detected at the penalty mark in one frame and in



TABLE I
PARAMETERS VALUES USED IN THE EXPERIMENTS.

Parameters Value
wmin, hmin 5 pixels
wmax 50 pixels
hmax 40 pixels
N 250 particles

γmin, γlim 5 frames
σ2

(x,y) 5 pixels
σ2

(vx,vy) 8 pixels
θl 3 pixels
θh 7 pixels
λ 40 pixels

the next he/she is detected at the centre of the court, being
impossible to a human to travel such distance in such a small
period of time). If a detection that does not really exist is
associated with a tracker, this tracker uses only its prediction
data and receives a strike. When a maximum number of strikes
is reached, the tracker does not have detections associated to it
for a substantial number of frames and then we remove it. On
the other hand, if a valid detection is associated to the tracker,
we use it to adjust the prediction.

To estimate the particles weights, we again use the Eu-
clidean Distance d between their (x, y) positions at state
X(t+1) and: (i) the rectangle centroid of the associated de-
tection or (ii) the estimated (x, y) position of the player in the
previously time (X̂(t)), if there is no associated detection. We
use d in a normal density function given by:

f(x, µ, σ) =
1√

2πσ2
e

(
− d2

2σ2

)
, (11)

where σ = σ(x,y). Finally, we normalize the weights so they
sum up to one. From that, the mean state of the player can be
calculated again by Eq. 7 and the filter is ready for another
iteration. We store in the tracker history the estimated location
of the player, given by its mean state, and we can then compute
his/her trajectories over time.

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our approach, we tested
it on a challenging real-game sequence, collected from a
training session of Minas Tênis Clube futsal team, one of the
major teams in this sport in Brazil. This sequence consists
of 13320 frames captured at 30 frames per second and on a
752x480 pixels resolution. We manually annotate the positions
of the athletes with a bounding box around each player once
every 15 frames, to create our ground truth for the detection
and tracking experiments. The average player box in images
is 20x15 pixels. For computational reasons, we crop the court
region in image, resulting in 628x368 pixels frame.

As showed in the previous sections, different parameters
need to be set in our approach. The parameters values are
selected empirically and the values used in our experiments
for the main variables are summarized in Table I.

A. Experiments for players detection

To evaluate the detection of players, we use the CLEAR
metric Multiple Object Detection Accuracy (MODA) [24],

TABLE II
PLAYERS DETECTION RESULTS FOR THE TESTED SEQUENCE

τov TP FP FN Prec. Rec. F-Score N-MODA
0.1 7333 281 1603 0.963 0.821 0.886 0.789
0.2 7315 299 1621 0.961 0.819 0.884 0.785
0.3 7135 479 1801 0.937 0.798 0.862 0.744
0.4 6504 1110 2432 0.854 0.728 0.786 0.603
0.5 5454 2160 3482 0.716 0.610 0.659 0.368

which have become one of the standards for evaluation of
object detection algorithms in the computer vision area. This
metric utilize the number of missed detections (false negatives)
and false positive counts. We compute the number of false
negatives (FN), false positives (FP) and true positives (TP)
based on an overlap ratio between the annotated box in
the ground truth and the detection region Ri found by our
algorithm. For a given overlap threshold τov , a detection D is
a true positive if [25]:

|Di ∩Gi|
|Di ∪Gi|

≥ τov, (12)

where Di and Gi is the i-th mapped pair of detection and
ground truth. The choice for the value τov may vary with
the detection context. For larger objects in a image, that cover
several thousands of pixels, values as 0.5 or 0.7 are suitable for
the threshold. However, for small objects as in the present case,
where players have an average size of 20x15 pixels, even small
deviations in size or position of the bounding box annotated
can induce a significant lower overlap [25]. These deviations
can be caused, in our context, mostly by merged detections
of two or more players or partial detections of players. In
order to demonstrate the impact of the overlap threshold on
the performance evaluation, we vary τov between 0.1 and 0.5.

As MODA is originally defined for single frames, we can
compute the Normalized MODA (N-MODA) for the entire
sequence as [24]:

N -MODA = 1−
∑Nframes

t=1 (cm(mt) + cf (fpt))∑Nframes
t=1 N

(t)
G

, (13)

where mt is the number of misses (false negatives), fpt is the
number of false positives and N

(t)
G is the number of ground

truth objects (TP + FN), all three for a given frame t. The
weights cm and cf are the cost functions for the missed
detections and for the false positives, respectively. Similarly
to [24], in our evaluation cm and cf are both equal to one.

Table II shows our players detection results. For clarification
purposes, we also compute the F-score for our experiments,
given by the harmonic mean of precision (Prec.) and recall
(Rec.) values. Fig. 4 shows the impact of the variation in
the overlap ratio threshold over the N-MODA and F-score
values. As aforementioned, in our context smaller overlap ratio
thresholds are more appropriated and lead to significant values.
As we deal with small objects in the scene, the global mean
error for the detection in our sequence is below 0.20m, despite
the τov used. This is a promising value, considering the court
dimensions (38x19m).

Regarding the false positives count, most part are caused by
the detection of the ball or detection of light shadows that were
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Fig. 4. Evaluation results using N-MODA and F-Score metrics and the
impact of the overlap ratio threshold over the performance.

TABLE III
PLAYERS TRACKING RESULTS FOR THE TESTED SEQUENCE

TP FP FN ID Prec. Rec. F-Score MOTA
2601 285 480 30 0.901 0.844 0.871 0.752

not filtered in the process. On the other hand, a significant part
of the false negatives are caused by a high similarity between
the background and the appearance of the player or caused
by the clutter of the background. Nevertheless, the results
obtained are very encouraging and demonstrate the potential
of our detection approach to efficiently localize players in the
images.

B. Experiments for players tracking

Similar to the previous section, we use the CLEAR metric
Multiple Object Tracking Accuracy (MOTA) [24] to evaluate
the tracking of the players in our sequence. To do so, again we
need to compute the number of false negatives, false positives,
true positives and also the number of identity switches, for a
given reference ground truth track. We consider that a track
is a true positive if the distance between the estimate position
given by the tracker and the centroid of the ground truth box
is lower than 1 meter. This way, MOTA is defined as [24]:

MOTA = 1−
∑Nframes

t=1 (cm(mt) + cf (fpt) + cs(ID))∑Nframes
t=1 N

(t)
G

,

(14)
where cm, mt, cf , fpt and N

(t)
G are defined in the same

way as in Eq. 13, and cm = cf = 1. The value ID is the
number of identity switches in the sequence and cs is the
weight function for the identity switches, equal to log10 as
proposed by the authors in [24]. For the tracking experiments,
we consider approximately 40% of our dataset, since it is
very time consuming to check such a large quantity of data.
This results in a 3 minute sequence, with players positions
annotated once every 15 frames.

We present the tracking results in Table III. As it can be
seen, the results again show that the particle filter approach is

capable of tracking players efficiently and link their positions
over time. However, there are some situations when the filter
leads to wrong estimates. Most of them are caused by players
that are not correctly detected or players that are very close to
each other, being detected as a unique blob that still meets the
size constraints, for a significant period of time. In such cases,
the filter might switch their identities, wrongly estimate their
positions or even be removed, as it does not have an associate
detection in this time. The detection of the ball may also steal
the tracker of a player.

During the experiments, we obtained several successful
tracking for most part of players, as can be seen in Fig. 5, with
global mean error once more below 0.20m for the sequence.
The mean duration of the tracking, before a tracker is lost
or has its identity switched, averaged for all players, is 790
frames. The lifespan of a tracker is 5724 frames in the
best case and 5 frames in the worst one. Besides that, our
methodology uses a lower number of particles (N = 250) than
other works (e.g. 5000 in [11] and 500 in [2]), which results
in faster process rates. This approach needs 16 milliseconds
on average to process a frame, being able to be potentially
used in a wide range of futsal match analyses. Comparatively
to other works, as in [11], [15], our methodology is capable
of dealing with a challenger sequence, with less visual cues
to explore, without needing an expensive training phase [11]
and without manual model initialization [15].

V. CONCLUDING REMARKS

In this paper, we use a single stationary camera approach
to track futsal players using particle filters. Our experimental
results suggest that our methodology can be successfully ap-
plied for performing accurate detection and tracking of players
in real game sequences. Our approach is also able to estimate
player trajectories over time, which can be further used to
support different kinds of physical and tactical analyses. This
methodology can also be used in other scenarios and track
players in different indoor sports as hockey [11], handball or
basketball [4]. The experimental results demonstrate that the
proposed approach can operate with hight accuracy levels and
processing frame rates, with global mean errors below 0.20m.

In future work, we will focus on improving our observation
model to prevent confusion situations, with the use of appear-
ance data of players in the assignment step and particle weight
calculation, so minimizing identity switches. We also plan to
extend the detection algorithm, making use of templates or
trained classifiers to better detect players that are close to each
other or that are very similar to the background.
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