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Abstract—We propose a memory-efficient method that com-
putes persistent homology for 3D gray-scale images. The basic
idea is to compute the persistence of the induced Morse-Smale
complex. Since in practice this complex is much smaller than
the input data, significantly less memory is required for the
subsequent computations. We propose a novel algorithm that
efficiently extracts the Morse-Smale complex based on algorithms
from discrete Morse theory. The proposed algorithm is thereby
optimal with a computational complexity of O(n2). The per-
sistence is then computed using the Morse-Smale complex by
applying an existing algorithm with a good practical running
time. We demonstrate that our method allows for the computation
of persistent homology for large data on commodity hardware.

Keywords-persistent homology, Morse-Smale complex, discrete
Morse theory, large data

I. INTRODUCTION

It is clear that with the rapid increase of the amount of data
produced, availability of efficient tools to analyze these data
is of great importance. Computational topology [1], due to
its ability to extract essential features of the analyzed data, is
becoming a widely-used method. In particular, persistent ho-
mology introduced by Edelsbrunner et al. [2] has drawn much
attention, since it robustly extracts the topological structure of
the data.

While algorithms with good practical running times have
been proposed [3], exact computation of persistence for large
3D image data remains a challenging problem due to huge
memory requirements.

Forman’s discrete Morse theory [4], [5], which is the
theoretical foundation of our algorithm, allows us to reduce
data in a way which preserves the topological structure. This
representation of the data, called the Morse-Smale complex,
is much more compact but still contains all the necessary
topological information for persistent homology computation.

Inspired by the work of Robins et al. [6], we use discrete
Morse theory to compute persistent homology. Our main
contribution over their approach, is an efficient and optimal
algorithm to compute the Morse-Smale complex and exploit-
ing the regular structure of the cubical complex induced by
the image data.

To the best of our knowledge, our algorithm is the first
optimal algorithm for the computation of the Morse-Smale
complex. Its worst case computational complexity is O(cn) ⊂
O(n2), where n denotes the size of the input data and c the
number of its critical points.

We present results of an efficient implementation, which
show that our algorithm is suitable for real-world applications.
The method introduced in this paper, allows for memory-
efficient computation of persistent homology of large 3D
images. For example, we only need about 32GB of memory
for a data set of size 1120 × 1131 × 1552, in contrast to the
500GB that would be necessary using standard algorithms.

The remaining part of this paper is organized as follows.
The related research is described in Section II. In Section III
the theoretical background of persistence and discrete Morse
theory is introduced. In Sections IV and V we present our
method and show computational results. Finally, we summa-
rize the paper with a brief discussion in Section VI.

II. RELATED WORK

Persistence: We will focus on previous work on com-
puting persistence. For general applications of persistence see
[1]; for application in the context of image data, see [7], [8].

The standard, algebraic algorithm [1] for persistence has
cubic running time in the size of the input (i.e. image). While
an example was constructed by Morozov [9], showing that
this pessimistic execution can actually occur, the behavior
of this algorithm is only slightly super-linear in practical
situations [3].

When focusing on 0-dimensional homology, union-find
data structures can be used to compute persistence in time
O(nα(n)) [1], where α is the inverse of the Ackermann
functions and n is the input size.

Milosavljevic et al. [10] computed persistent homology in
matrix multiplication time O(nω) where the currently best
estimation of ω is 2.376. Chen and Kerber [11] proposed a
randomized algorithm to compute only pairs with persistence
above a chosen threshold. Despite showing better theoretical
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complexity, it is unclear whether these methods are better than
the standard persistence algorithm in practice.

A recent variation of the standard algebraic algorithm [1],
called killing, introduced by Chen and Kerber [3] significantly
reduces the amount of computations. This idea was also used
in [12], to compute persistence for n−dimensional images.

In general, purely algebraic methods suffer from high mem-
ory requirements. In our approach, we alleviate this effect, by
reducing the size of data.

Discrete Morse Theory: Morse Theory [13] is a math-
ematical theory which relates the topology of the domain of
a function with critical points of this function. For example,
every continuous function defined on a sphere has at least
one critical point. The set of critical points extracted should
therefore satisfy the constraints described by Morse theory.
Note that due to the global nature of topological consistency
it is difficult to enforce these constraints in local numerical
algorithms. Fortunately, Forman [4], [5] developed a discrete
version of Morse theory, which allows for algorithms that
provably result in a consistent set of critical points.

The first such algorithm was proposed by Lewiner et
al. [14], [15] who also conjectured that persistence could be
efficiently computed using discrete Morse theory. Recently,
several other such algorithms were suggested [16], [17], [18].
Gyulassi et al. [19] introduced a fast streaming approach to
extract the essential critical points of large data. Its complex is
herein iteratively simplified to differentiate between spurious
and important critical points. However, this approach is not
suited for exact persistence computation since not all points
in his complex can be paired.

For our method, we build on the method by Robins et al. [6],
the first algorithm which is provably correct in 3D, in a sense
that the computed critical points correspond one-to-one to the
topological changes in the sub-level sets of the image data.

III. THEORETICAL BACKGROUND

Complexes: The input of the persistent homology com-
putation is a 3D gray-scale image: an array Ω = m × n × `
and a function f : Ω → R. To capture the topological
information, we need to represent this as a complex, which is
a decomposition of a space into cells of different dimensions.
See Figure 1a) for an example. During the first part of
computations we use cubical complexes [20], whose cells
consist of vertices, edges, squares and full cubes. The Morse-
Smale complex we extract later belongs to the class of CW-
complexes, which is more general and its p-cells are only
required to be homeomorphic to spheres of dimension p [21].

Boundary maps and matrices: Cells of different dimen-
sions are connected by boundary relations. For example, the
boundary of an edge E = (a, b) are the vertices a and b. If a
(p− 1)-cell α is in the boundary of a p-cell β, we say α is a
proper face of β. Note that if a complex contains a cell c, it
must also contain all the faces of c.

For any p-dimensional cell c, its boundary, denoted by ∂pc,
is the set of its (p− 1)-dimensional faces. We now define this
relation algebraically. Let p-chain be a formal sum of p-cells

with Z2 coefficients (other groups of coefficients can be used,
but this one is the most suitable for our task). This enables us
to extend the boundary operator linearly to p-chains. For any
p-chain c =

∑
aici, we have ∂pc =

∑
ai∂pci. The p-chains,

together with (modulo 2) addition form a group of p-chains,
denoted by Cp.

If we specify a unique index for each cell, a p-chain
corresponds to a vector in Znp

2 , where np is the number of p-
dimensional cells in the complex. The p-dimensional boundary
operator ∂p can be written as a np×np−1 binary matrix (also
denoted ∂p) whose columns are the boundaries of the p-cells.

The above is summarized by the chain complex, which can
be viewed as an algebraic representation of a complex C [4]

C : C3
∂3−→ C2

∂2−→ C1
∂1−→ C0. (1)

Filtration: For a given complex K, a filtration is a nested
sequence of complexes: ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K.
In our case, it is induced by the input data f : Ω → R
as follows. First, the values given by f on the 0-cells of
K, are extended to all cells of K by a so-called lower-star
filtration: each cell is assigned the maximum function value of
the vertices it contains. The filtration of K with respect to f
is then defined by the sub-level complexes Kt = f−1(−∞, t].
Imagine that we start with an empty complex and at each step
of the filtration one or more cells are added.

Persistence: First, we will give a basic intuition behind
homology and persistent homology. For this paper, we can
say that homology detects topological features: connected
components, tunnels, and voids for a fixed thresholding (sub-
level set) of a gray-scale image. Persistent homology, in
turn, describes the evolution of topological features looking
at consecutive thresholds.

More precisely, given a complex K and a filtering function
f : K → R, persistent homology studies homological changes
of the sub-level complexes, Kt = f−1(−∞, t]. The algorithm
captures the birth and death times of homology classes of the
sub-level complexes, as the threshold t grows from −∞ to
+∞. By birth, we mean that a homology feature comes into
being; by death, we mean it either becomes trivial or becomes
identical to some other class born earlier. The persistence,
or lifetime of a class, is the difference between the death
and birth times. Homology classes with larger persistence
reveal information about the global structure of the space K,
described by the function f .

The overall output of the computations is the list of per-
sistence pairs of the form (birth, death). This information
can be visualized in different ways. One well-accepted idea
is the persistence diagram [22], which is a set of points in
a two-dimensional plane, each corresponding to a persistent
homology class. The coordinates of such a point are the birth
and death time of the related class.

An important justification of the usage of persistence is the
stability theorem. Cohen-Steiner et al. [22] proved that for
any two filtering functions f and g, the difference of their
persistence is always upperbounded by the L∞ norm of their
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Fig. 1. Illustration of a cubical complex and its derived cell graph. Image a) shows the cells of a small uniform grid in an exploding view. A single voxel
is represented by eight 0-cells, twelve 1-cells, six 2-cells, and one 3-dimensional cell. These cells and their boundary relation define the cubical complex C.
Image b) shows the derived cell graph GC . The nodes representing the 0-, 1-, 2-, and 3-cells are shown as blue, green, yellow and red spheres respectively.
The adjacency of the nodes is given by the boundary relation of the cells. Image c) shows the cubical complex and the cell graph illustrating the neighborhood
relation of the cells.

difference:

‖f − g‖∞ := max
x∈K
|f(x)− g(x)|. (2)

This enables robust estimation of how persistence is affected
by perturbation of the input (e.g. adding noise). Also, this
guarantees that persistence can be used as a signature. When-
ever two persistence outputs are different, we know that the
functions are definitely different.

Discrete Morse Theory: In the following we assume that
a three dimensional cubical complex C is given. We use
the lower-star filtration defined above, to extend the input
function to all cells. The cell graph GC = (N,E) encodes
the combinatorial information contained in C. The nodes N of
the graph consist of the cells of the complex C and each node
up is labeled with the dimension p of the cell it represents.
The edges E of the graph encode the neighborhood relation
of the cells in C. If the cell up is in the boundary of the cell
wp+1, then ep = {up, wp+1} ∈ E. We label each edge with
the dimension of its higher dimensional node. An illustration
of a cell graph is shown in Figure 1b). Note that the node
indices, their adjacency and their geometric embedding in R3

are given implicitly by the regular grid structure of Ω.
A subset of pairwise non-adjacent edges is called a matching

M ⊂ E. Using these definitions, a combinatorial gradient
field V on a regular cell complex C can be defined as a
certain acyclic matching of the cell graph GC [23]. The set of
combinatorial gradient vector fields on C is given by the set
of these matchings, i.e., the set of Morse matchings Mφ of
the cell graph GC . An illustration of a 2D Morse matching is
shown in Figure 2b).

We now define the extremal structures of a combinatorial
gradient vector field V in GC . The unmatched nodes are called
critical nodes. If up is a critical node, we say that it has index
p. A critical node of index p is called minimum (p = 0),
1-saddle (p = 1), 2-saddle (p = 2), or maximum (p = 3). A
combinatorial p-streamline is a path in the graph whose edges

are of dimension p and alternate between V ⊂ E and its
complement, E \V . In a Morse matching, there are no closed
p-streamlines. This defines the acyclic constraint for Morse
matchings. A p-streamline connecting two critical nodes is
called a p-separatrix. A p-separation surface is given by all
combinatorial 2-streamlines that emanate from a critical point
of index p. An illustration of extremal structures is shown in
Figure 2.

Using the above definitions, we can now define the chain
complex associated to the Morse-Smale complex CV with
coefficients in Z2

CV : C3
∂3−→ C2

∂2−→ C1
∂1−→ C0. (3)

The Morse-Smale complex CV is induced by a combinatorial
gradient field V ⊂ E in a cell graph GC = (N,E). The
chain groups C` are generated by the critical nodes of V
with index `. The boundary maps ∂` are defined by the

a) b)

c) d)

Fig. 2. Basic definitions of discrete Morse theory: a) the cell graph GC , the
node labels indicate the dimension of the represented cells; b) a combinatorial
gradient field V defined on GC , the edges contained in V are depicted
by solid lines, the unmatched nodes – the critical nodes – are shown as
black spheres; c) a combinatorial streamline alternating between V and its
complement; d) two 1-separatrices of V (blue and green) emanating at a
1-saddle (yellow) and ending in a minimum (blue).



combinatorial streamlines of V : if u` ∈ C` is connected to
w`−1 ∈ C`−1 by an odd number of combinatorial streamlines,
then w`−1 is in the boundary of u`. This is a version of a
general formula by Forman [4], simplified for Z2 coefficients.

Forman proves, that the homology of C is always isomor-
phic to the homology of CV [4]. If the critical nodes contained
in V correspond one-to-one to the topological changes in the
sub-level complexes the persistent homology of C therefore
coincides with the persistent homology of CV [6].

Since, in practice, CV is a lot smaller than C, we can use
discrete Morse theory to devise a memory-efficient algorithm
for persistent homology.

IV. METHOD

In this section we describe our overall algorithmic pipeline
to compute persistent homology in a memory-efficient manner.
The input of the pipeline consists of a 3D gray-scale image.
It is represented by a 3D array Ω = m×n× ` and a function
f : Ω → R. To compute persistent homology, we initially
represent Ω by the cubical complex C.

The pipeline consists of three steps. In Section IV-A we
describe the construction of the discrete gradient field V
associated to C and f . In Section IV-B, we propose a novel
algorithm to extract the Morse-Smale complex CV defined by
V . For completeness, we also describe the computation of the
persistent homology of CV in Section IV-C. We conclude this
section with a brief analysis of the computational complexity,
memory consumption, and some implementational details in
Section IV-D and IV-E.

A. Discrete Gradient Field

To compute the discrete gradient vector field V , we use
the algorithm ProcessLowerStar [6]. The basic idea of this
algorithm is to apply simple homotopic expansions in the
lower star of each 0-node. The algorithm results in a com-
binatorial gradient field V whose critical nodes coincide with
the changes of the topology of the sub-level complexes of C.
For more algorithmic details and the proof of this property,
we refer the interested reader to [6].

B. Morse-Smale Complex Extraction

We now describe how we compute the chain complex
associated to the Morse-Smale complex (3), induced by the
combinatorial gradient field V ⊂ E.

While the chain groups C` can be easily extracted from N
by collecting the nodes not covered by V , efficient computa-
tion of ∂` is challenging.

Algorithm 1 shows a simple approach introduced in [6] to
compute ∂` with a worst case complexity of O(n3), where n
denotes the number of vertices of C. Its input consists of the
cell graph GC = (N,E), a discrete gradient field V ⊂ E, a
flag j, and the index ` of the resulting boundary map ∂`. If
j = 0, the algorithm computes ∂` by finding the boundaries of
the elements contained in C`. If j = 1, the algorithm computes
∂` by finding the co-boundaries of the elements contained in

Algorithm 1 ComputeBoundary A(GC , V, j, `)

Input: GC = (N,E), V ⊂ E, j ∈ {0, 1}, ` ∈ {1, 2, 3}
Output: Binary matrix ∂`

1: E` ← {ep ∈ E : p = `}
2: for all cp ∈ C`−j do
3: Q.push({cp, false})
4: while Q 6= ∅ do
5: {up, f lag} ← Q.pop()
6: W ← AlternatingEdges(GC , V, u

p, f lag)
7: W ←W ∩ E`

8: for all {up, wk} ∈W do
9: Q.push({wk,¬flag})

10: if wk ∈ CV then
11: if k < p then
12: ∂`(c

p, wk)← ∂`(c
p, wk) + 1

13: else
14: ∂`(w

k, cp)← ∂`(w
k, cp) + 1

C`−1. Note that both cases result in the same ∂`, the choice
of j only affects the running time, see Section IV-E.

The main idea of Algorithm 1 is to start a breadth-first
search in each critical node, which possibly results in multiple
traversals of each node. The breadth-first search is constrained
by the definition of a combinatorial streamline – the edges of
a traced path must always alternate with respect to V . This is
encoded in Algorithm 2 which is called in Line 6. Note that
the additions in Line 12 and 14 are modulo 2.

Algorithm 2 AlternatingEdges(GC , V, up, f lag)

Input: GC = (N,E), V ⊂ E, up ∈ N, flag ∈ {false, true}
Output: W ⊂ E

1: if flag = true then
2: W ← {{up, wk} ∈ E : {up, wk} ∈ V }
3: else
4: W ← {{up, wk} ∈ E : {up, wk} ∈ E \ V }

We now present our novel method to compute ∂` with a
worst case complexity of O(n2). The main idea of the algo-
rithm is the following. We first collect all critical (unmatched)
nodes in V . For each of these nodes we then integrate the
corresponding manifolds to collect the critical nodes in the
respective (co-)boundaries. The challenging task is now to
check whether these nodes are connected by an odd number
of separatrices. If this is the case, these nodes are connected
in the sense of Z2 and are inserted in the boundary matrix. To

Algorithm 3 ComputeBoundary B(GC , V, j, `)

Input: GC = (N,E), V ⊂ E, j ∈ {0, 1}, ` ∈ {1, 2, 3}
Output: Binary matrix ∂`

1: for all cp ∈ C`−j do
2: S ← GetManifold(GC , V, c

p, `)
3: I ← GetIntersection(GC , V, S, `, j)
4: Cc ← CountPaths(GC , V, I, c

p)
5: for all wk ∈ Cc do
6: if k < p then
7: ∂`(c

p, wk)← ∂`(c
p, wk) + 1

8: else
9: ∂`(w

k, cp)← ∂`(w
k, cp) + 1



count the number of connections, we compute the multiplicity
of paths from one critical node to an other critical node but
restricted to the intersection of the corresponding manifolds.
This main idea is given in Algorithm 3.

For notational simplicity, we only describe the algorithm
in detail for j = 0 – we consider the boundary of c` ∈ C`.

We first compute the edges S ⊂ E that are covered by the
combinatorial `-streamlines emanating from c` (Line 2) using
Algorithms 4 and 7.

Algorithm 4 GetManifold(GC , V, c
p, `)

Input: GC = (N,E), V ⊂ E, cp ∈ N, ` ∈ {1, 2, 3}
Output: S ⊂ E

1: E` ← {ek ∈ E : k = `}
2: S ← AlternatingRestrictedBFS(GC , V, E`, c

p)

We then collect all critical nodes CS ⊂ C`−1 that are
covered by S. These nodes are the possible boundary nodes
of c`. To compute the boundary of c` we need to count
the number of combinatorial streamlines connecting c` with
c`−1 ∈ CS .

To do this efficiently, we first compute the set of edges
I ⊂ S of all combinatorial streamlines connecting c` with CS
(Line 3) using Algorithm 5 and 7.

Algorithm 5 GetIntersection(GC , V, S, `, j)

Input: GC = (N,E), V ⊂ E,S ⊂ E, ` ∈ {1, 2, 3}, j ∈ {0, 1}
Output: I ⊂ E

1: CS ← {u`−1+j ∈ N : ∃{u`−1+j , wk} ∈ S} ∩ C`−1+j

2: I ← ∅
3: for all cp ∈ CS do
4: S ← S \ I
5: I ← I ∪AlternatingRestrictedBFS(GC , V, S, c

p)

For each node c`−1 ∈ CS we then need to count the number
of paths in I that connect c`−1 to c`. This is done in Line
4 using a simple graph algorithm shown in Algorithm 6.
Since we are only interested in the Morse-Smale complex
with coefficients in Z2, it suffices to count the number of
paths modulo 2. This is obtained by taking the symmetric
difference 4 in Line 12.

C. Persistence

To compute persistence we use the standard algebraic algo-
rithm [1] with a modification by Chen and Kerber [3]. This
algorithm operates on a boundary matrix, ∂`, of the cubical
complex C, representing the input data. A reduced matrix is
computed, from which the list of persistent pairs, as defined in
Section III, can be easily read. The performance modification
introduced by Chen and Kerber exploits the fact that cells
being the creators of homology classes are zeroed in the
reduced matrix. We refer the reader to [3] for more details.

In contrast to previous work [3], [12], we apply the matrix
reduction algorithm to the Morse-Smale complex CV instead
of the initial cubical complex C. Since CV is much smaller

Algorithm 6 CountPaths(GC , V, I, cp)
Input: GC = (N,E), V ⊂ E, I ⊂ E, cp ∈ N
Output: Cc ⊂ N

1: CV ← {up ∈ N : @{up, wk} ∈ V }
2: P ← ∅
3: L← {cp}
4: Q.push({cp, false})
5: while Q 6= ∅ do
6: {up, f lag} ← Q.pop()
7: P ← P ∪ up

8: W ← AlternatingEdges(GC , V, u
p, f lag)

9: W ←W ∩ I
10: for all {up, wk} ∈W do
11: if up ∈ L then
12: L← L4 wk

13: Z ← AlternatingEdges(GC , V, w
k, f lag)

14: Z ← Z ∩ I
15: NZ ← {zq ∈ N : ∃{zq, wk} ∈ Z}
16: if NZ ⊂ P then
17: Q.push({wk,¬flag})
18: Cc ← L ∩ CV \ cp

Algorithm 7 AlternatingRestrictedBFS(GC , V,R, c
p)

Input: GC = (N,E), V ⊂ E,R ⊂ E, cp ∈ N
Output: T ⊂ R ⊂ E

1: T ← ∅
2: Q.push({cp, false})
3: while Q 6= ∅ do
4: {up, f lag} ← Q.pop()
5: W ← AlternatingEdges(GC , V, u

p, f lag)
6: W ← (W ∩R) \ T
7: for all {up, wk} ∈W do
8: T ← T ∪ {up, wk}
9: Q.push({wk,¬flag})

than C in typical situations, storing the boundary matrices
consumes significantly less memory (see Table I).

D. Computational complexity

We now give a brief analysis of the computational complex-
ity of our method. We denote the number of vertices of C by
n and the number of critical nodes in a combinatorial gradient
field by c. Note that the pseudo code shown in the algorithms
in this section has been optimized for compactness and clarity
instead of a best computational complexity. In the following
analysis, we consider an optimal implementation of these
algorithms. The realization of such an implementation from
the pseudo code only poses some minor technical difficulties.

The complexity for the construction of the combinatorial
gradient field using the algorithm proposed in [6] is O(n) –
for each node of index 0 we only work on its lower star which
has a constant size in the case of cubical complexes.

Analyzing the complexity of the Morse-Smale complex
extraction described in Algorithm 3 is more intricate. The loop
in Line 1 is executed O(c) often. The complexity of its body
is given by the sum of the complexities of the invoked sub-
functions.

We start with Algorithm 7. Due to Line 6, the union in Line
8 is disjoint, which implies that the complexity of Algorithm 7



TABLE I
RUNNING TIMES AND MEMORY CONSUMPTION FOR 3D IMAGES OF DIFFERENT SIZE AND TOPOLOGICAL COMPLEXITY. THE FOURTH COLUMN SHOWS

THE TOTAL MEMORY CONSUMPTION OF OUR METHOD AND THE MEMORY REQUIREMENT OF A STANDARD PERSISTENCE METHOD AS WELL AS THE PEAK
MEMORY CONSUMPTION OF [12]. THE RUNNING TIMES FOR THE CONSTRUCTION OF THE COMBINATORIAL GRADIENT FIELDS (USING 48 CORES), THE

BOUNDARY MATRIX, AND THE PERSISTENCE COMPUTATION IS SHOWN IN THE FIFTH COLUMN. THE TOTAL RUNNING TIME OF OUR METHOD IS
COMPARED TO ANOTHER PERSISTENCE ALGORITHM [12] IN THE LAST COLUMN.

Data Size # critical nodes Total memory (MB) Individual times (sec) Total time (min)
standard this paper [12] IV.A IV.B IV.C this paper [12]

Silicium 98× 34× 34 1’237 29 2 30 2 1 1 0.03 0.09
Fuel 64× 64× 64 773 66 4 82 4 1 1 0.06 0.02
Neghip 64× 64× 64 6’671 66 5 82 4 12 1 0.25 0.03
Hydrogen 128× 128× 128 30’409 528 35 538 26 43 1 1.15 0.62
Engine 265× 256× 128 1’350’001 2112 194 2127 112 963 3 17.95 1.37
Christmas Present 246× 246× 221 6’544’279 3367 496 3112 184 823 402 23.46 266.78
Aneurysm 256× 256× 256 90’045 4224 289 4250 142 6962 1 118.41 3.52
Bonsai 256× 256× 256 413’561 4224 317 4250 145 13214 2 222.68 2.91
Foot 256× 256× 256 2’044’799 4224 434 4250 142 18199 6 305.79 2.85
Supine 512× 512× 426 34’151’733 28116 3534 26133 1030 2274 119 57.07 24.94
Prone 512× 512× 463 35’942’153 30558 3422 28406 1616 2433 107 69.29 36.34
Christmas Tree 512× 499× 512 63’596’463 32934 4709 * 1266 2950 445 77.70 *
Molecule 1120× 1131× 1552 2’082’895 494967 31950 * 16639 2157 7 313.38 *

is O(|T |). Since Algorithm 4 only calls Algorithm 7, its
complexity is O(|S|). The complexity of Algorithm 5 is
O(|I|), since due to Line 4, the union in Line 5 is disjoint.
Finally, we need to consider the complexity of Algorithm 6.
The complexity of the body of the while loop in Line 5 is
constant. It therefore suffices to count the number of times that
Line 17 is executed. The node wk is only inserted into Q if all
neighboring nodes zq ∈ NZ have already been processed (Line
7 and 16). Since wk can only be inserted by a neighboring
node zq , it can therefore only be inserted once. The complexity
of Algorithm 6 is hence O(|I|), since only nodes contained in
I can enter the queue at all.

Note that there holds O(|I|) ⊆ O(|S|) ⊆ O(n). The overall
complexity of Algorithm 3 is hence O(c|I|+ c|S|) ⊆ O(cn).
Since there is a lower bound on the computational complexity
for the Morse-Smale complex extraction problem in 3D of
O(n2) [6], our proposed algorithm is optimal.

The choice of j does not affect the overall computational
complexity – it only affects the practical running time of the
algorithm which is discussed in Section IV-E.

The computational complexity for the matrix reduction
algorithm, which we used to compute the persistent homology,
is O(c2 n log n) in the case of cubical complexes. Since we
apply it to the Morse-Smale complex, the complexity is O(c3).

The complete complexity for our algorithm is therefore
O(cn+ c3).

E. Implementational details

1) Running time: To compute the combinatorial gradient
field, the cell graph is decomposed into lower stars of the
0-nodes. Since this is a disjoint decomposition, each lower
star can be processed in parallel. Algorithm 3 can also be
easily parallelized since the boundaries of the critical points
are independent of each other.

We now discuss the influence of j on the running time
of Algorithm 3. In 3D, the combinatorial 1-streamlines can
only merge, while the 3-streamlines can only split. As shown
in [6], the computation of the co-boundaries of all 0-nodes

(j = 1, ` = 1) has thereby only a complexity of O(n). The
same applies to the boundaries of the 3-nodes (j = 0, ` = 3).
In contrast, the computation of ∂2 has a worst case complexity
of O(n2), regardless of j. The choice of j thereby does not
affect the overall complexity of Algorithm 3. The practical
running time, however, depends on j. For most inputs, the
best choice is (j = 0, ` = 1), (j = 0, ` = 2), (j = 1, ` = 3),
since the computation of the (co-) boundaries of the 2- and
1-nodes only amounts to a line integration, as in this setting,
|W | ≤ 1 in Algorithm 7, Line 5.

2) Memory requirements: We only need to compute the
boundary matrices ∂` of the Morse-Smale complex CV , which
does not require much memory. On the other hand, explicit
representation of the initial cubical complex C would require
enormous amounts of memory. We therefore represent C only
implicitly, using the regular structure induced by the grid [12],
[18]. The adjacency information represented in the cell graph
GC = (N,E) is always computed on-the-fly using index
calculations. Since we enumerate the nodes N and the edges
E without gaps, we can represent the combinatorial gradient
field V simply by an array of bits of length |E|. The sets
used in the algorithms depicted in this section can also be
represented using such boolean arrays. This allows for efficient
set operations. If the data values on the 0-cells of the complex
are defined by 32-bit single precision floats, then the total
memory overhead factor of our method is about 5 in our
current implementation. If running time is less important, one
can also implement the sets using a more memory-efficient
representation.

V. RESULTS

In the following, we present some examples to illustrate our
method. All experiments were performed on a machine with
four AMD Opteron 6174 CPUs.

Table I shows the running time and memory consumption
for different 3D data sets provided by [24], [25], [26]. We
measured the total memory usage of our method as well
as the construction time of the combinatorial gradient field,
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Fig. 3. Comparison of Algorithm 1 and Algorithm 3. The circle and cross
markers show the running times over the size of a synthetic data set for
Algorithm 1 and Algorithm 3, respectively. The solid line depicts a least-
square fitting of a linear function for the cross markers. The dashed line
depicts a least-square fitting of a quadratic function for the circle markers.

the Morse-Smale complex extraction using Algorithm 3, and
the persistence running times. We also included the memory
consumption using a standard persistence method working on
the boundary matrices of the initial cubical complex, which
can be computed exactly. Assuming a sparse representation of
the boundary matrix ∂` : N ` × N `−1 → {0, 1}, the amount
of its memory is given by

3∑
`=1

8 |∂`|+ 16 |N `|

where |∂`| denotes the number of matrix entries and |N `|
the number of nodes of type `. The measured peak memory
consumption of [12] is also given as reference. In the last
column we compared the total running time of our method
with the method proposed in [12]. Note that the combinatorial
gradient field was constructed in parallel using all 48 cores,
while all other steps were single threaded.

The total memory consumption of our method is about a
factor 8-17 less than using a standard persistence approach.
In practice, the Morse-Smale complex CV is much smaller
than the cubical complex C. This enables the persistence
computation of large data. The overall running time is for
most of the examples about a factor 2-11 greater than the
times presented in [12]. The most time, however, consumes
the construction of the boundary matrix, which could be
further reduced using a parallel implementation. Although the
pessimistic computational complexity is cubical, the running
time for the matrix reduction is surprisingly low, when applied
to the Morse-Smale complex (see for example the Christmas
Present). In general, the running times and the memory
consumptions depend on the number of critical nodes and
their connectivity, as can be seen for instance at the bonsai
or aneurysm example. Although both examples only contain

Fig. 4. Distance field of a molecule. An isosurface of a distance field,
computed from a molecule, as gray transparent surface is shown. The 277’478
maxima and the 982’578 2-saddles are shown as red and yellow spheres,
respectively. Each sphere is scaled by its persistence.

a small number of critical nodes, their connectivity is much
more intricate than in the prone or supine data set, for example.

Figure 3 shows the running times of the Morse-Smale
complex extraction step using the existing Algorithm 1 and
our novel Algorithm 3. The data set is given by sampling an
analytic function g on a uniform grid of increasing resolution
and adding a small amount of uniform noise in the range of
[−0.5, 0.5] to the samples. Algorithm 1 scales quadratically
with the number of vertices n in the complex. In contrast,
our method scales only linearly. The individual running times
of Algorithm 3 applied to the analytic function g sampled
on a uniform 963 grid are: (IV.A) 9.87 sec, (IV.B) 62.49 sec
and (IV.C) 0.77 sec. In contrast, Algorithm 1 needs (IV.B)
521.59 sec.

The reason for this behavior stems from the structure of
the data. The function g contains some large scale structures.
Adding noise to it results in many critical points and the
combinatorial 2-streamlines often merge and split. While this
property dramatically increases the practical running time
of Algorithm 1, our Algorithm 3 is not affected by this
perturbation of the data.

We applied our method to a distance field, computed from a
Chaperone protein. The objective is the extraction of the max-
ima and 2-saddles. While the maxima represent the points with
the greatest distance to the atoms, the 2-saddles correspond to
the narrow points of the field. These points define the minimal
size of an atom to enter the molecule from the outside. The



data set is of dimension 1120 × 1131 × 1552 and contains
2’082’895 critical points. A standard persistence computation
would require about 500GB memory. Our approach, in con-
trast, only requires about 32 GB, and can thereby be applied
on commodity hardware. The total running time as well as the
memory consumption of this example are shown in Table I.

VI. CONCLUSION AND FUTURE WORK

We presented a novel algorithm to extract the Morse-Smale
complexes from a given combinatorial gradient field induced
by a 3D gray scale image. This allows for a memory-efficient
persistent homology computation. As shown in Section IV
and V, our algorithm combines many useful properties:

1) Our novel algorithm for the Morse-Smale complex ex-
traction is optimal: O(cn) ⊂ O(n2).

2) The overall complexity for the persistence computation
is reduced to O(cn+ c3).

3) The computation of persistence using the Morse-Smale
complex requires significantly less memory.

There are some limitations of our approach:

1) Extending our techniques to more general inputs like
simplicial complexes is possible, but would result in
high memory-usage – we heavily exploit the compact
representation of the initial, cubical complex.

2) Our current method is limited to three dimensions.
3) For medium-sized data our current implementation can

be considerably slower than the algebraic approach.

Despite these drawbacks, we believe that our method en-
ables the application of persistent homology in new fields.
Our current implementation can already be used to analyze
very large, complex data-sets. While the running-time is
currently traded-off for memory-efficiency, our algorithm is
more suitable for a parallel implementation, than the faster
algebraic approach.

The efficient computation of homological persistence now
allows for practical user interfaces that enables an interaction
of the user with persistence. This could be helpful in the
understanding of specific applications. Potentially, an out-of-
core realization further increases the efficiency herein.

It would be also interesting to see how our proposed
algorithm scales for higher dimensional data. The challenging
part is thereby that the combinatorial gradient field may
contain extra superfluous critical points in contrast to the three
dimensional case [6].

A fundamental question, which is still an open problem
in the homological persistence literature, is the relation of
the topological complexity of a given input data and the
persistence computation times. Since matrix reduction is a
global operation, the structure of the underlying Morse-Smale
complex is crucial. This structure also depends on the imaging
process and the data format. For instance, the aneurysm
and bonsai data are given as 8-bit integer while the prone
and supine data are 16-bit integer CT scans. This may also
contribute to the different timings shown in Table I.
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