
High-Quality Hardware-Based Ray-Casting Volume Rendering
Using Partial Pre-Integration

Rodrigo Espinha, Waldemar Celes
Tecgraf/PUC-Rio - Computer Science Department

Pontifical Catholic University of Rio de Janeiro
Rua Marquês de São Vicente 225, Rio de Janeiro, RJ, 22450-900, Brazil

{rodesp, celes}@tecgraf.puc-rio.br

Abstract

In this paper, we address the problem of the interac-
tive volume rendering of unstructured meshes and propose
a new hardware-based ray-casting algorithm using partial
pre-integration. The proposed algorithm makes use of mod-
ern programmable graphics card and achieves rendering
rates competitive with full pre-integration approaches (up
to 2M tet/sec). This algorithm allows the interactive mod-
ification of the transfer function and results in high-quality
images, since no artifact due to under-sampling the full nu-
merical pre-integration exists. We also compare our ap-
proach with implementations of cell-projection algorithm
and demonstrate that ray-casting can perform better than
cell projection, because it eliminates the high costs involved
in ordering and transferring data.

1. Introduction

The current power of modern programmable graphics
hardware has made it possible to perform volume visualiza-
tion of unstructured meshes at interactive rates using com-
modity computer platforms. In the last few years, differ-
ent proposals have been presented by the volume visual-
ization community for achieving fast and accurate volume
visualization of tetrahedral meshes. As graphics hardware
evolves, new algorithms, exploiting new graphics hardware
capabilities, have been presented.

The ultimate goal is to provide an effective visualization
tool for actual scientific applications, which impose chal-
lenges that have to be considered while designing volume-
rendering algorithms:

• It is important to achieve interactive rates in order to
allow the user to directly manipulate the model.

• It is important to achieve artifact-free images to avoid

misinterpreting the model.

• It is important to allow the transfer functions to be in-
teractively modified, which makes the inspection of the
model easier.

• It is desirable to support dynamic meshes, thus allow-
ing, for instance, the use of multi-resolution techniques
to render large models.

Two different approaches seem to be the most promising
for achieving interactive rates in the direct volume rendering
of unstructured meshes. The first approach is based on cell
projection [7, 19, 22, 27], as in the view-independent cell-
projection (VICP) algorithm [22]. The second is based on
volume ray-casting, as in the hardware-assisted ray-casting
(HARC) algorithm [21, 23]. Both approaches present ad-
vantages and drawbacks. The two main drawbacks of cell-
projection algorithms are the requirement of a visibility or-
dering of the cells (assuming, for instance, an emission-
abortion optical model [12, 25]) and the high cost of trans-
ferring large amounts of data through the graphics bus. The
ray-casting algorithm, on the other hand, demands more
per-fragment processing and tends to be limited by the ras-
terization stage. The ray-casting algorithm also imposes re-
strictions on the size of the models, since the entire model
has to be stored in the texture memory.

Aiming at the achievement of an interactive volume ren-
derer for scientific applications, we have opted for inves-
tigating the ray-casting approach for direct volume render-
ing of linear tetrahedral meshes. Our choice was based on
the growth of graphics processing power observed in recent
years [11]. As ray-casting algorithms store the complete
model in texture memory and perform all computations us-
ing the graphics processing unit (GPU), this approach tends
to take better advantage of such fast growth. In fact, we
have run a set of computational experiments demonstrat-
ing that the ray-casting approach can present better perfor-
mance than cell-projection.



In this paper, we propose a modified hardware-based ray-
casting algorithm that makes use of partial pre-integration
[13] instead of using full pre-integration (whose results are
stored in a 3D texture) [5, 18]. This new algorithm allows
the interactive modification of the transfer function and re-
sults in high-quality images, since no artifact due to under-
sampling the full numerical pre-integration exists. We also
present an alternative data structure to store the model, in
an attempt to balance the trade-off between storage space
and simplicity (ease of implementation). Moreover, for per-
formance comparison, we implement a variant of the VICP
algorithm storing the model in texture memory, thus elimi-
nating the cost of transferring large amounts of data through
the graphics bus.

The remaining of this paper is organized as follows:
Section 2 describes previous work on optical models and
volume-rendering integral. Section 3 reviews ray-casting
algorithms and Section 4 describes, in detail, the new pro-
posed algorithm using partial pre-integration, together with
the data structure we have used to store the model in tex-
tures. Section 5 presents the experimental results we have
achieved and, in Section 6, some concluding remarks are
drawn.

2. Volume rendering integral

In order to be visualized using direct volume render-
ing, the scalar properties associated to the mesh’s vertices
are mapped to color and opacity by a transfer function.
This function can be user-defined or computer-generated
[8], and is often tabulated. Using an emission-absortion op-
tical model [12, 25], we can integrate the total color and
opacity contributions along a parametrized ray traversing
the volume. Given a ray entering the volume at λ = 0 and
exiting at λ = l, this results in the following equation:

I(l) = I0e
−

∫

l

0

τ(s(λ′))dλ′

+
∫ l

0
C(s(λ))τ(s(λ))e

−

∫

l

λ
τ(s(λ′))dλ′

dλ
(1)

where λ is the ray parameter, s is the value of the scalar
field, l is the total length of the ray segment inside the vol-
ume, and I0 is the light’s intensity where the ray enters the
volume (at λ = 0). C(s(λ)) and τ(s(λ)) are, respectively,
the emitted light’s intensity and the light attenuation factor
associated to the scalar field by the transfer function. For
the general case, there is no known analytical solution for
Equation 1, thus requiring numerical integration.

However, Roettger et al. [18] have observed that the con-
tribution of a single linear tetrahedron can be expressed by
a function of three variables: the scalar value at the entering
face (front), sf ; the scalar value at the exiting face (back),
sb; and the length of the ray segment inside the tetrahedron,

Figure 1. Ray-tetrahedron intersection.

l; as illustrated in Figure 1. This formulation allows coding
the results of numerical pre-integration in a 3D texture. An
advantage of the use of pre-integration is that it allows the
transfer function to vary arbitrarily along the ray. Although
good results can be achieved, pre-integration is still subject
to some sampling issues [13], especially for functions con-
taining high-frequency components. Of course, when us-
ing pre-integration, the 3D texture has to be updated when-
ever the transfer function is modified, which can be very
costly. For this reason, approximate methods were devised
[17, 21]. The pre-integration approach has also the short-
coming of being limited to one-dimensional transfer func-
tions, and recent studies have demonstrated the usefulness
of higher dimensional transfer functions [9].

As an alternative for avoiding numerical integration,
Williams et al. [26] proposed the use of piecewise linear
transfer functions (a general transfer function has to be de-
composed into linear segments before its use). The transfer
function is then described by a sequence of control points
(as denominated by Moreland and Angel [13]), each defin-
ing a planar iso-surface of the scalar field inside a linear
tetrahedron. The tetrahedron is then divided into several
slices limited by two iso-surfaces (Figure 2). In each slice,
the transfer function (both color and opacity) varies linearly
and an analytic solution is used to compute the slice’s con-
tribution [13, 26], which can be then composed in back-to-
front or front-to-back order.

Figure 2. Piecewise linear transfer function
(left) and the tetrahedron slice defined by the
region between two control points (right).



However, analytically solving Equation 1 can be too ex-
pensive to be implemented in GPU and subject to numeri-
cal inaccuracies. In order to overcome this problem, More-
land and Angel [13] devised a new formulation for a fast
integration of linear segments, which can be easily imple-
mented in a fragment program. They called it partial pre-
integration. Given C(λ) = Cb(1 − λ/l) + Cf (λ/l) and
τ(λ) = τb(1− λ/l) + τf (λ/l), Equation 1 becomes:

I(l) = I0ζ(l, τ(λ)) + Cb (ψ(l, τ(λ))− ζ(l, τ(λ))) +
Cf (1− ψ(l, τ(λ)))

(2)
with

ζ(l, τf , τb) = e−
l
2
(τf +τb) (3)

and

ψ(γf , γb) =

∫ 1

0

e
−

∫

1

λ

(

γb
1−γb

(1−λ′)+
γf

1−γf
λ′

)

dλ′

dλ (4)

where

γ ≡
τ l

τ l + 1
; γ ∈ [0, 1)

As Equation 4 is independent of the transfer function, it
can be computed in a pre-processing step and stored in a
conventional 2D texture map for later lookup. Equation 3
and, then, Equation 2 can be efficiently computed in the
fragment program, with only a few instructions. The advan-
tage of this technique is that it produces very accurate im-
ages and allows the use of multidimensional transfer func-
tions.

A 2D texture is also used by Roettger et al. [18] for vi-
sualizing opaque iso-surfaces with direct volume rendering.
Given the values sf and sb, the color of the first iso-surface
hit by the ray inside a tetrahedron is stored in the texture,
as illustrated in Figure 3. Consequently, the contribution of
a tetrahedron along a ray is determined by a single texture
lookup.

3. Hardware-based ray-casting algorithms

Weiler et al. [21] have proposed a GPU implementation
of ray-casting, based on the algorithm presented by Bunyk
at al. [3]. The idea of this algorithm is illustrated in Fig-
ure 4. The ray is propagated along the tetrahedral mesh
using a simple adjacency-based topological data structure,
which is entirely stored in texture memory. The propaga-
tion of the ray is started by rasterizing the front faces on
the mesh’s boundary. At each step, the contribution of a
tetrahedron is computed by accessing the 3D texture with

Figure 3. Texture map used to determine the
color of the ray segment between sf and sb,
for three iso-surfaces: siso1, siso2 and siso3.
The regions in white represent the values for
which no iso-surface is hit.

the pre-integration results (after computing the values of sb

and l, as described in the next paragraph). The exiting point
of a tetrahedron is the entering point to the next one. This
process continues until the ray leaves the mesh. The inter-
mediate results are stored in textures to be accessed by the
next step. With the current capabilities of modern graphics
cards, all contributions along the ray can be computed using
a loop construction in the fragment program, thus avoiding
the need for storing a few intermediate results.

Figure 4. Ray propagation from cell to cell.

For computing the contribution at each step, we need ac-
cess to the current tetrahedron index, t, the ray parameter at
the entry point, λ, and the accumulated associated color and
opacity. As front-to-back composition is used, it is possible
to optimize the algorithm for high opacities by terminating
the ray propagation early. Considering a parametrized ray
starting at the eye position e, the ray parameter for the in-
tersection with the plane of the ith face of the tetrahedron
can be computed as:



λi = −
(e · nt,i + ot,i)

d · nt,i

(5)

where (nt,i, ot,i) is the plane equation of the face ft,i,
and d is the normalized ray direction. The exiting point
is computed as xb = e + λid, and the length of the
ray segment inside the tetrahedron is then given by l =
min (max (λi, 0))−λ. The scalar value at the exiting point,
sb = s(xb), can be computed with the following equation:

s(xb) = gt · xb + (s(x0)− gt · x0) = gt · xb + gt (6)

where x0 is an arbitrary position inside the tetrahedron (e.g,
one of its vertices) and gt is the gradient of the scalar field
inside the tetrahedron. For linear tetrahedral meshes, the
scalar term, gt = s(x0) − gt · x0, can be computed in a
pre-processing step.The original algorithm was limited to
convex meshes. Later, Bernardon et al. [2] and Weiler et al.
[23] have proposed the use of the depth-peeling technique
[6] to deal with non-convex meshes.

Due to graphics card limitations at the time the original
algorithm was developed, Weiler et al. [21] have used a data
structure that requires at least 144 bytes/tet, thus imposing
significant restrictions on the size of the model to be han-
dled. In their following up work, Weiler et al. [23] proposed
to represent the meshes by strips of tetrahedra, thus requir-
ing 76 bytes/tet. In both cases, the authors have suggested
variants of the data structure: deriving information in the
fragment program, using reduced representations to store
information, etc. In doing that, the memory space for stor-
ing an ideal strip representing the model can be drastically
reduced to 15 bytes/tet. However, this reduced representa-
tion comes along with a significant performance cost [23].
While encoding tetrahedral strips is an interesting approach
to reduce memory consumption, it introduces an additional
complexity to the algorithm.

4. Proposed ray-casting algorithm

In order to achieve better image quality and to allow the
interactive modification of the transfer function, we propose
a new hardware-assisted ray-casting algorithm using par-
tial pre-integration. Also, aiming to balance the trade-off
among storage space, performance, and simplicity, we have
opted for using an alternative data structure.

4.1. Texture-based data structure

In our implementation of the hardware-based ray-casting
algorithm, we have opted for using a variant of the original
data structure. We have focused on a data structure that
is more compact than the original (described in [21]), but

conceptually less complex than the texture-encoded tetra-
hedral strips (described in [23]). We have also opted for
a performance-optimized data structure, thus avoiding the
need of deriving information in the fragment program and
the use of reduced representations (all floats are 32-bit val-
ues). Table 1 presents the proposed data structured.

Table 1. Data structure used to store the
model mesh for the ray-casting algorithm: t
is the index of a tetrahedron; (nt,i,ot,i) is the
plane equation of the ith tetrahedron face; gt

and gt are, respectively, the gradient of the
scalar field inside the tetrahedron and the
scalar term of the Equation 6; and at,i is the
index of the tetrahedron which is adjacent to
the ith face.

Texture Coord. Data
u v r g b a

Normal0 t nt,0 ot,0

Normal1 t nt,1 ot,1

Normal2 t nt,2 ot,2

Normal3 t nt,3 ot,3

Gradient t gt gt

Adjacency t at,0 at,1 at,2 at,3

This data structure requires 96 bytes/tet, which is less
than the 144 bytes/tet of the original implementation, but
more than the 76 bytes/tet of the performance-optimized
version of texture-encoded tetrahedral strips. We believe its
simplicity compensates for the additional memory space.

4.2. Partial pre-integration

We propose the use of partial pre-integration [13] to
implement a new hardware-based ray-casting algorithm.
Our implementation is inspired in the technique used by
Roettger et al. [18] to render opaque iso-surfaces.

The actual transfer function is represented by a piece-
wise linear approximation, described by a sequence of con-
trol points (Figure 2). It suffices to have a good piecewise
linear approximation of the transfer function for ensuring
high accuracy. Each control point represents an iso-surface
of the scalar field. In a linear tetrahedron, the iso-surfaces
are planar and the transfer function is linear between two
consecutive iso-surfaces. As a consequence, the volume
rendering integral can be accurately evaluated using partial
pre-integration.

At each step of the ray-casting algorithm, we are given
the front scalar (sf ) computed in the previous step, and are
able to compute the back scalar (sb) using Equation 6. In
order to integrate the linear segments along the viewing ray



inside a tetrahedron, we detect the value of the first iso-
surface associated to a control point (siso) between sf and
sb. We then integrate the segment from sf to siso, using the
formulation by Moreland and Angel [13]. The integration
continues by setting siso as the new sf value and repeating
the process, trying to find the next crossed iso-surface. If
there is no iso-surface between sf and sb, we integrate the
ray from sf to sb, reaching the end of the tetrahedron. The
process then continues through the adjacent tetrahedron un-
til the ray reaches an external boundary of the mesh. This
algorithm is similar to the original ray-casting procedure,
but we perform some additional propagation steps in which
the ray remains inside the same tetrahedron.

In order to detect the first iso-surface crossed by the ray
between sf and sb, we make use of a 2D texture, like the
one employed by Roettger et al. [18]. However, instead of
iso-surface colors, our texture stores normalized scalar val-
ues representing iso-surfaces (siso), or -1 representing the
absence of an iso-surface between sf and sb. Thus, given
sf and sb, we access the texture and find the iso-surface be-
tween them. In order to correctly deal with sampling prob-
lems, the texture also stores the value of the consecutive
iso-surface (next siso or -1), whose use is described in the
following example.

Let us consider the existence of a transfer function rep-
resented by three control points, which define the following
iso-surfaces: siso1 = 0.25, siso2 = 0.5 and siso3 = 0.75.
The 2D texture is coded as illustrated in Figure 5. If we
now consider a ray crossing a tetrahedron with sf = 0.2
and sb = 0.7, the 2D texture lookup provides the first iso-
surface value, siso = Tex2D(0.2, 0.7) = 0.25. The con-
tribution from 0.2 to 0.25 is then computed. For the next
iteration, we set sf = siso = 0.25 and repeat the texture
lookup. However, due to sampling problems, if sf rep-
resents the value of an iso-surface, two different positions
may be accessed. In this example, for sf = 0.25, the near-
est accessed position can report siso = 0.5, which would be
correct, or siso = 0.25, which would cause the algorithm
to loop forever. In order to disambiguate such occurrences,
we use the second value stored in the texture (next siso).
If sf is equal to the reported siso, we must proceed to the
next iso-surface (siso = next siso). So, the next integrated
segment goes from 0.25 to 0.5, and sf is set to 0.5 for the
next iteration. Now, we have sf = 0.5 and, accessing the
texture, get siso = 0.75. As sb = 0.7, siso is not inside
the tetrahedron, and the integration goes from sf to sb. The
algorithm then proceeds to the next tetrahedron.

The pseudo-code in Figure 6 illustrates one step of the
described algorithm. The parameters passed for each prop-
agation step are the current tetrahedron index, t, the enter-
ing ray parameter, λ, and the accumulated associated color
and opacity, (R,G,B,A). After step execution, the cor-
responding parameters for the next step are returned. The

algorithm proceeds until the ray leaves the mesh (when the
tetrahedron index is invalid).

Figure 5. Texture map used to determine the
next iso-surface crossed by the viewing ray
inside a tetrahedron. The image illustrates
a transfer function defined by three control
points: siso1 = 0.25, siso2 = 0.5 and siso3 = 0.75.

Whenever the transfer function is modified, only the 2D
texture must be updated. This update is quite fast, allow-
ing interactive modifications of the transfer function. For
dealing with non-convex meshes, we use depth-peeling, as
proposed by Bernardon et al. [2] and Weiler et al. [23].

5. Experimental results

In order to test the proposed algorithm, we have run a
set of computational experiments. The tests were run on
a NVIDIA GeForce 6800 GT graphics card with 256MB
of memory and AGP 8X on a 2.53MHz Intel Pentium 4
machine with 512MB of memory. The vertex and frag-
ment programs were implemented using the Cg language
[15, 16], with the vp40 and fp40 profiles. The data sets used
are presented in Figure 7. The Fixed Bar and the Wheel data
sets are finite-element models. The Bluntfin and the Liquid
Oxygen Post data sets are results of fluid simulations avail-
able at the NASA’s NAS website [14]. The reported times
were achieved by redrawing the model for several different
fixed viewpoints in a 512x512 viewport. For all the imple-
mentations, we have disabled early ray termination.

For comparison purposes, we have implemented the
view-independent cell projection (VICP) algorithm as de-



HARC PartialPreInt Step(t, λ, (R,G,B,A))
1. λ′ ←∞
2. t′ ← 0
3. for i← 0 to 3 do
4. if (d · nt,i) > 0 then
5. λtmp ← − (e · nt,i + ot,i) / (d · nt,i)
6. if λtmp < λ′ then
7. λ′ ← λtmp

8. t′ ← at,i

9.
10. sf ← gt · (e + λd) + gt

11. sb ← gt · (e + λ′d) + gt

12. l← λ′ − λ
13. (siso, next siso)← Tex2D(sf , sb)
14. if siso 6= −1 then
15. if sf = siso then
16. siso ← next siso

17. if abs(sb − sf ) > abs(siso − sf ) then
18. t′ ← t
19. l← l(siso − sf )/(sb − sf )
20. λ′ ← λ+ l
21. sb ← siso

22.
23. (r, g, b, a)← IntegrateRaySegment(sf , sb, l)
24. (R,G,B,A)′ ← (R,G,B,A) + (1−A) · (r, g, b, a)
25. return (t′, λ′, (R,G,B,A)′)

Figure 6. Pseudo-code for one step of the
propagation of a viewing ray in the proposed
algorithm.

scribed by Weiler et al. [22], using a 1283 8-bit RGBA pre-
integrated texture and the MPVONC algorithm [24] for the
visibility ordering of the cells. We have also implemented a
variant of the VICP algorithm (named VICP-GPU), storing
the model in graphics memory and, hence, eliminating the
high cost of transferring data through the graphics bus. The
original hardware-based ray-casting (HARC) algorithm was
implemented using a 1283 8-bit RGBA and dynamic loop-
ing capabilities of the GeForce 6800 GT graphics card. For
this implementation, we used the data structure described in
Section 4.1.

Table 2 shows the achieved results. As can be noted, by
storing the data in graphics memory we were able to sig-
nificantly improve the VICP performance, but our imple-
mentations are still limited by the visibility ordering of the
cells. For this reason, our implementation of the original
HARC presents better performance with the larger models
(these models fit well in the available graphics memory).
Recently, Callahan et al. [4] have proposed a hardware-
assisted visibility-ordering algorithm for cell projection, re-

porting a rendering rate from 1.5M to 1.8M tets/sec1 for
different models (ranging from 240K to 1.4M cells).

(a) (b)

(c) (d)

Figure 7. Images of tetrahedral meshes ren-
dered with our proposed ray-casting algo-
rithm using partial pre-integration: (a) Fixed
Bar model with 27,691 tets; (b) Wheel model
with 31,725 tets; (c) Bluntfin model with
224,874 tets; (d) Liquid Oxygen Post model
with 616,050 tets.

For the proposed ray-casting algorithm with partial pre-
integration, we have tested approximating the transfer func-
tion with 10 and 255 linear segments. The performance of
the algorithm decreases as the number of linear segments in-
creases, because more steps are necessary to propagate the
ray. Moreland and Angel [13] reported a growth of 3% to
4% in the number of steps for each additional control point
in the transfer function. Nevertheless, as shown in Table 3,
the performance achieved using 10 segments is competitive
with the pre-integration approach. Even with 255 segments,
the performance was better than VICP for the larger models.
However, it is important to mention that, for highly non-
convex meshes, the application of the depth-peeling tech-
nique may be expensive, thus decreasing the performance
of ray-casting algorithms.

With the proposed hardware-based ray-casting with par-
tial pre-integration, we have been able to generate images

1Callaham et al. [4] have used an ATI Radeon 9800 graphics card in
their experiments.



Table 2. Comparison of the achieved results
of the VICP, VICP-GPU, and HARC algorithms.
The table shows the minumum and maximum
achieved values, considering different view-
points.

Data set VICP VICP-GPU HARC
fps tet/s fps tet/s fps tet/s

Fixed bar 9.84 272K 24.63 682K 8.76 243K
10.67 295K 26.67 739K 14.88 412K

Wheel 8.76 278K 22.08 700K 7.80 247K
9.28 294K 22.88 726K 14.53 461K

Bluntfin 1.26 283K 3.09 695K 6.09 1.37M
1.36 306K 3.50 787K 8.76 1.97M

Oxygen 0.46 283K 0.98 604K 3.40 2.09M
0.47 290K 1.21 745K 5.91 3.64M

Table 3. Comparison between the original
HARC algorithm and the proposed HARC with
partial pre-integration. The table shows the
minumum and maximum achieved values,
considering different viewpoints.

Data set HARC-Full HARC-Partial HARC-Partial
(10 segments) (255 segments)

fps tet/s fps tet/s fps tet/s
Fixed bar 8.76 243K 6.27 174K 2.41 67K

14.88 412K 1.22 311K 4.81 133K
Wheel 7.80 247K 7.35 233K 3.86 122K

14.53 461K 10.67 339K 7.19 228K
Bluntfin 6.09 1.37M 3.50 787K 2.98 670K

8.76 1.97M 7.11 1.60M 5.04 1.13M
Oxygen 3.40 2.09M 2.32 1.43M 1.22 752K

5.91 3.64M 4.21 2.59M 2.38 1.47M

with significant superior quality if compared to the results
achieved by using full pre-integration, because no artifact
due to under-sampling the full numerical pre-integration ex-
ists. This is especially important for meshes with cells of
different sizes, as illustrated in Figure 8. Recently, Kraus at
al. [10] have proposed the use of a logarithmic scale for the
pre-integrated color lookup table to remove artifacts from
the full pre-integration for cell-projection.

6. Conclusion

The proposed hardware-based ray-casting algorithm us-
ing partial pre-integration has shown to be competitive with
the full pre-integration approach while ensuring high qual-
ity and accurate images, thus being appropriate to be inte-

Figure 8. Difference in image quality achieved
by the HARC algorithm with full pre-
integration (at the top) and by the proposed
algorithm with partial pre-integration (at the
bottom).

grated into actual scientific applications. It also allows in-
teractive modifications of the transfer function, which can
help the user to inspect the model.

In our implementations, ray-casting performs better than
cell projection for the larger models, because it eliminates
the high costs involved in ordering and transferring data.
However, the graphics memory can be a limiting factor in
the use of ray-casting. Nevertheless, the next generation of
graphics cards will have up to 512Mb of graphics memory,
which is sufficient to represent very large meshes, even us-
ing the simple data structure described in Section 4.1 (which
requires 96 bytes/tet). We believe that the conception of
texture-based compact data structures for handling dynamic
meshes is a promising research topic.

One additional advantage of the ray-casting approach is
that the rays are processed in parallel, being the appropriate
choice for sort-first distributed visualization using clusters



of PCs [1]. We also believe that the ray-casting approaches
will greatly benefit from the upcoming graphics card gener-
ations.

Acknowlegments

During this research, the first author was financially sup-
ported by the Brazilian agency CAPES (Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior). We thank
the support for conducting this research provided by the
Tecgraf laboratory at PUC-Rio, which is mainly funded by
the Brazilian oil company, Petrobras.

References

[1] F. R. Abraham, W. Celes, R. Cerqueira, and J. L. E. Campos.
A load-balancing strategy for sort-first distributed rendering.
In Proceedings of SIBGRAPI ’2004. IEEE Computer Soci-
ety, 17–20 Oct. 2004.

[2] F. F. Bernardon, C. A. Pagot, J. L. D. Comba, and C. T.
Silva. GPU-Tiled Ray Casting using Depth Peeling. Tech-
nical report, UUSCI-2004-006, SCI Institute, University of
Utah, 2004.

[3] P. Bunyk, A. Kaufman, and C. T. Silva. Simple, Fast, and
Robust Ray Casting of Irregular Grids. In DAGSTUHL ’97:
Proc. of the Conference on Scientific Visualization, page 30,
Washington, DC, USA, 1997. IEEE Computer Society.

[4] S. P. Callahan and J. L. D. Comba. Hardware-Assisted Vis-
ibility Sorting for Unstructured Volume Rendering. IEEE
Transactions on Visualization and Computer Graphics,
11(3):285–295, 2005.

[5] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading.
In Proc. of the ACM SIGGRAPH/EUROGRAPHICS Work-
shop on Graphics Hardware, pages 9–16, New York, NY,
USA, 2001. ACM Press.

[6] C. Everitt. Interactive Order-Independent Trans-
parency. Technical report, NVIDIA Corporation,
http://developer.nvidia.com, 2001.

[7] R. Farias, J. S. B. Mitchell, and C. T. Silva. ZSWEEP: an
efficient and exact projection algorithm for unstructured vol-
ume rendering. In Proc. of the 2000 IEEE symposium on
Volume visualization, pages 91–99, New York, NY, USA,
2000. ACM Press.

[8] G. Kindlmann and J. W. Durkin. Semi-automatic generation
of transfer functions for direct volume rendering. In Proc.
of the 1998 IEEE symposium on Volume visualization, pages
79–86, New York, NY, USA, 1998. ACM Press.

[9] J. Kniss, G. Kindlmann, and C. Hansen. Multidimen-
sional Transfer Functions for Interactive Volume Rendering.
IEEE Transactions on Visualization and Computer Graph-
ics, 8(3):270–285, 2002.

[10] M. Kraus, W. Qiao, and D. S. Ebert. Projecting Tetrahedra
without Rendering Artifacts. In VIS ’04: Proceedings of the
conference on Visualization ’04, pages 27–34, Washington,
DC, USA, 2004. IEEE Computer Society.

[11] A. Lefohn, I. Buck, J. D. Owens, and R. Strzodka. GPGPU:
General-Purpose Computation on Graphics Processors, Tu-
torial no. 3. In Proc. of IEEE Visualization 2004, 2004.

[12] N. Max. Optical Models for Direct Volume Rendering.
IEEE Transactions on Visualization and Computer Graph-
ics, 1(2):99–108, 1995.

[13] K. Moreland and E. Angel. A Fast High Accuracy Vol-
ume Renderer for Unstructured Data. In VV ’04: Proceed-
ings of the 2004 IEEE Symposium on Volume Visualization
and Graphics (VV’04), pages 9–16, Washington, DC, USA,
2004. IEEE Computer Society.

[14] NASA. NAS - NASA Advanced Supercomputing Division,
2005. http://nas.nasa.gov.

[15] NVIDIA. NVIDIA, Cg Toolkit User’s Manual: A Devel-
oper’s Guide to Programmable Graphics, release 1.2, 2004.
http://developer.nvidia.com.

[16] NVIDIA. NVIDIA GPU Programming Guide Version 2.2.1,
2004. http://developer.nvidia.com.

[17] S. Roettger and T. Ertl. A two-step approach for interactive
pre-integrated volume rendering of unstructured grids. In
VVS ’02: Proceedings of the 2002 IEEE symposium on Vol-
ume visualization and graphics, pages 23–28, Piscataway,
NJ, USA, 2002. IEEE Press.

[18] S. Roettger, M. Kraus, and T. Ertl. Hardware-accelerated
volume and isosurface rendering based on cell-projection.
In VIS ’00: Proceedings of the conference on Visualization
’00, pages 109–116, Los Alamitos, CA, USA, 2000. IEEE
Computer Society Press.

[19] P. Shirley and A. Tuchman. A polygonal approximation to
direct scalar volume rendering. In VVS ’90: Proceedings of
the 1990 workshop on Volume visualization, pages 63–70,
New York, NY, USA, 1990. ACM Press.

[20] C. M. Stein, B. G. Becker, and N. L. Max. Sorting and hard-
ware assisted rendering for volume visualization. In Proc. of
the 1994 Symposium on Volume Visualization, pages 83–89,
New York, NY, USA, 1994. ACM Press.

[21] M. Weiler, M. Kraus, M. Merz, and M. Ertl. Hardware-
Based Ray Casting for Tetrahedral Meshes. In Proc. of IEEE
Visualization ’03, pages 333–340, 2003.

[22] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-Based
View-Independent Cell Projection. IEEE Transactions on
Visualization and Computer Graphics, 9(2):163–175, 2003.

[23] M. Weiler, P. N. Mallon, M. Kraus, and T. Ertl. Texture-
Encoded Tetrahedral Strips. In Proc. of the 2004 IEEE Sym-
posium on Volume Visualization and Graphics, pages 71–78,
Washington, DC, USA, 2004. IEEE Computer Society.

[24] P. L. Williams. Visibility-ordering meshed polyhedra. ACM
Trans. Graph., 11(2):103–126, 1992.

[25] P. L. Williams and N. Max. A volume density optical model.
In Proc. of the 1992 Workshop on Volume Visualization,
pages 61–68, New York, NY, USA, 1992. ACM Press.

[26] P. L. Williams, N. L. Max, and C. M. Stein. A High Accu-
racy Volume Renderer for Unstructured Data. IEEE Trans.
on Visualization and Computer Graphics, 4(1):37–54, 1998.

[27] B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno. Tetrahe-
dral projection using vertex shaders. In Proc. of the 2002
IEEE Symposium on Volume Visualization and Graphics,
pages 7–12, Piscataway, NJ, USA, 2002. IEEE Press.


