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Abstract

The design of W -operators from a set of input/output
examples for large windows is a hard problem. From the
statistical standpoint, it is hard because of the large num-
ber of examples necessary to obtain a good estimate of the
joint distribution. From the computational standpoint, as
the number of examples grows memory and time require-
ments can reach a point where it is not feasible to design the
operator. This paper introduces a technique for joint distri-
bution estimation in W-operator design. The distribution
is represented by a multiresolution pyramidal structure and
the mean conditional entropy is proposed as a criterion to
choose between distributions induced by different pyramids.
Experimental results are presented for maximum-likelihood
classifiers designed for the problem of handwritten digits
classification. The analysis shows that the technique is in-
teresting from the theoretical point of view and has poten-
tial to be applied in computer vision and image processing
problems.

1. Introduction

The design of W -operators from a set of input/output
examples for large windows is a hard problem. From the
statistical standpoint, it is hard because of the large num-
ber of examples necessary to obtain a good estimate of
the joint probability distribution. From the computational
standpoint, as the number of examples grows memory and
time requirements can reach a point where it is not feasible
to design the operator. Some approaches have been pro-
posed to obtain estimates of the distribution for configura-
tions that don’t appear in the training samples. From previ-
ous works in the field, the most successful one is the mul-
tiresolution design [6, 11]. This method uses a pyramidal

structure to represent the designed operators, and performs
conditional distribution estimation by using data observed
at lower resolutions when there is not enough data in the
samples to obtain a good estimate in a higher resolution.

In this work, we introduce an algorithm that uses the
pyramidal framework from previous methods to estimate
the joint probability distribution of W -patterns observed
through a window and the output values of the operator.
This is done by estimating the probability distribution of
W -patterns and the conditional distribution of output values
given a W -pattern. Then, a maximum-likelihood approach
can be directly derived.

The choice of the pyramidal structure has direct influ-
ence in the quality of the designed operator. In practice,
that choice is done in an ad-hoc manner. Another contri-
bution of this paper is the proposal of the mean conditional
entropy as a criterion to choose between different pyramids,
under the assumption that the conditional distributions to be
estimated have probability mass concentrated in one of the
classes.

This paper is organized as follows. Section 2 re-
calls the definition of W -operators. In Section 3, we
review related work in the field of W -operator design
from input/output pairs, and in Section 4 the definition of
maximum-likelihood classifiers is remembered. In Section
5 we propose a novel multiresolution joint distribution es-
timation algorithm, and in Section 6 the mean conditional
entropy is suggested as a criterion to choose a pyramidal
structure that induces a joint distribution. Experimental re-
sults are presented in Section 7, and conclusions and further
research are discussed in Section 8.

2. W-operators

Digital signals (or images) can be formally defined and
represented by functions from a finite rectangle E to a non-



empty interval L. Usually, E is a subset of Z × Z and L is
a subset of the positive integers [0, l − 1], l ∈ Z

+. Binary
images can be represented by elements of the collection of
subsets of E, denoted by P(E). They can also be repre-
sented as a function from E to [0, 1]. The set of all functions
from E to L will be denoted LE . A mapping Ψ from LE to
L′E will be called an image operator or filter, where L′ is
the interval [0, l′ − 1], with l′ ∈ Z

+.
A finite subset W of E will be called a window and the

number of points in W will be denoted by |W |. A configu-
ration is a function from W to L and the space of all possi-
ble configurations from W to L will be denoted by LW . A
configuration is also called a W -pattern and usually results
from translating a window W by t, t ∈ E, and observing
the values of a signal h ∈ LE within the translated window,
Wt. If W = {w1, w2, . . . , wn}, n = |W |, and we asso-
ciate the points of W to a n-tuple (w1, w2, . . . , wn), then a
configuration h(Wt) is given by

h(Wt) = (h(t + w1), h(t + w2), . . . , h(t + wn)). (1)

Digital signals can be modelled by digital random func-
tions [5], and, in this sense, h(Wt) is a realization of a ran-
dom vector X = (X1, X2, . . . , Xn), that is, h(Wt) = x =
(x1, x2, . . . , xn), where x denotes a realization of X. An
important subclass of operators from LE to L′E is the class
of W -operators [2]. They are translation invariant (t.i.) and
locally defined (l.d.) within a window W . If an image op-
erator Ψ is a W -operator, then it can be characterized by a
function ψ : LW → L′, called a characteristic function, by

Ψ(h)(t) = ψ(h(t + w1), h(t + w2), . . . , h(t + wn))
= ψ(x). (2)

3. Design of W-operators

Solving an image processing problem can be a very com-
plex task. It relies primarily on the knowledge of the prob-
lem domain and on the knowledge, experience and intuition
of an image processing expert. This complexity is a real
motivation for some research groups to create automatic
techniques to “imitate” the image expert. These techniques
use a set of input/output image pairs in order to obtain an
optimal characteristic function in relation to an error mea-
sure [1].

Formally, the problem can be stated as: given two ran-
dom images on E, h to be observed and g to be estimated,
find a W -operator Ψ that minimizes an error measure be-
tween Ψ(h)(t) and g(t), t ∈ E. More specifically, if X is
a random variable over LW , Y is a random variable over
L′ and Φ = {ψ : ψ is a function from LW to L′}, the prob-
lem consists in finding a characteristic function ψopt ∈ Φ
such that E[l(Y, ψopt(X))] ≤ E[l(Y, ψ(X))] for all ψ ∈ Φ,

where l(Y, ψ(X)) is the error measure that quantifies the
difference between the ideal value y ∈ Y and the value
ψ(x) returned by the operator. In practice, the joint proba-
bility distribution p(X, Y ) is unknown, and it is estimated
from a sample of p(X, Y ), obtained from the input/output
pairs (in this paper, we generally use a lowercase p(·) to de-
note a probability density function and an uppercase P (·) to
denote a probability mass function).

The usual error measure for operators from P(E) to
P(E) (binary image operators) is the Mean Absolute Error
(MAE) [5]. For operators from P(E) to [0, l − 1]E (binary
image classifiers), it is the number of all misclassified ob-
jects or points. For operators from LE to L′E (gray-level
operators), it’s the Mean Square Error (MSE) [5].

In this context, we can cite some previous works that
present methods for designing binary operators [1], binary
classifiers [3] and gray-level operators [12] to solve image
processing problems. More recently, multiresolution tech-
niques have also been employed to facilitate the design-
ing [6, 11].

4. Maximum-likelihood classifiers

Let W be a window, X a random variable over LW , and
Y a random variable over L′. Suppose that we want to de-
sign a characteristic function ψ that maps a configuration
x ∈ X to a value y ∈ Y . Given the conditional probability
distribution p(X|Y ), a well-known technique from statisti-
cal pattern recognition is the maximum-likelihood method
[7]: choose ψ as the function ψml that assigns to x the value
yml of Y such that P (x|yml) ≥ P (x|y), for all y ∈ Y .
If we had p(X|Y ), it would be straightforward to assign a
value to a W -pattern x: compute P (x|y) for all y ∈ Y and
choose the y that gives the maximum value. In practice,
p(X|Y ) is unknown, thus it has to be estimated. In the next
section, we introduce a method to estimate p(X|Y ) from
training examples and a pyramidal structure.

5. Joint distribution estimation

The task of estimating p(X|Y ) from training samples
can be very hard in practice, due to the exponential rela-
tionship between |W | and the number of examples neces-
sary to have a good estimate. The number of observed sam-
ples, in general, is much smaller than |X| = |L||W |. Hence,
the learning technique must be capable of determining good
values of P (X|Y ) for samples that don’t appear in the train-
ing set.

In [6], the authors proposed a technique for binary filter
design based in a pyramidal framework, which assigned es-
timates of p(Y |x) for x not present in the training set by
using data in multiple resolutions. Later, an extension to



gray-level operators was developed using aperture opera-
tors [11].

In Section 5.1, we briefly recall the pyramidal framework
introduced in [6]. In that work, the pyramidal structure
is used to estimate the conditional probability distribution
p(Y |X). We will use that framework in Section 5.2 to esti-
mate the densities p(X) and p(Y |X). With both estimates,
one can easily derive p(X|Y ) by

P (X|Y ) =
P (Y |X) · P (X)

P (Y )
, (3)

as in general p(Y ) is easily estimated from the examples.

5.1. Pyramidal multiresolution analysis

Let W0, W1, . . . , Wr be a sequence of windows such
that Wi+1 ⊆ Wi, for 0 ≤ i ≤ r − 1, and let D0 = LW0

0 ,
D1 = LW1

1 , . . . , Dr = LWr
r be the configuration spaces

that can be observed through the windows W0, W1, . . . ,
Wr, where Li, for i ∈ {0, . . . , r} are intervals in the
form [0, li − 1], li ∈ Z

+. Define a sequence of resolu-
tion mappings ρ01 : D0 → D1, ρ12 : D1 → D2, . . . ,
ρ(r−1)r : Dr−1 → Dr which induce nested partitions
X 1,X 2, . . . ,X r of the space D0 by the equivalence rela-
tions x ∼1 x′ ⇔ ρ01(x) = ρ01(x′), for x,x′ ∈ D0,
x ∼2 x′ ⇔ ρ12(ρ01(x)) = ρ12(ρ01(x′)), and so on. More-
over, define the partition X 0 = {{x1}, {x2}, . . . , {x|D0|}},
where each set in X 0 contains one element of D0.

In [6], the conditional distribution p(Y |X) is estimated
using the nested partitions. To obtain p(Y |x) for a config-
uration x ∈ X, a multiresolution analysis is employed. It
consists in using the greater resolution for which we have
sufficient observations of x in the examples to make the es-
timation, that is, if we don’t have a good estimate of p(Y |x)
at the resolution of D0, the resolution mapping ρ01 is ap-
plied to x and the estimate at the resolution of D1 is veri-
fied. If we still don’t have a good estimate, ρ12 is applied to
ρ01(x), and so on.

In the remainder of this paper, we will refer to a sequence
of windows W0, . . . , Wr accompanied by a sequence of res-
olution mappings ρ01 : D0 → D1, ρ12 : D1 → D2, . . . ,
ρ(r−1)r : Dr−1 → Dr as a window pyramid.

5.2. Estimation algorithm

In this section, our goal is to obtain an estimate of the
joint distribution, by estimating p(X) and p(Y |X). First,
we introduce some notation. Let W be a finite window and
p(X) be a probability distribution on D0. We assume that
there exists a partition X = {X1,X2, . . . ,Xn} of D0 and a
probability distribution Γ(X ) on X such that

∀xi ∈ Xi, P (Y |xi) = P (Y |Xi) (4)

and

Γ(Xi) =
∑
x∈Xi

P (x), (5)

for all i in {1, . . . , n}. Equation 4 means that all configura-
tions in a part Xi of X have the same conditional distribu-
tion p(Y |Xi), and Equation 5 states that the probability of a
set Xi is the sum of the probabilities for each configuration
in it.

Let (x1, y1), (x2, y2), . . . , (xm, ym) be a sampling of
p(X, Y ) (these are obtained from the input/output pairs),
and let ∆ be a window pyramid. We will denote the nested
partitions induced by ∆, in decreasing resolution order, by
X 0 = {X 0

1 , . . . ,X 0
n0
}, . . . ,X r = {X r

1 , . . . ,X r
nr
}. Now

consider a non-empty subset S of D0. We define

NS =
m∑

k=1

cS(xk), (6)

where

cS(x) =
{

1, if x ∈ S
0, otherwise.

(7)

NS is the total number of times that the configurations in S
appear in the sample pairs.

The estimation of p(Y |S) is given by

P (Y |S) =
∑m

k=1 lS(xk, yk)
NS

, (8)

where

lS(xk, yk) =
{

1, if xk ∈ S and yk = Y
0, otherwise.

(9)

That is, the conditional probability distribution for S is cal-
culated by simply taking the distribution of Y for the con-
figurations in S.

In order to estimate p(X), we must assign probability
masses to the configurations in D0. We will do this for
groups of configurations (the sets in X ). For a non-empty
subset S of D0, its probability is given by

MS =
Tα(NS)∑nr

k=1 Tα(NX r
k
)
, (10)

where

Tα(n) =
{

n, if n ≥ α
0, otherwise.

(11)

The number α is a parameter to the algorithm, and it must
be greater than or equal to 2. The intuition behind α is to
consider, at a particular resolution level i, only the sets X i

k

of X i such that the number of observations in X i
k is greater



than or equal to α. As we go from resolution 0 to r, the
partition X i gets progressively coarser, hence the number
of elements in the sets X i

k grows.
We are now ready to describe an algorithm to es-

timate Γ(X ) and p(Y |X ). It receives α, ∆ and
(x1, y1), (x2, y2), . . . , (xm, ym) as inputs, and returns a set
R of triples in the form (Xi, Γ(Xi), p(Y |Xi)). R is a rep-
resentation of the joint distribution, and the sets Xi that ap-
pear in triples of R are the ones in X such that Γ(Xi) > 0.
We work under the assumption that

∑nr

k=1 Tα(NX r
k
) > 0,

which means that the partition X r has at least one set X r
i

whose elements appear at least α times in the samples.
Initialize R as an empty set. Then, begin processing the

first resolution. For the sets X 0
i , i ∈ {1, . . . , n0}, compute

its probability mass M = MX 0
i

. If M > 0, then Γ(X 0
i ) =

M , compute p(Y |X 0
i ) as in Equation 8 and add the triple

(X 0
i , Γ(X 0

i ), p(Y |X 0
i )) to R.

The other resolutions are processed iteratively. For each
resolution j from 1 to r, compute, for each set X j

i , i ∈
{1, . . . , nj}, the set

K = {Z : there exists a triple (Z, ·, ·) ∈ R and Z ⊆ X j
i }.
(12)

K contains the subsets of X j
i whose probability masses

were already assigned during the processing of a previous
resolution. The mass M is calculated by

M = MX j
i
−

∑
K∈K

Γ(K). (13)

Let U be the union of the sets in K. If M > 0, then
Γ(X j

i − U) = M and compute p(Y |X j
i ) as in Equation 8.

The distribution p(Y |X j
i −U) will be equal p(Y |X j

i ). Add
the triple (X j

i −U , Γ(X j
i −U), p(Y |X j

i −U)) toR. Equation
13 guarantees that, when assigning probability masses at a
certain resolution, the mass from subsets that has been al-
ready assigned in previous resolutions doesn’t get included.

After the resolution r is processed, return R. It is a rep-
resentation of the joint distribution, as it contains the sets
of X that have Γ(Xi) > 0, its associated conditional prob-
ability distributions and the values of Γ(Xi). An important
observation is that we are estimating Γ(X ), but not the com-
plete distribution p(X). In maximum-likelihood classifica-
tion the value of P (X) appears as a constant (Equation 3),
and we will see in Section 6.3 that Γ(X ) is sufficient for the
estimation quality criterion that we are proposing. But if the
values of P (X) are necessary in a special application, one
can consider any probability model that satisfies Equation
5.

6. Pyramid choice

As we have seen so far, the choice of the window pyra-
mid determines the structure of the nested partitions, hence

it has large impact on the quality of the designed operator.
In practice, the use of a specific pyramid can be a bad choice
in some problems, but lead to good results in others; that is,
a good choice also depends on the problem at hand.

In this section, we introduce a criterion based on con-
cepts of information theory [14] that provides a way to
choose a good pyramid from a set of predefined ones, given
a set of input/output image pairs that contain information
about the desired solution.

6.1. Entropy

If X is a discrete random variable and p(X) is its proba-
bility distribution, the entropy H(X) of X is defined as

H(X) = −
∑
x∈X

P (x)log2(P (x)). (14)

Entropy can be seen as a measure of concentration of
the probability mass. If the probabilities concentrate over a
value, then the entropy should be low. If the probabilities
distribute in a rather uniform way, it should be high.

An important measure for conditional distributions is the
mean conditional entropy. Given the distribution p(Y |X),
the mean conditional entropy of Y |X is defined as:

E[H(Y |X)] =
∑
x∈X

P (x) · H(Y |x). (15)

6.2. Mutual information

Mutual information is a measure of dependency between
two random variables X and Y . It is defined as [13]:

I(X, Y ) = H(Y ) − H(Y |X). (16)

If X and Y are independent, I(X, Y ) = 0. The derivation
of the following expression is straightforward from Equa-
tion 16:

E[I(X, Y )] = H(Y ) − E[H(Y |X)]. (17)

A direct consequence is the equivalence between minimiz-
ing the mean conditional entropy and maximizing the mu-
tual information. As the dependency between X and Y in-
creases, the conditional distribution p(Y |X) tends to have
more probability mass concentrated around some values of
Y . Therefore, conditional distributions whose mass con-
centrates in one of the possible classes have lower entropy.

6.3. Quality criterion

In classification problems, it is usually desired that the
true conditional distributions p(Y |x) have probability mass
concentrated in one of the possible classes y ∈ Y . This



way, for a feature vector x ∈ X there will be a class y ∈ Y
that will be more probable, leading to less uncertainty in the
classification.

In order to establish a criterion to choose a joint distribu-
tion represented by a window pyramid (as seen in Section
5.2), we work with the assumption that the true conditional
distributions (that we wish to estimate from examples) have
probability mass concentrated in one of the classes. This is
reasonable in problems for which there exists a good solu-
tion. The search for this distribution can be done by finding
a window pyramid which represents a joint distribution that
has small mean conditional entropy.

Recall from Section 5.2 the partition X =
{X1,X2, . . . ,Xn}, whose elements that have non-zero
probabilities are computed by the estimation algorithm.
The mean conditional entropy in a distribution represented
by a window pyramid can be obtained from X by

E[H(Y |X)] =
∑
x∈X

P (x) · H(Y |x)

=
n∑

i=1

∑
x∈Xi

P (x) · H(Y |x)

=
n∑

i=1

(
∑
x∈Xi

P (x)) · H(Y |Xi)

=
n∑

i=1

Γ(Xi) · H(Y |Xi). (18)

Thus, the computation of E[H(Y |X)] can be done directly
from the set R (the result of the estimation algorithm). The
four equalities shown above come, respectively, from Equa-
tion 15, the fact that X is a partition of D0, Equation 4 and
Equation 5.

As the number of possible window pyramids is huge, it
isn’t computationally feasible to estimate the joint distribu-
tion and calculate the mean conditional entropy for all of
them, then choose the pyramid that minimizes it. In prac-
tice, the image processing specialist should define a set of
candidate pyramids, which will be compared using the en-
tropy criterion. A heuristic way of defining the candidate
set is by using resolution mappings which are known for
providing good results in some applications, e.g., mappings
from image pyramids theory [4, 8, 9], that are employed in
areas such as image compression and coding. The entropy
criterion will choose the pyramid whose induced condi-
tional distributions in average have more concentrated mass.
Given our assumption of concentrated mass in the real con-
ditional distributions, the criterion will choose a good pyra-
mid, assuming that there exists one candidate in the set that
induces conditional distributions with concentrated mass.

Another important remark about the entropy measure
is the fact that it reflects the mass concentration, but says
nothing about the values in which the mass is concentrated.

Hence, if more than one pyramid in the candidate set induce
distributions with small mean conditional entropy, another
quality measure (e.g. experimental MAE) should be used to
differentiate them.

7. Experimental results

In order to verify the effectiveness of the entropy cri-
terion to choose a good pyramid in a real application,
we have conducted some experiments with the problem
of handwritten digits recognition. For each one of the
10 digits, 10 binary images of approximately 672 digits
each have been obtained by digitalizing (200 dpi) paper
forms with samples taken from various subjects. Some
examples of the digits can be seen at Figure 1. The im-
ages used in our experiments are available in the World
Wide Web, at http://www.vision.ime.usp.br/
˜daniel/sibgrapi2005/. When collecting the data,
our objective was to simulate the writing of digits in postal
envelopes. The individuals have been asked to write several
digits inside square regions.

Figure 1. Examples of handwritten digits.

The objective is to design a W -operator that when ap-
plied to similar images gives as output a value in the set
{0, 1, . . . , 9} for pixels that have value 1 in the input image.

7.1. Test procedure

To define the training set, 70% of the images from each
digit were selected. The remaining 30% were used to eval-
uate the performance of the designed classifiers. A set of 11
window pyramids based on subsampling operators has also
been specified, with base windows (the greater window in
the pyramid) varying from 9×9, 11×11, 13×13 to 17×17.
Each pyramid has been labeled as an integer from 1 to 11.
Figure 2 shows the specifications of the pyramids, where
each pyramid is represented as a window that determines
the shape of W0 (the base window). The subsequent win-
dows Wi, i ≥ 1 can be obtained by taking only the points
whose values are greater than or equal to i + 1.

First, a preprocessing is done to determine the regions
that correspond to each digit. The images have been dilated
by a radius five Euclidean disk, and the connected compo-
nents whose bounding box had width or height lesser than
17 or greater than 73 pixels have been eliminated. Finally,
the intersection of each remaining connected component



1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2 1
1 2 3 3 3 3 3 3 3 2 1
1 2 3 4 4 4 4 4 3 2 1
1 2 3 4 5 5 5 4 3 2 1
1 2 3 4 5 6 5 4 3 2 1
1 2 3 4 5 5 5 4 3 2 1
1 2 3 4 4 4 4 4 3 2 1
1 2 3 3 3 3 3 3 3 2 1
1 2 2 2 2 2 2 2 2 2 1
1 1 1 1 1 1 1 1 1 1 1

Pyramid 1

1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 1
1 2 3 3 3 3 3 2 1
1 2 3 4 4 4 3 2 1
1 2 3 4 5 4 3 2 1
1 2 3 4 4 4 3 2 1
1 2 3 3 3 3 3 2 1
1 2 2 2 2 2 2 2 1
1 1 1 1 1 1 1 1 1

Pyramid 2

1
1 2 1

1 2 3 2 1
1 2 3 4 3 2 1

1 2 3 4 5 4 3 2 1
1 2 3 4 5 6 5 4 3 2 1

1 2 3 4 5 4 3 2 1
1 2 3 4 3 2 1

1 2 3 2 1
1 2 1

1

Pyramid 3

1
1 2 1

1 2 3 2 1
1 2 3 4 3 2 1

1 2 3 4 5 4 3 2 1
1 2 3 4 3 2 1

1 2 3 2 1
1 2 1

1

Pyramid 4

1 1 1 2 2 2 2 2 1 1 1
1 2 2 3 4 4 4 3 2 2 1
1 2 4 5 6 6 6 5 4 2 1
2 3 5 7 8 9 8 7 5 3 2
2 4 6 8 101110 8 6 4 2
2 4 6 9 111211 9 6 4 2
2 4 6 8 101110 8 6 4 2
2 3 5 7 8 9 8 7 5 3 2
1 2 4 5 6 6 6 5 4 2 1
1 2 2 3 4 4 4 3 2 2 1
1 1 1 2 2 2 2 2 1 1 1

Pyramid 5

1 1 1 1 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1
4 6 4 5 4 7 4 5 4 6 4
1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1 1 1 1

Pyramid 6

1 1 1 1 1 1 1 1 1 1 1
1 3 1 2 1 3 1 2 1 3 1
1 1 1 1 1 1 1 1 1 1 1
1 2 1 2 1 2 1 2 1 2 1
1 1 1 1 1 1 1 1 1 1 1
1 3 1 2 1 4 1 2 1 3 1
1 1 1 1 1 1 1 1 1 1 1
1 2 1 2 1 2 1 2 1 2 1
1 1 1 1 1 1 1 1 1 1 1
1 3 1 2 1 3 1 2 1 3 1
1 1 1 1 1 1 1 1 1 1 1

Pyramid 7

3 1 2 1 3 1 2 1 3
1 1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1 1
3 1 2 1 4 1 2 1 3
1 1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1 1
3 1 2 1 3 1 2 1 3

Pyramid 8

2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 3 1 2 1 3 1 2 1 3 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 3 1 2 1 4 1 2 1 3 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 3 1 2 1 3 1 2 1 3 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1 2 1 2 1 2

Pyramid 10

4 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 2 1 3 1 2 1 5 1 2 1 3 1 2 1 4
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 4

Pyramid 9

8 1 3 1 5 1 3 1 7 1 3 1 5 1 3 1 8
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
5 1 3 1 6 1 3 1 5 1 3 1 6 1 3 1 5
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
7 1 3 1 5 1 3 1 9 1 3 1 5 1 3 1 7
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
5 1 3 1 6 1 3 1 5 1 3 1 6 1 3 1 5
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3 1 4 1 3 1 4 1 3 1 4 1 3 1 4 1 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
8 1 3 1 5 1 3 1 7 1 3 1 5 1 3 1 8

Pyramid 11

Figure 2. Window pyramids used in the experiments.



and the original image is defined as a single digit. There-
fore, the result is an image that contains unaltered digits
from the original image, except very large or very small
structures. The morphological dilation provides a way to
put together in the same digit pixels separated by little
cracks.

When collecting W -patterns from images, it is not de-
sirable that, when observing a certain configuration that is
part of a digit, pixels from neighboring digits also get in-
cluded as part of the W -pattern. To avoid this, a new image
is created by increasing the distance between digits. We
also haven’t considered W -patterns such that the center of
the translated window is a background pixel, since the re-
sulting W -operator will be applied only to configurations
whose central pixel has value 1.

The next part of the procedure is the joint distribution
estimation for each pyramid, using the algorithm from Sec-
tion 5.2. In our experiments, α = 2. One joint distribu-
tion is estimated for each pyramid. From each distribution,
the mean conditional entropy is calculated and a maximum-
likelihood classifier is designed.

The classifiers have been applied to all images in the test
set, resulting in gray-level images. A postprocessing is done
to assign a unique value to all pixels that belong to the same
digit. The most frequent value among them has been chosen
for this purpose. Then an error value for each classifier is
obtained by computing the number of misclassified digits
divided by the total number of digits.

7.2. Results

The pyramid labels can be seen in Table 1, ordered by
mean conditional entropy values from their corresponding
joint distributions. In Table 2, the error rates in maximum-
likelihood classification obtained from the test set are listed.
The total number of digits considered in the test stage is
18874.

7.3. Analysis

In Tables 1 and 2, we can observe that the pyramid of
least entropy coincides with the pyramid of smaller error on
the test set. This shows that the mean conditional entropy
seems to be a good criterion to choose between different
joint distributions. The pyramid labeled with the number
11 has base window of 17 × 17 pixels, and is built using
a quincunx sampling scheme [10] to determine the subse-
quent windows.

We can also see that the ordering of the pyramids by
mean conditional entropy is not the same as the ordering
by error. The analysis of this phenomenon is a delicate
problem, since there are many variables that can influence
the results, such as training and test set size, estimation

Table 1. Mean conditional entropies

Pyramid E[H(Y |X)]
11 1.053517
9 1.463839
5 1.595312
6 1.803493
1 1.899382

10 1.926978
8 1.993410
2 2.029149
3 2.164285
7 2.257981
4 2.679645

Table 2. Classification errors

Pyramid Test error
11 11.40%
9 14.44%
8 28.48%
7 29.61%

10 31.22%
6 31.56%
3 45.14%
5 45.23%
2 48.28%
1 48.30%
4 49.47%

errors, sample quality (are the training and test samples
good representatives of the real distribution?), the candi-
date set of pyramids, base window sizes, the fact that the
mean conditional entropy computes an average value, etc.
To have a significant conclusion about the relationship be-
tween the mean conditional entropy and the experimental
error, a more rigorous statistical analysis is needed, from
both theoretical and experimental standpoints.

However, our technique is based in sound mathematical
foundations, and the results show that it can be used to build
a tool to help the image processing specialist in the pyramid
choice. This tool receives as input the set of candidate pyra-
mids and a set of input/output pairs, and returns the pyramid
that induces a joint distribution of minimum entropy. Then
the pyramid could be used to design the operator, avoiding
the need to design operators for all pyramids in the candi-
date set and evaluating their errors, which can be a tedious
and expensive procedure.

The choice of the set of candidate pyramids is a key fac-
tor in the obtained results. As we are under the assumption
that the real conditional distributions have probability mass



concentrated in one of the classes, the entropy criterion will
find a good distribution if it is one of the candidates, that is,
if the pyramid set contains a candidate that induces a distri-
bution with those properties. We have suggested in Section
6.3 that there are heuristic ways to choose the candidates.

8. Conclusion

Joint probability distribution estimation is a key prob-
lem in pattern classification. In this paper, we have pro-
posed a technique to estimate the joint distribution for de-
signing a W -operator. The estimator is based on a mul-
tiresolution pyramidal structure that induces a probability
density by partitioning the W -pattern space in equivalence
classes. A maximum-likelihood classifier can be designed
in a straightforward way from the estimated distribution.

In pyramidal design of operators, the pyramid used in
the estimation process has significant impact on the results,
and has been chosen in an ad-hoc manner. Motivated by
this fact, we have proposed the mean conditional entropy as
a measure of the quality of the estimated distribution. It is
based on the assumption that the real conditional distribu-
tions p(Y |x) have probability mass concentrated in one of
the possible classes y ∈ Y . This is a reasonable assumption
for problems where we know that there exists a good so-
lution. The entropy measure can be used to develop a tool
to help the image processing specialist in the choice of a
pyramid.

We had also shown some preliminary results based on
the problem of classifying handwritten digits. The anal-
ysis confirm that the mean conditional entropy is a good
criterion for choosing a pyramid. There is potential for
better results by considering more sophisticated resolution
mappings, such as the ones from image pyramids theory
[4, 8, 9].

Therefore, the proposed technique is interesting from the
theoretical point of view and has potential to be applied in
many problems in computer vision and image processing.
Further research includes experimentation with more so-
phisticated resolution mappings and a more rigorous anal-
ysis of the estimator from the statistical point of view, in
order to have a better understanding of the relationship be-
tween the entropy measure and the experimental error. It is
also important to note that although our experiments have
had been done on binary images, the proposed technique is
general and can be applied to gray-level and color images.

9. Acknowledgements

The authors are grateful to their supporting agencies.
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