
Hardware-Assisted Visibility Ordering for Point-Based and Volume Rendering

Christian Hofsetz
Ciências Exatas e Tecnológicas

Universidade do Vale do Rio dos Sinos
chofsetz@acm.org

Nelson Max
University of California, Davis

Visualization and Graphics Research Group
max2@llnl.gov

Figure 1. Example of the application of our technique to two different rendering techniques. We
show the images in pairs to emphasize the absence of artifacts where the boundaries of our
axes lists meet. (a) and (b) classic splatting; (c) and (d) image-based rendering of range data
with estimated depth uncertainty. In (b) and (d), Red = X axis, Blue = Z axis, Green = Y axis.

Abstract

This paper presents a method to accelerate algorithms
that need a correct and complete visibility ordering of their
data for rendering. The technique works by first pre-sorting
primitives using three lists - one for each axis, and then
combining them using graphics hardware, by either clip-
ping the projected primitives while rendering, according to
the current list being processed, or by rendering each list to
a texture and merging the textures in the end. We show that
our algorithm works by applying it to the splatting tech-
nique using several types of rendering, including classic
splatting and volume rendering.

1. Introduction

One of the problems in point-based computer graphics is
how to spread the contributions of the 2D projection from
a single 3D point. The projection of a 3D point in the im-
age space occupies only one pixel. The rendering algorithm
somehow has to fill in the gaps in between pixels in order
to avoid holes in the image. Moreover, even if the projected

point cloud results in several points per pixel (so all their
projections do not cause any holes), the high density of the
points may still cause the problem of aliasing.

The most common method of rendering point clouds is
to increase the size of each projected point to multiple pixels
[1] [2] [3]. The contribution of the projected primitive has
to be blended with the contribution of its neighbors. This
technique is called splatting. Now, in order to blend the
primitives correctly, they must be processed in a specific
order in relation to the camera viewpoint (called visibility
ordering). In fact, some primitives may not even be used for
blending if the resulting blending of the foreground objects
that lie in its projected area is completely opaque.

This paper presents a new technique that searches all the
data in linear time during rendering, using three pre-sorted
lists. Our method can be used for any rendering algorithm
that needs visibility ordering. Since it allows the visual-
ization of inner structure, it also can be used for volume
rendering.



2. Previous and Related Work

The splatting technique projects object primitives to the
screen. If the original object primitive is only a point or
a voxel, its projected contribution is spread over an area
for hole-filling and anti-aliasing purposes (i.e., the point is
splatted). This area is called a kernel, a footprint, or a splat,
which can be defined in object-space (for instance, by cen-
tering a fixed-size disk on the 3D point) or in image-space.
Each point of the kernel (or its projection) on the screen
has color, and blending information, usually in the form of
opacity.

If more than one kernel is projected to the same pixel, a
composition scheme is needed, which often depends on the
ordering of the splats. Occlusion is dealt with by either (1)
searching through the objects in a specific order defined by
the viewpoint location, or by (2) identifying which objects
are actually visible before blending. Approach (2) is usually
much faster because it only selects the frontmost splats for
rendering.

Both approaches may still cause holes in the final image.
The solution for this problem is to make the footprint as
large as necessary to avoid these holes. This is not a simple
task, since we may not have all the information necessary
in order to fill the holes (for example, when we have range
data acquired from photographs). Also, we may fill holes
that should not be filled - i.e., they are part of the scene.

Another way to avoid holes in the rendered image is to
ensure that there are enough point samples to match the
resolution of all desired virtual views, i.e., if the scene is
adequately sampled as shown by Grossman and Dally [4].
Holes can then be filled by blending pixels from lower res-
olution approximations of the image.

In order to speed up rendering, it is possible to construct
a hierarchical representation of the data. Laur and Hanrahan
proposed in [5] a hierarchical splatting algorithm, where the
volume data is represented as a pyramid. Each level of the
pyramid stores a different size footprint. During rendering,
more than one level of the pyramid may be used in order to
include greater detail from points closer to the viewpoint.

Many image-based rendering methods use images with
depth (or range images) as primitives for rendering. Images
with depth may contain more information about the data
than just the color and 3D position. The visibility ordering
is achieved by exploiting this information, using specific
data structures and search orders. For example, it is very
common to organize those images as a 3D structure called
a layered depth image (LDI) [6] [7]. LDIs can be organized
into hierarchical representations [8] to improve rendering
performance.

The more recent surfel technique [9] [10], uses a
hardware-assisted two-pass solution for this problem. First,
the visible pixels are determined by projecting opaque poly-

gons for each point (or surfel) to the screen. In the second
pass, the z-buffer will then select the frontmost projected
splats, which are defined as object space Elliptical Weighted
Average (EWA) resampling filters, and projected and ren-
dered as textured quadrilaterals. The algorithm is imple-
mented using programmable vertex and pixel shaders.

Splatting is also used in volume visualization algorithms.
In the first implementation of the splatting technique for
volume rendering [3], a front-to-back or back-to-front or-
der is necessary in order to solve occlusion. Voxels that are
closer to the image plane take precedence over farther vox-
els.

In order to avoid sorting, Westover [3] chooses the axis
that is closest to perpendicular to the image plane and ren-
ders the slices of that axis in a front-to-back order. This
is called axis-aligned splatting. It produces some artifacts
when the selected axis changes. Mueller and Crawfis pro-
posed a modification in the technique by slicing the volume
with sheets parallel to the image plane [11], thus avoiding
the artifacts.

Recently, Chen et al. in [12] implemented Westover’s
algorithm in hardware, using Elliptical Weighted Average
volume splatting. Their algorithm attained interactive frame
rates by loading the whole visible volume (i.e., the part with
nonzero opacity) to the graphics memory. They were not
able to remove the “popping” artifacts.

We have developed here a new artifact-free technique
that maintains the visibility ordering needed for some appli-
cations, while being generic enough to be applied to several
different point-based and volume rendering datasets.

3. Our Approach

A simple way to guarantee a back to front order of com-
positing is to form three lists of points, sorted along the X,
Y, and Z axes. Then we choose the axis that is most closely
aligned with the viewing ray (or its negative) and use that
list in its sorted (or reverse sorted) order. There are three
ways to choose the axis. (1) If this decision is made per
frame, as in [3], based on the viewing ray at the image cen-
ter, the whole image may appear to pop at the frame which
switches to a new sorting order. (2) In a perspective view,
the decision can be made per pixel ray, using clipping. This
was first introduced in [13] and is generalized here for any
point-based and volume rendering data. (It is the basic al-
gorithm presented in section 5.) In this case, there is a mov-
ing set of transition lines across which the order changes
with the changing view, creating smaller but still visible ar-
tifacts, as the switching region becomes 1-D in image space
but also 1-D in time. (3) In this paper, we also propose a
third method, which effectively blends the sorting order in
a region near these transition lines, so that the artifacts are
much less noticeable.



Note that unlike [11], we do not need to resample the
volume. Therefore, the application of our technique to the
real-time framework presented in [12] is straightforward.

4. Ellipsoidal and Elliptical Gaussian Kernels

The goal of the splatting technique is to reconstruct im-
ages from a point cloud. The original point cloud is created
using some kind of sampling technique - either from syn-
thetic or real data. The reconstruction is obtained by the
blending of the splats from the point cloud. Each type of
splat used may have several different shapes and blending
properties. The use of splats affects the resulting aliasing
and frequency of the image because they are actually filter-
ing the data [14].

Filtering a signal means to bandlimit its frequency. The
idea is to discard all the frequencies that we believe do not
belong to the original signal or cannot be reconstructed. The
filters that are most often used are low-pass filters - they cut
off the copies of higher frequencies.

In this paper we are particularly interested in splats de-
fined by a truncated Gaussian kernel. There are several ad-
vantages to using a Gaussian kernel as a filter. Gaussians
are very efficient and easy to implement, and a small kernel
is usually enough for our reconstruction.

(a) Orthogonal projection (b) Perspective projection

Figure 2. (a) The orthogonal projection of an
n-D Gaussian is an (n − 1)-D Gaussian. (b)
The perspective projection of an ellipsoid is
an ellipse

Furthermore, for the purpose of using the framework
presented in this paper for volume rendering, we have to
select a filter that fits our 2D technique. In fact, it can be
shown that in an orthogonal projection, the integral of a 3D
Gaussian is a 2D Gaussian [15] (see Figure 2a). This is
based on the Volume Splatting work of Zwicker in [16], and
can be proved by integration along the projection direction.

In the perspective projection case, we are interested in
the projection of the 3D ellipsoid onto the image plane. We

know that the perspective projection of an ellipsoid is an el-
lipse. Figure 2b illustrates that the projection of an ellipsoid
is a conic section [15].

(a) Profile is a parabola. (b) 2D slice of (a)

(c) Profile is a hyperbola. (d) 2D slice of (c)

Figure 3. Ellipsoid perspective projection may
be a hyperbola or a parabola.

If the ellipsoid is entirely on one side of the plane
through the viewpoint, the elliptical cone will intersect the
image plane in a single, connected curve, which lies in a
bounded region of the plane, so it must be an ellipse (or a
circle). Notice that here we must assume that the ellipsoid
is always in front of the image plane. Figure 3 illustrates
that if our assumption does not hold, when the ellipsoid ex-
tends partly behind the viewer, the projected profile may be
a hyperbola or a parabola.

Therefore, since the orthogonal projection of a 3D
Gaussian is a 2D Gaussian, and an ellipsoid projection is
an ellipse, we can approximate a 3D Gaussian by a 2D el-
liptical kernel. Thus, if we use a Gaussian kernel in our al-
gorithms we can apply the same technique for volume ren-
dering as well, even for perspective projection.

5. Our Algorithm

The application of our technique in any point-based ren-
dering framework is straightforward. First, we create three
sorted lists of all primitives, one for each axis X , Y , and Z.
Then, for each list, we project all points to the image. In our
implementation, we represent each projected primitive as an
ellipse (it can be any shape, depending on the application).
The ellipses are rendered as textured quadrilaterals. As the



splats are added to the image, we accumulate their color and
opacity contributions using standard alpha-blended compo-
sition. The contribution of each splat is stored in the alpha
channel. Finally, the color channel is normalized by divid-
ing it by the accumulated alpha.

If our data is volumetric, each primitive is represented as
an ellipsoid, which is the support of our 3D Gaussian ker-
nel. Then, based on the Volume Splatting work of Zwicker
in [16], we project the ellipsoid onto the image plane. As
seen in the previous section, each projection of an ellipsoid
is an ellipse.

The pseudocode for this technique is:

1. Build three global sorted lists, one for each axis (X ,
Y and Z). For some data the sorting is not necessary
(e.g., volume data in a structured grid). See section 6.

2. For each axis, and each primitive in back to front order
on that axis

(a) Calculate the elliptical projection of the primitive
onto the image plane, obtaining the corners of a
quadrilateral enclosing the projected ellipse.

(b) Clip the quadrilateral, if necessary.

(c) Calculate and composite the color and opacity of
each pixel in the quadrilateral, using the texture.

3. Normalize the accumulated color, by dividing by the
accumulated alpha.

4. Display the image.

Figure 4 illustrates our rendering pipeline. After the
primitive is projected by the CPU, the rendering is finalized
by the OpenGL engine, with the help of vertex and fragment
programs.

Although the lists are searched using the correct visi-
bility order of the primitives in step 2, which list we pick
first does not matter. Step 2c is implemented as a fragment
program. The fragment color and opacity are computed by
multiplying the color from the primitive and the gaussian
texture. If the alpha value of the fragment is less than or
equal to 0.0001 then the fragment is killed. This is done to
remove small contributions from the pipeline to avoid nu-
merical errors. The final step of normalizing the color of
the image (step 3) is also implemented as a fragment pro-
gram.

5.1. Pre-Sorting

We maintain three lists of all ellipsoids sorted by the X ,
Y and Z components of each primitive. Each pixel in the
image will receive contribution for only one of these lists.

Figure 4. The rendering algorithm. Modules
in F1 and F2 are executed by fragment pro-
grams.

We pick the axis list corresponding to the component of the
viewing ray’s direction vector with largest absolute value.

The list to be chosen depends on the X , Y and Z compo-
nents of the virtual ray of that pixel. The choice is defined
by the component with largest absolute value. The direction
of searching the list is defined by the sign of this compo-
nent, front-to-back if it is negative and back-to-front if it is
positive.

A list is only searched if there is at least one viewing
ray whose largest component X , Y or Z is the one that
identifies the list.

For the purpose of rendering, we first project all primi-
tives to the image plane (step 2a of the algorithm). During
this step, we also identify which lists (X , Y and/or Z) we
have to process to project each primitive. A few primitives
may have to be splatted two or three times.

Of course, each pixel should not receive the contribution
of a splat more than once. The splat must be clipped ac-
cordingly, and this is done using OpenGL clipping planes.

5.2. Removing Artifacts

The method just described has some limitations that may
cause artifacts for some models. The majority of the prob-
lems occur in volumetric datasets.

If the size of the projected splat is too large, if the splat
overlaps several other splats, and if this happens near the
limit of an axis region, the separation between the axes will
be visible in the final image. However, for still images,



we have only noticed this problem when we generated a
synthetic volume with large ellipsoids. This problem may
also happen for datasets with elliptical surface splats when
we have a similar situation (i.e., large splats), although in
this case the artifacts will be much less noticeable, since the
frontmost implicit surface will be completely opaque. Sim-
ilar artifacts may appear when we use a regular grid vol-
umetric dataset, although they are barely noticeable - the
lines will only be evident when we zoom in into the image
(as in Figure 10b, which is a close-up view of Figure 9a).
For animations using a moving viewpoint the artifacts are
more noticeable, because they move coherently.

These artifacts are the result of the discrete nature of the
algorithm. There is a discontinuity at the borders of the
regions. To remove these artifacts we have to modify the
algorithm for the purpose of making a smoothly blend tran-
sition between the sorted orders near the lines where they
switch.

Figure 5. Corner weights. X and Y indicate
the regions of axes X and Y . If the list of
axis X is being rendered, splats A and C are
projected, and splat B is discarded.

The solution for this problem is twofold. First, we ren-
der each list to a hardware pixel buffer (pbuffer) (Figure 6).
Second, for every list, we render each quadrilateral vertex i
with an extra parameter wi (a weight) at each corner i. As-
suming that the viewpoint is at the origin, wi is calculated
per-vertex vi:

wi = ((vx,y ,z
i /vM AX

i ) − h)/(1 − h)

where vx,y ,z
i is the component x, y or z of the viewing ray

for vertex i and vM AX
i is the largest component of the view-

ing ray for vertex i. The component to be chosen (x, y or
z) is the same component as the current list being searched.
For example, if we are processing the list of axis X , vx

i

is chosen for weighting. Now, h indicates how far into the

Figure 6. Merge map for h = 0.85. Each X,
Y and Z list is rendered to a pbuffer texture.
The pbuffers are merged in the last stage of
the rendering. Areas of solid color indicate
where no merge is necessary.

neighbor’s region the algorithm is going to project splats for
blending.

While searching through the lists, the algorithm will only
project the splats where at least one of the corners has h >
0. We do this to avoid projecting the whole dataset for every
list (when h = 0). For example, in Figure 5, if we are
searching through the list of axis X , splats A and C are
considered for rendering, and splat B is discarded. If h = 0,
all splats are projected three times, one time for each list.
The value h = 1 is not allowed. The closer h is to 1, the
less splats are projected more than one time.

The value of w must be interpolated for every pixel of
the splat. We use h as one of the parameters for the ver-
tex program. Here, wi is calculated in hardware, and it is
set as one component of the secondary color of the vertex
i. Then, the values of w are automatically interpolated by
the OpenGL engine. Later, a fragment program stores the
interpolated value of wi as a depth value in the pbuffer.

For each pbuffer, the color and opacity are blended us-
ing traditional alpha-blended composition. The weights w
stored in the depth buffer do not need to be accumulated,
since they are the same for every contribution to the same
pixel in the same pbuffer. No depth test is performed.

After processing the splats in all lists, the three textures
from each pbuffer are merged using a fragment program.
The color Cp for each pixel p is

Cp =

∑
2

n=0
Cn · wn

2

∑
2

n=0
wn

2
, (1)

where Cn is the color, including the alpha component, and
wn is the weight of the fragment for pbuffer n, and n can
be 0 (axis X), 1 (axis Y ) or 2 (axis Z). For our implemen-
tation, we use h = 0.85 (as seen in Figure 6). The higher h
is the faster the algorithm runs. However, h cannot be too



high, otherwise the effect will be comparable to simply clip-
ping the splats, causing problems similar to those described
earlier in this section. For instance, if h = 0.95 we are able
to see the transition lines in an animation.

Figure 7. The rendering algorithm with
PBuffers. Modules in F1 and F2 are executed
by fragment programs. A vertex program ex-
ecutes one module in V.

Figure 7 shows our modified algorithm. Now we can-
not clip any quadrilateral, since the areas between the axes
regions are smoothed out by the blending of those quadri-
laterals. (In our basic algorithm they were clipped against
the boundary of the axes regions). Also, notice that now
we may search through a list even if no viewing ray has the
largest component equal to the one that identifies the list.
Instead, we search through any list where w > 0 is true for
any viewing ray of the image.

6. Results

In this section we show the results of applying our tech-
nique to several different types of point-based and volume
rendering methods. Unless otherwise noted, all images are
rendered using the basic algorithm.

Figure 1 shows the result of our technique applied to
classic splatting (Figure 1(a) and (b)) and to the ellipsoid
projection method of [16] (Figure 1(c) and (d)) using range
data with estimated depth uncertainty [13]. Notice how we
cannot see the discontinuity of the axes region borders in (a)
and (c).

In (a) and (b) we have used a circular 2D elliptical
splat oriented perpendicular to the estimated normal of each

point. The model used here is The Frederick P. Brooks, Jr.
Reading Room in Sitterson Hall at UNC-Chapel Hill. This
model has 362880 points. In (c) and (d), instead of only
using the depth information per pixel, we compute a depth
uncertainty region around it [13]. Next, we render the depth
with uncertainty by splatting 3D ellipsoidal Gaussian ker-
nels (based on the EWA Volume Splatting work in [16]).
The size of each ellipsoid is given by how uncertain the
depth of the point is; the higher the uncertainty, the larger
the ellipsoid. Also, the higher the uncertainty, the less
weight it has for the final blending. The contribution of the
ellipsoid is also weighted according to how close the angle
of the current viewpoint is to the original image’s viewpoint
of this ellipsoid. For more information refer to [13]. The
model used here has four 300x300 input images.

(a) (b)

Figure 8. The ‘mate’ dataset, hyperline ren-
dering. In (b), Red = X axis, Blue = Z axis,
Green = Y axis.

Figure 8 shows our technique applied to light field ren-
dering using colored point clouds, also called hyperline ren-
dering [17]. Each geometric point is represented in the light
field rayspace, and it is called a geometry hyperline. The re-
sulting footprint of each geometry hyperline is blended in a
way that it is similar to the splatting technique; therefore,
it also needs sorting. The ‘mate’ dataset is a 3D model ob-
tained from five 300x300 input images of a synthetic model
rendered using a ray tracer. Similar to Figure 1, the borders
where the projections of axes intersect do not appear in the
rendered image.

Figure 9 shows the result of a direct volume rendering
algorithm from a foot model. The model is a 183x255x125
rectangular solid with 1-byte of density information for
each voxel. It is important to notice that for this kind of
model - a structured, regular grid - we do not need to create
the sorting lists. Instead, we only have to search through
the sheets of every axis, in a front-to-back or back-to-front
order (depending on how our blending is performed).

Next, a comparison between using the basic algorithm
(with OpenGL clipping planes), and rendering to hardware



(a) (b)

Figure 9. The Foot dataset, 183x255x125 vox-
els, direct volume rendering. In (b), Red = X
axis, Blue = Z axis, Green = Y axis.

Method Splats Normal Optimized
PBuffers h=0.00 2691697 0.790 fps 0.889 fps
PBuffers h=0.85 1559188 1.016 fps 1.307 fps
PBuffers h=0.95 1148354 1.143 fps 1.488 fps
Clipping Planes 956507 1.208 fps 1.600 fps
Axis-Aligned 897229 2.062 fps 2.667 fps

Table 1. Performance comparison for the foot
data and viewpoint of Figure 9.“Optimized”
means optimized for memory access.

pbuffers which are later blended, is shown in Figure 10.
Figure 10b shows how the artifacts usually appear when us-
ing the basic algorithm in volumetric data. Since the arti-
facts are best viewed in computer animations we refer read-
ers to http://www.inf.unisinos.br/∼chris/sibgrapi2005 .

Finally, figure 11 shows the foot dataset with a different
opacity and color map, with both inner (bone) and outer
(flesh) structures.

The performance comparison between the basic al-
gorithm with OpenGL clipping planes, the rendering to
pbuffers with different values of h, and Westover’s axis-
aligned implementation are shown in Table 1 (for a view-
point where the all three axes lists are projected) and Table 2
(for an image plane parallel to the X −Y plane, where only
the list for axis Z is projected). The resolution of the ren-
dered images is 512 x 512 pixels. The number of splats indi-
cates how many splats were projected for each method. The
optimized version of our algorithms replicates the data for
each list, without including points where opacity is equal
to zero. In this case, if the opacity map changes, the lists
have to be recreated. The foot model has 5833125 points, of
which 897229 have opacity greater than zero for the opacity
map used in our tests. Our algorithms were implemented in
OpenGL using Windows XP running on a 3.0 Ghz Pentium

Figure 10. Top: foot dataset rendered with
three pbuffers blended using formula 1; bot-
tom: comparison between close-up of this
image (a) with the same area from the im-
age rendered with OpenGL clipping planes
(b) (from Figure 9).

4 with 2 Gb memory, and an NVIDIA 6600 GT graphics
card with 128 Mb memory. Notice that with the exception
of the methods where h = 0, which we do not advocate, all
methods achieved frame rates above 1 frame per second.

7. Conclusions

We have presented here a new, hardware-assisted tech-
nique for rendering splats while maintaining the correct vis-
ibility ordering. Our basic algorithm is simple and it is eas-
ily applied to any point-based algorithm that needs view-
point sorting for rendering. Also, the render to pbuffer ver-
sion our algorithm is especially interesting for applications
that need more visual information than just the implicit sur-

Method Splats Normal Optimized
PBuffers h=0.00 897229 0.970 fps 1.185 fps
PBuffers h=0.85 897229 1.333 fps 1.730 fps
PBuffers h=0.95 897229 1.333 fps 1.730 fps
Clipping Planes 897229 1.333 fps 1.730 fps
Axis-Aligned 897229 2.208 fps 2.667 fps

Table 2. Performance comparison for the foot
data and a lateral viewpoint, where only one
axis list is selected.



Figure 11. Foot dataset showing flesh and
bone, rendered with three merged pbuffers.

face of the objects, as is usually the case for volume render-
ing, and volume splatting from depth with uncertainty.

In the future we plan to further exploit our technique us-
ing the capabilities of the newest graphics hardware in the
market. As an example, it is straightforward to apply our
technique to the real-time implementation in [12].

Acknowledgments

The authors would like to thank Lars Nielsen, Anselmo
Lastra, Nick England and David McAllister of the Univer-
sity of Carolina at Chapel Hill for the reading room model;
George Chen from STMicroelectronics for the camera cal-
ibration of the dataset in Figure 1c; Marcelo Walter and
Berenice F. Hofsetz for proofreading the first draft of the
paper; Mauro Steigleder for helping with the pbuffer code;
and Rui Bastos from NVIDIA for providing the GeForce
6600 GT.

References

[1] Levoy, M. and Whitted, T., The Use of Points as a Dis-
play Primitive, Technical Report TR 85-022, Univ. of
North Carolina at Chapel Hill (1985).

[2] Zwicker, M., Pfister, H., van Baar, J. and Gross, M.,
Surface Splatting, Proc. of SIGGRAPH 2001 (2001),
pp. 371–378.

[3] Westover, L., Interactive Volume Rendering, Proc. of
the Chapel Hill workshop on Volume visualization
(1989), pp. 9–16.

[4] Grossman, J. P. and Dally, W. J., Point Sample Render-
ing, Proc. of 9th Eurographics Workshop on Rendering
(1998), pp. 181–192.

[5] Laur, D., Hanrahan, P., Hierarchical splatting: a pro-
gressive refinement algorithm for volume rendering,
Proc. of SIGGRAPH 91 (1991), pp. 285–288.

[6] Shade, J. W., Gortler, S. J. and Szeliski, R., Lay-
ered Depth Images, Proc. of SIGGRAPH 98 (1998),
pp. 231–242.

[7] Gortler, S. J. and He, L-w, Rendering Layered Depth
Images, Technical Report MSTR-TR-97-09, Microsoft
Research (1997).

[8] Max, N., Hierarchical Rendering of Trees from Pre-
computed multi-layer Z-buffers, Rendering Techniques
’96 (1996), Vienna: Springer-Verlag, pp. 165–174.

[9] Pfister, H., Zwicker, M., Baar, J. v. and Gross, M., Sur-
fels: Surface Elements as Rendering Primitives, Proc.
of SIGGRAPH 2000 (2000), pp. 335–342.

[10] Liu, R., Pfister, H., Zwicker, M., Object Space EWA
Surface Splatting: A Hardware Accelerated Approach
to High Quality Point Rendering, EUROGRAPHICS
2002, Computer Graphics Forum, Vol. 21, No. 3, 2002,
pp.461-470.

[11] Mueller, K., Yagel, R., Eliminating Popping Artifacts
in Sheet Buffer-Based Splatting, Proceedings of IEEE
Conference on Visualization 1996, pp.65-72, 1996.

[12] Chen, W., Ren, L., Zwicker, M., Pfister, H.,
Hardware-Accelerated Adaptive EWA Volume Splat-
ting, Proceedings of the IEEE Visualization 2004, pp.
67 - 74.

[13] Hofsetz, C., Ng, K. C., Max, N., Chen, G., Liu,
Y., McGuinness, P., Image-Based Rendering of Range
Data with Estimated Depth Uncertainty, IEEE Com-
puter Graphics and Applications, Vol. 24, No. 4, July
2004, pp.34-42.

[14] Räsänen, J. Surface Splatting: Theory, Extensions and
Implementation, Master’s Thesis, Helsinki University
of Technology (2002), pp. 19-44.

[15] Hofsetz, C. Image-Based Rendering of Range Data
with Depth Uncertainty, Doctoral Dissertation, Univer-
sity of California, Davis, 2003.

[16] Zwicker, M., Pfister, H., van Baar, J., Gross, M., EWA
Volume Splatting, IEEE Transactions on Visualization
and Computer Graphics,Vol. 8, No. 3, July-Sept. 2002,
pp. 223-238.

[17] Hofsetz, C., Chen, G., Max, N., Ng, K. C., Liu, Y.,
Hong, L., McGuinness, P., Light Field Rendering Using
Colored Point Clouds - A Dual Space Approach, Pres-
ence: Teleoperators and Virtual Environments, Vol. 13,
No. 6, MIT Press, 2004, pp.726-741.


