
Texture-based wireframe rendering

Waldemar Celes and Frederico Abraham
Tecgraf/PUC-Rio – Computer Science Department

Pontifical Catholic University of Rio de Janeiro, Brazil
Email: {celes, fabraham}@tecgraf.puc-rio.br

(a) σ = 0.5 (b) σ = 1.0 (c) σ = 2.0 (d) σ = 4.0

Figure 1. Texture-based wireframe rendering with different thickness values (σ) on a Mini Cooper model. On the right, the wireframe is drawn in isolation.

Abstract—This paper revisits the problem of wireframe
rendering, which, at first, appears to be an easily solved
problem. However, the conventional solution is inefficient and
does not result in high-quality images. Recently, graphics
hardware programming has been employed to achieve high-
quality solid line rendering. In this paper, we present a simpler
and faster technique for wireframe rendering based on texture
mapping. Our technique does not require (but can benefit
from) graphics hardware programming and thus can be easily
integrated to existing rendering engines, while resulting in
accurate, high-quality, antialiased, and still versatile, wireframe
drawing.

Keywords-wireframe rendering; antialiased lines; mipmap-
ping; geometry shader

I. INTRODUCTION

Wireframe rendering is important for several applications,
including CAD, solid modeling, non-photorealistic render-
ing, and technical illustration. Rendering the wireframe is
important for revealing structural information of the under-
lying mesh used to model the object. This is especially true
in scientific visualization of models submitted to numerical
simulations, where the quality of the mesh is of great
significance and thus has to be inspected. An application
can choose to render the wireframe in isolation or combined
with a shaded surface.

Wireframe rendering is conceptually an easy problem. The
goal is to visualize the wireframe of a mesh, i.e. to render
the edges of a mesh. In practice, this turns out to be a tricky
problem because the pixels resulting from the rasterization of
lines do not always match the border pixels resulted from the
rasterization of polygons. The conventional solution consists

of a two-pass rendering algorithm. The first pass renders the
polygons with a small depth offset, and the second renders
the lines. This solution is inefficient and does not result in
high-quality images.

For years, this conventional algorithm was assumed as
a standard for real-time applications. Previous proposals for
line drawing based on textures do not preserve line thickness
[1], [2]. A few alternatives based on the stencil buffer or the
A-buffer were proposed but lack efficiency [3], [4]. Recently,
Bærentzen et al. [5], [6] proposed a new efficient algorithm
based on graphics hardware programming.

Figure 2. High-quality wireframe rendering on a plane model with different
thickness values.

In this paper, we revisit the problem of wireframe ren-
dering and propose a new single-pass algorithm based on
texture mapping. Our technique is simpler and faster than
previous ones, while resulting in accurate, high-quality,

antialiased images. We have used it in different industrial
applications. It does not require (but can benefit from)
graphics hardware programming and is still versatile enough
to handle arbitrary line thickness values and attenuation
(depth cueing). Figure 1 shows some images achieved with
our technique for different thickness values. In Figure 2 the
rendered image is enlarged to illustrate the achieved anti-
aliased lines. Our technique also handles the rendering of
lines decoupled from the mesh, which has some important
applications, such as the rendering of grids over curved
surfaces or isolines of scalar fields in scientific applications.

The rest of this paper is organized as follows. Section II
reviews the problem of wireframe rendering and describes
previous proposals. Section III presents our texture-based
proposal in detail, and a performance comparison is shown
in Section IV. Section V discusses the use of our technique
for drawing lines decoupled from the mesh geometry. Fi-
nally, concluding remarks are drawn in Section VI.

II. RELATED WORK

Rendering high-quality wireframe on top of shaded sur-
face is more involving than it appears at first. The main
problem is due to having different algorithms for line and
polygon rasterization. Bærentzen et al. [7] illustrated this
problem using the image in Figure 3. The highlighted pixel
belongs to the edge AB and also to the polygon border.
However, the depth values at the center of this pixel resulted
from the two (line and polygon) rasterization algorithms
differ: the depth value of the line fragment is computed
interpolating only vertices A and B, while the depth value
computation of the corresponding polygon fragment also
considers vertex C. Due to this difference, one cannot ensure
which fragment will be rendered in front.

A

B

C

Figure 3. The depth value of a line fragment differs from the corresponding
depth value of a polygon fragment [7].

The conventional, two-rendering-pass algorithm alleviates
the depth value conflict by adding a small z-bias to the
polygon fragments. Although widely used in commercial
applications, this algorithm is inefficient because it requires
two rendering passes, doubling the geometry load; also, line
rasterization itself is not efficiently implemented in some
graphics cards. The algorithm is inaccurate because there

is no standard z-bias value that completely eliminates the
visibility conflict [8]. Moreover, in general, this algorithm
produces aliased lines.

In order to disambiguate the visibility conflict between
line and polygon fragments, Herrell et al. [3] proposed to
use the stencil buffer. Their algorithm produces accurate
images but requires rendering each triangle separately, thus
being inefficient for real-time applications. Wang et al. [4]
proposed to solve the visibility conflict using an A-buffer,
which is not supported on modern graphics cards.

More recently, Bærentzen et al. [5], [6] proposed a
single-pass wireframe rendering algorithm based on graphics
hardware programming. Their proposal does not use the
line primitive at all; instead, the edges are drawn as part
of the polygon rasterization. The general idea is to use a
fragment shader that evaluates the distance of each frag-
ment to the closest edge. If this distance is smaller than
a given threshold (the line thickness value), the fragment
is colored with the wireframe color. As a result, their
algorithm is able to render high-quality solid wireframes and
presents better performance than the conventional two-pass
approach. To compute the raster distance from each fragment
to the edges, a geometry shader may be employed: for
each vertex, the distance to the opposite edge (considering
triangle primitives) is computed and assigned as a texture
coordinate. The distance values are then interpolated by the
rasterizer for each fragment. Although conceptually simple,
this algorithm requires graphics hardware programming and
faces the challenge of computing distance values after the
projection transformation. When the vertex is close or be-
hind the viewer, its distance in viewport space cannot be
computed [9].

In this paper, we present a new algorithm for wireframe
rendering. Like Bærentzen et al. [5], [6], we render the edges
as part of the polygon rasterization but, instead of relying on
graphics hardware programming, we simply use textures. As
a result, our algorithm presents better performance, is easier
to be implemented, and still preserves image quality.

The use of textures for line rendering is not new. Haeberli
and Segal [1] suggested different ways for using textures
for anti-aliased line drawing but did not identify any way
for efficient wireframe rendering. Kuschfeldt and Holzner
[2] focused on finite element mesh rendering and proposed
the use of a two-dimensional texture for drawing the border
of quadrilateral elements (triangular elements were drawn
as collapsed quadrilaterals). Similar to ours, their proposal
draws the mesh in a single rendering pass but does not
preserve line thickness. Also, their proposal does not render
meshes in an efficient way. Later, Rose and Ertl [10]
presented a specialized system for applying level-of-detail
techniques over large finite element models. In order to draw
an approximation of the original mesh wireframe over a
simplified surface patch, they proposed to code distances to
the edges in a 2D texture, using dependent texture lookup to

render the lines. Their proposal is specifically designed for
rendering simplified quasi-structured quadrilateral meshes.

III. PROPOSED TEXTURE-BASED TECHNIQUE

Our algorithm renders the wireframe in a single-rendering
pass and basically consists in using texture mapping to
draw edges together with polygon rasterization. The texture
mapping is done using a 1D RGBA texture, the wireframe
texture, that represents half of the line (across the thickness
direction). Each polygon draws one side of the line, and
the complete line is rendered after two adjacent polygons
are rasterized. Figure 4a illustrates a texture used to render
wireframes with a thickness value equal to 3.0. The alpha
channel, which is illustrated in the figure, encodes opacity.
In this case, half of the line thickness (a value of 1.5) is
represented by setting the alpha value of the last texel to
1.0 and of its neighbor texel to 0.5. Mipmapping is used to
ensure that line thickness is preserved despite the size of the
primitive when mapped to the screen. At each level of the
mipmapping pyramid, the texels representing the wireframe
are preserved (Figure 4b). Note that we can use different
thickness values, as shown in Figure 1.

S

0.0 1.0

(a) Texture

level n

level n+1
level n+2

(b) Mipmapping

Figure 4. Opacity values of the wireframe texture.

In order to achieve the desired results, we need to set
appropriate texture coordinates when drawing the graphics
primitives. For a triangle, we use three texture units, binding
the same texture object to all of them. Each texture unit
is used for drawing one triangle edge. For a given unit,
we set the texture coordinate equal to 0.0 for one vertex
and equal to 1.0 for the other two vertices, as illustrated in
Figure 5a. For a quadrilateral, it suffices to use two texture
units, setting texture coordinates −1.0 and 1.0 to vertices
at opposite sides, and mapping the texture with mirrored-
repeat wrapping mode (Figure 5b). An alternative approach
would be to create an additional vertex in the middle of the
primitive and use only one texture unit, rendering a different
triangle for each edge of the original primitive, as illustrated
in Figure 5c. This is valid for any convex polygon. Naturally,

1st unit
1.0

1.0

0.0
s

2nd unit
1.0

0.0

1.0

s

3rd unit
0.0

1.0

1.0

s

(a) Triangle

1st unit

1.0

1.0

s

-1.0

-1.0 2st unit

1.0

-1.0

s

1.0

-1.0

(b) Quad

1st unit
1.0

1.0

1.0

s s

1st unit

1.0

1.0

1.0

1.0

(c) Alternative

Figure 5. Texture coordinates.

this strategy imposes an additional load on the geometry
stage of the graphics pipeline, but can be useful for applying
the method when the number of available texture units is
limited.

Wireframe can be rendered in isolation or combined with
shaded surfaces. When combined with a shaded surface, the
texel RGB values are used to encode the wireframe color,
and the texture function is set to decal. For representing the
wireframe in isolation, we set the texel color to white, using
modulate for the first texture unit and texture combiner for
adding the contribution of each subsequent unit. The wire-
frame then receives the color of the primitive (Figure 1d).

A. Avoiding saturation

One advantage of using texture mipmapping for wire-
frame rendering is that it naturally ensures line thickness,
while achieving high-quality antialiased images. We can also
set the mipmapping pyramid in order to avoid saturating
the image with the wireframe. This would happen whenever
the primitive in viewport space becomes smaller than the
line thickness: the whole primitive would be filled with the
wireframe color. We avoid this saturation by limiting the
thickness in relation to the texture dimension at each level of
the mipmapping pyramid. The images shown in this paper

consider a limiting factor of 1/3. This means that, at the
highest levels of the pyramid, the thickness value is not
honored, but reduced to 1/3 of the level dimension. Figure 6
compares the images obtained without and with this strategy
to avoid saturation.

B. Mesh rendering

For rendering individual primitives, it suffices to activate
the texture and set the texture coordinates explicitly. How-
ever, for efficient rendering of complex models, we need
to pack the vertex’s attributes into arrays and share vertices
among primitives to take full advantage of graphics card’s
cache. The assignment of texture coordinates as indicated
in Figure 5a and 5b perfectly matches the way vertices are
arranged in triangle and quad strips, respectively. However,
for mesh rendering, we need to duplicate vertices to ensure
that, for each primitive, the texture coordinates assigned to
the corresponding vertices follow the scheme illustrated in
Figure 5.

For a triangle mesh, we have devised a simple algorithm to
identify and duplicate the vertices that could not be shared
by all its incident triangles. The algorithm sets a label 1,
2, or 3 for each vertex of the mesh. Vertices labeled as 1
are assigned texture coordinates s0 = 0.0, s1 = 1.0, and
s2 = 1.0 for the first, second, and third texture units in
use, respectively. Vertices labeled as 2 are assigned texture
coordinates s0 = 1.0, s1 = 0.0, and s2 = 1.0; and vertices
labeled as 3 are assigned s0 = 1.0, s1 = 1.0, and s2 = 0.0.
In the final mesh, the three vertices incident to each triangle
have to be labeled with different numbers, ensuring that all
its three edges will be correctly rendered.

The algorithm starts by first setting labels 1, 2 and 3 for
the incident vertices of a first triangle. Then, it performs a
depth-first search visiting each neighboring triangle across
the edges. For each new visited triangle, it sets labels to

Figure 6. Importance of avoiding image saturation: on the top, without
limiting line thickness for the highest level of the mipmapping pyramid;
on the bottom, with the proposed limiting strategy.

the unlabeled vertices, choosing labels that do not conflict
with the already labeled triangle vertices. If there not exists
a non-conflicting label to be assigned to a vertex, the vertex
is duplicated and the triangle incidence is updated. For
each vertex, the algorithm keeps a list of the corresponding
duplicated vertices, so each duplicated vertex can be reused
in another, not yet visited, incident triangle.

The algorithm was applied considering different models,
as illustrated in Table I. As can be noted, for the tested
models, the number of duplicated vertices is at most 60%
of the original number of vertices in the mesh. These extra
vertices impose an additional load on the graphics pipeline,
increasing the amount of data transferred to the graphics
card and reducing the effective use of vertex caches. How-
ever, even with this extra load, our texture-based wireframe
rendering algorithm is faster than previous proposals.

Model #T #V #V’ Extra
Pitcher 25,442 12,763 19,348 52%
Plane 55,534 36,808 48,099 31%

Mini Cooper 84,944 48,252 69,893 45%
Neptune 411,678 205,835 317,363 54%

Magali’s hand 396,730 198,367 305,637 54%
Dragon 871,306 435,545 692,231 59%

Table I
NUMBER OF ADDITIONAL VERTICES FOR DIFFERENT MODELS.

Nevertheless, we can completely avoid vertex duplication
if we use graphics hardware programming. More specif-
ically, we can code a simple geometry shader that auto-
matically generates appropriate texture coordinates, without
processing any extra vertices. For each input triangle, the
geometry shader outputs the same triangle with its already
processed vertices, adding texture coordinates accordingly.
The complete GLSL geometry shader code is presented in
Figure 7. The gain in performance is significant.

Unfortunately, on current graphics cards, the use of a
geometry shader still requires the coding of a vertex shader.
This may impose difficulties to integrate the use of geom-
etry shader into existing applications. Needless to say, the
algorithm to duplicate the vertices is also useful where the
geometry shader is not supported.

C. Attenuation

Because the technique proposed by Bærentzen et al. [5],
[6] is based on fragment shader, several variations of the
method are possible. They have illustrated such a versatility
by using attenuation of line intensity and thickness. For line
intensity attenuation, the lines fade away according to their
distance to the viewer. Accordingly, the thickness attenuation
ensures that distant lines appear thinner.

Attenuation is also possible and easy to achieve with
our technique. For that purpose, we replace the 1D texture
by a 2D texture, and use the second (small) dimension to

void main(void)
{
 gl_Position = gl_PositionIn[0];
 gl_FrontColor = gl_FrontColorIn[0];
 gl_TexCoord[1] = vec4(1.0,0.0,0.0,1.0);
 gl_TexCoord[2] = vec4(1.0,0.0,0.0,1.0);
 gl_TexCoord[3] = vec4(0.0,0.0,0.0,1.0);
 EmitVertex();
 gl_Position = gl_PositionIn[1];
 gl_FrontColor = gl_FrontColorIn[1];
 gl_TexCoord[1] = vec4(0.0,0.0,0.0,1.0);
 gl_TexCoord[2] = vec4(1.0,0.0,0.0,1.0);
 gl_TexCoord[3] = vec4(1.0,0.0,0.0,1.0);
 EmitVertex();
 gl_Position = gl_PositionIn[2];
 gl_FrontColor = gl_FrontColorIn[2];
 gl_TexCoord[1] = vec4(1.0,0.0,0.0,1.0);
 gl_TexCoord[2] = vec4(0.0,0.0,0.0,1.0);
 gl_TexCoord[3] = vec4(1.0,0.0,0.0,1.0);
 EmitVertex();
 EndPrimitive();
}

Figure 7. GLSL geometry shader.

represent the attenuation effect. For intensity attenuation,
we vary the texels’ opacity along the t direction and, for
thickness attenuation, we vary the represented line thickness,
as illustrated in Figure 8.

The s texture coordinates are set as already described,
while the t coordinates are set by enabling automatic texture
coordinate generation in eye space. Figure 9 illustrates the
intensity attenuation effect on a black oil reservoir model.

D. Limitations

The proposed texture-based technique for wireframe ren-
dering presents the same limitation as Bærentzen et al.’s
proposal [5], [9]: it draws only half the silhouette edges.
This limitation is intrinsic to the strategy of drawing the
lines as part of polygon rasterization. As silhouette edges
have only one visible adjacent polygon, the edges appear
thinner and aliased.

s

t at
te
nu
at
io
n

(a) Intensity

s

t

(b) Thickness

Figure 8. 2D texture for line attenuation.

(a) Without attenuation

(b) With attenuation

Figure 9. Black oil reservoir model with wireframe rendering.

The proposed texture-based approach is only applicable
for preserving line thickness in screen space; Bærentzen
et al.’s proposal, on the other hand, also allows constant
thickness in world space.

Also, our approach limits the level of zoom-in without
increasing line thickness; one may eventually reach the
largest texture dimension in the mipmapping pyramid, thus
forcing texture magnification. However, in practice, this does
not tend to be an actual limitation. In our code, we have set
texture width to 4096, and we hardly have the case where a
single primitive is projected with this size on the screen.

IV. PERFORMANCE COMPARISON

For performance comparison, we have run a set of
computational experiments. We compared the performance

achieved by our algorithm with previous proposals for
rendering different triangle meshes. Table II summarizes the
obtained results. For reference, the meshes were drawn in
retained mode using vertex buffer objects, with back face
culling disabled and light model set to two-sided lighting, at
a resolution of 1000×800 using OpenGL 2.1 and a NVIDIA
GeForce 8800 GTX 768MB graphics card. The table lists the
performance, expressed in frames per second (fps), achieved
by the following algorithms:

• None: The rendering of the model without wireframe
representation.

• Z-bias: The traditional two-pass algorithm using poly-
gon offset; naturally, lighting was disabled for line
drawing.

• GPU-based: Our implementation of Bærentzen et al.’s
proposal [5] as described in [9], translated to GLSL.

• Tex-based: Our proposal on fixed-function graphics
pipeline, duplicating the vertices in a pre-processing
phase as described.

• Tex+GS: Our proposal using the geometry shader,
without duplicating vertices.

Model None Z-bias GPU-based Tex-based Tex+GS
Pitcher 512 162 313 499 493
Plane 351 96 205 341 336

Mini Cooper 544 119 176 503 464
Neptune 100 23 37 55 99

Magalis’ hand 99 23 44 86 98
Dragon 51 11 20 50 51

Table II
PERFORMANCE IN FPS FOR RENDERING DIFFERENT TRIANGLE

MESHES.

The viewer application used in the tests tended to be
rasterizer-bounded for the first, lighter, listed models and
geometry-bounded for the last, denser, ones. As can be
noted, our technique is faster than previous ones for both
configurations. Especially, note that our proposal, with the
use of geometry shader, imposes virtually no impact from
just rendering triangles.

V. LINES DECOUPLED FROM GEOMETRY

Our technique can also be used for rendering lines decou-
pled from the mesh geometry. All we need is to generate the
appropriate texture coordinate for mapping the wireframe
texture.

As a first example, let us consider the display of regularly
spaced grid lines on the top of a terrain model, as illustrated
in Figure 10a. The grid lines are drawn by projecting the
wireframe texture onto the terrain surface. Two texture
units are used, one for drawing each set of parallel lines.
The texture coordinates are simply determined by enabling
appropriate automatic texture coordinate generation in object
space. Another example of lines decoupled from the geom-
etry is illustrated in Figure 10b: a black oil reservoir model

(a) Grid lines over curved surface

(b) Isolines of scalar field

Figure 10. Rendering of lines decoupled from mesh geometry.

is rendered with the isolines of a given scalar field. In this
case, it suffices to use one texture unit and to set the value
of the scalar field at each vertex as its texture coordinate,
with an appropriate texture matrix to control line spacing.

Haeberli and Segal [1] had already indicated the use of an
unidimensional texture for drawing lines decoupled from the
mesh. The challenge, however, is to preserve line thickness.
As the lines are decoupled from the mesh geometry, texture
magnification may be needed even for small primitives
in screen space. In order to illustrate the problem, let us
consider the example of drawing the isolines of a scalar
field. If the gradient of the scalar field is large, the use of
mipmapping, as proposed here, ensures that line thickness
is preserved (see Figure 11 a and b). On the other hand, if

Figure 11. Isoline thickness variation: (a, b) for large gradients, the
mipmapping preserves line thickness; (c) for small gradients, texture
magnification may occur; (d) a geometry shader can be used to avoid texture
magnification.

the gradient is too small, texture magnification is called for
and lines become thicker, as illustrated in Figure 11c.

If geometry shader is available, we can easily (and ef-
ficiently) preserve line thickness for small gradients. The
problem arises when we have a small range of texture
coordinate values over a primitive. In order to fix it, we can
use a geometry shader that, for each primitive, identifies
whether the range of values encloses a single isoline. In
such a case, it adjusts the texture coordinates applying a
scale around the isoline value, adjusting the range to 1.0 and
thus mapping the entire texture on the primitive. Figure 12
shows the corresponding GLSL function that adjusts the
three texture coordinates of triangle primitives, thus avoiding
texture magnification for isoline rendering. The achieved
result is illustrated in Figure 11d.

void adjust (inout float s0, inout float s1, inout float s2)
{
 float M = max(s0, max(s1, s2));
 float m = min(s0, min(s1, s2));
 float fM = floor(M);
 float fm = floor(m);
 if ((fM - fm) == 1) {
 float range = M - m;
 s0 = (s0 - fM) / range + fM;
 s1 = (s1 - fM) / range + fM;
 s2 = (s2 - fM) / range + fM;
 }
}

Figure 12. Geometry shader to avoid texture magnification for isoline
rendering on triangle primitives.

VI. CONCLUSION

In this paper, we present a texture-based approach for
wireframe rendering. As demonstrated, our method is ef-
ficient, versatile, easy to be implemented and integrated
into legacy graphics codes, and still produces high-quality,
antialiased images.

Despite its simplicity, we believe the presented technique
is a useful tool for computer graphics practitioners, with a
wide range of applications.

ACKNOWLEDGMENT

We thank CNPq (Brazilian National Research and De-
velopment Council) for the financial support to conduct
this research. We also thank the support provided by the
Tecgraf/PUC-Rio laboratory, which is mainly funded by the
Brazilian oil company, Petrobras.

The valuable feedback provided by the anonymous re-
viewers helped us to improve the text. Some models
used on this research was made available by Oyonale,
AIM@SHAPE, and the Stanford 3D Scanning repositories.

REFERENCES

[1] P. Haeberli and M. Segal, “Texture mapping as a fundamental
drawing primitive,” in Fourth EUROGRAPHICS Workshop on
Rendering, M. Cohen, C. Puech, and F. Sillion, Eds., June
1993, pp. 259–266.

[2] S. Kuschfeldt, M. Holzner, O. Sommer, and T. Ertl, “Efficient
visualization of crash-worthiness simulations,” IEEE Comput.
Graph. Appl., vol. 18, no. 4, pp. 60–65, 1998.

[3] R. Herrell, J. Baldwin, and C. Wilcox, “High-quality polygon
edging,” IEEE Comput. Graph. Appl., vol. 15, no. 4, pp. 68–
74, 1995.

[4] W. Wang, Y. Chen, and E. Wu, “A new method for polygon
edging on shaded surfaces,” J. Graph. Tools, vol. 4, no. 1,
pp. 1–10, 1999.

[5] J. A. Bærentzen, S. L. Nielsen, M. Gjøl, B. D. Larsen,
and N. J. Christensen, “Single-pass wireframe rendering,” in
SIGGRAPH ’06: ACM SIGGRAPH 2006 Sketches. New
York, NY, USA: ACM, 2006, p. 149.

[6] J. A. Bærentzen, S. Munk-Lund, M. Gjøl, and B. D. Larsen,
“Two methods for antialiased wireframe drawing with hidden
line removal,” in Proceedings of the Spring Conference in
Computer Graphics, 2008.

[7] J. A. Bærentzen, S. L. Nielsen, M. Gjøl, B. D.
Larsen, and N. J. Christensen, “Single-pass
wireframe rendering,” Movie presentation, 2006,
http://portal.acm.org/citation.cfm?id=1180035.

[8] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time
Rendering 3rd Edition. Natick, MA, USA: A. K. Peters,
Ltd., 2008.

[9] S. Gateau, “Solid wireframe,” NVIDIA White Paper, 2007.

[10] D. Rose and T. Ertl, “Interactive visualization of large finite
element models,” in Workshop on Vision, Modelling, and
Visualization VMV ’03, Berlin, 2003, pp. 585–592.

