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Abstract

A new approach to shape estimation from shading in-
put has been recently introduced through the processes of
disparity-based photometric stereo (DBPS) and Green’s
function shape from shading (GSFS). Both processes start
from a pair of constraints - a matching constraint and a
photometric constraint - to arrive at a closed-form expres-
sion for the depth function of the imaged surface. In DBPS,
the matching equation is solved for the disparity map, given
a pair of photometric stereo images, while in GSFS, which
extends the previous approach to single-input reconstruc-
tion, that equation is solved for the matching image, via
Green’s function. Adopting a similar framework, we have
recently used photometric and matching constraints for de-
riving a new approach to the photometric-motion shape es-
timation problem. Here we show how we can extend that
process to the single-input case, via Green’s function. This
yields high quality shape-from-shading estimates, even from
real input obtained under complex illumination.

1. Introduction

Shape estimation from shading input has traditionally
been based solely on the photometric aspects of image
formation, expressed through the reflectance map function
[1, 2]. The reflectance map relates the irradiance at each im-
age point to the gradient at the corresponding location in the
scene, via the image irradiance equation,�����
	�����������
	���

(1)

where �������� � 	����! "�#�$���� � (2)

are the surface gradient components, and
�

is the re-
flectance map.

Recently, a new framework has been introduced which
incorporates more geometry into the monocular reflectance-
map based shape estimation processes (shape from shad-
ing and photometric stereo), by also making use of im-
age matching information. This approach was pioneered
with the disparity-based photometric stereo (DBPS) [3], and
later extended with the Green’s function shape from shad-
ing (GSFS) [4].

In DBPS, given a pair of photometric stereo images
(monocular images captured under different illuminations),
a linear irradiance equation is assumed for the difference
image, % �'&��)(+*,�.-/��021+3405(6�'3708-.�

(3)

and a linearized matching equation is also introduced,% �9�;:<� �=-� � 3?>@� �=-� � (4)

to yield the optical flow field,
�A:B	�>C

.
Equating (3) and (4), there results a differential equa-

tion for the surface function � �A�
	D�� , whose solution can be
found if the matching is performed along a direction deter-
mined by the linear reflectance map components, namely, if>FEG:��H08-)E205(I&;J

.

Under similar conditions, this approach can be extended
to single-input shape estimation, through the Green’s func-
tion shape from shading, provided that the matching equa-
tion

�.-2�A��3K:L#�$�M(2���N
is solved for the equivalent to the

second photometric stereo image. Taken up to second or-
der in

:
, such equation becomes: -O � - �=-� � - 3?:<� �=-� � 37�=-P���)( (5)

and, assuming uniform
:

,
�2-

can be found as�=-5���B	D�Q3RJN��S�"T5UWV#XN�A�Y*Z��[\6�M(2����[]	��^3?J���[_D`2��[
(6)

where a is the image domain. The function
V X ���,*;� [ 

,
called the Green’s function, is a solution to (5) when an im-
pulse function is substituted for its right-hand side, and can



be given asV#X��A�Y*,�b[\S�$c -XedDf ��gbh�iNhMjXlkem i<nMo=p8o jq$r �ts4� [u �tv4� [ (7)

Once
�.-

is obtained through (6), and assuming a linear irra-
diance equation for

�2(
, shape estimation proceeds in GSFS

along similar lines as in DBPS.

Here we will show that the Green’s function procedure
which allowed us to go from photometric stereo to shape
from shading (i.e., from two-image to single-image shape
estimation) can also be followed starting from a photomet-
ric motion process.

Photometric motion was introduced by Pentland [5], bas-
ed on his observation that, for surfaces under rotation rela-
tive to the camera, the photometric effects of motion - i.e.,
the intensity change of a moving point - could dominate
the purely geometric effects, due to projective distortion. In
his formulation, Pentland considered a quadratic Taylor se-
ries expansion of the reflectance map, supposed symmet-
ric and separable. He also assumed that regions of approxi-
mately linear motion could be identified, allowing the regis-
tration of points, in successive frames, which corresponded
to the same position on the moving surface. Under such con-
ditions, Pentland found that the intensity difference of the
registered points was associated to a linear reflectance map,
and he thus employed his linear shape from shading algo-
rithm [6], for shape estimation in the Fourier domain.

Recently, we have introduced an alternative formulation
for photometric motion [7], a distinctive feature of which is
that of being based on the intensity change, due to the mo-
tion, at a fixed location in the image plane, and not, as in
the original formulation, at a given point on the moving sur-
face. Here we show how such approach can be extended to
single-input reconstruction, also via Green’s function, thus
leading to better surface estimates than with GSFS.

2. Photometric Motion

Here we review the photometric motion formulation in-
troduced in [7]. Let us consider a surface � �A�
	��F , rotat-
ing about the

�
and

�
axes of a static reference frame, and

imaged under orthographic projection. The surface motion
gives rise to an optical flow, which we will assume identi-
cal to the motion field w �x�A:B	�>C , for:�� `8�`2y ��z � 	����b H>9� `2�`8y �{*}| � (8)

where
|

and
z

are the angular velocity components along
the
�

and
�

directions, respectively. From the motion equa-
tions, we also get` �`8y & ���� y 3 ���� � `2�`8y 3 ���� � `8�`2y ��|}�9*,z~� (9)

and, from the above,���� y �x*}zW� � ���'3RJL���3��A��3?J����� (10)

where
�

and
�

are the surface gradient components, as in
(2), and where we have definedJ���* |z & >: (11)

Equation (11) implies that, for a uniform rotation, the mo-
tion field is one-dimensional, the optical flow thus reducing
to a disparity map.

Now, let us assume that the image irradiance can be ex-
pressed, in terms of surface gradient, through the linear
form �'��0�1+340C(��'3402-)�^&H0�1<370C(����'3RJL��

(12)

where
05-�E�0C(?��J

, for the same
J

as introduced in (11).
This means that the surface is assumed to be rotating about
an axis perpendicular to the projection of the “generalized
illuminant” - i.e.,

��0!(G	�02-2	�021�
[6] - over the

�!�
-plane.

The irradiance change due to the motion, at any given
image point, can be expressed as% �'&�����y@*R��yD@*R�b�AyDS�{*Y� �� y ��y (13)

where
��y

is the time discretization factor, which will be as-
sumed equal to � . Using (12) and (10), we thus get% �0C( �{*Y� ���'3?JN��� y &{*��?�� � 3RJ��� ��� ���� y (14)

and % �0 ( � �5�I� z�� � ���'3?JN��B3��A�93RJN������ (15)

where we have defined�5� &��� � 3RJ��� � (16)

Again using (12), there results% �'� �5�I� zW� � �]�#*?0�1G
3405(����93?J�����]� (17)

and substituting
z��;:�E � , from equation (8), we finally ar-

rive at % �'� �5��� :��]�#*�0�1�
3 0 ( :� �A�93RJN����
(18)

Equation (18) relates the shape of the imaged surface to
its observables: the image sequence and the optical flow. To
obtain from it an estimate of the surface function, we now
introduce, in the spirit of DBPS, the appropriate matching
equation. We choose it as the affine optical flow relation% �'� � :Y*K� �5� :N � �'3RJN�� 3?J - � � �5� � (19)
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Figure 1. Mannequin image (a), and the result of
filtering it, according to (26), along the horizontal
direction (b), and along a direction �/����� from the
horizontal (c) (i.e., for �'�7� and �'�?�2���� )¡ , respec-
tively). Images (b) and (c) are approximate rendi-
tions of the same surface as in (a), but rotated, re-
spectively, about the vertical, and about the axis
of the mannequin’s nose (Green’s function param-
eters: ¢^��£ and ¤¥�?��� £ , in both cases).

which has the expected form for such one-dimensional
matching, as can be seen by recasting it as% �'�x�_¦ w ¦�*§�A¨�©Mª�=�]«�¦ w ¦�©.ª����«'�~©Mª (20)

where
¨��¬���B	D��

, and
¦ w ¦ is the magnitude of the dispar-

ity vector w ��:�� � 	DJL , which points along the matching di-
rection

ª/�x�A=® dF¯ 	 dDf � ¯  , for ° �2� ¯ �;J .
Equating (18) and (19), we get a differential equation for� , a solution to which is given by

� �A�
	D��S�{* 0 ( � � 3?J - 6:� �5� :L=�]�#*�0�1� (21)

as can easily be verified by direct substitution, provided the
term in � -� : is neglected. It is also easy to see that the same
result would obtain if the reflectance map coefficients,

0L1
and

0F(
, varied as functions of

���'*±JN��
.

Once successive images of the rotating surface are
matched according to (19), equation (21) can be used for
recovering the surface function � from the

:
and ��� : es-

timates, as discussed in [7]. Here we will show how the
same approach can be extended to the single-input case, in
what will be called the Green’s function photometric mo-
tion (GPM).

3. Single-Image Approach

The single-image version of our photometric motion ap-
proach is based on the introduction of a Green’s function

which relates the matching image to the input image accord-
ing to equation (20). Since that is a one-dimensional expres-
sion, we may, without loss of generality, denote the match-
ing direction by

�
. We thus require our images to be related

as % ��&;�M(+*R�=-/����:�1I*,:L(���S� �=-� � (22)

where
� (

is the input image,
� -

is the image derived from
it through the Green’s function, and

:�1
and

:
(
are con-

stants associated, respectively, with the disparity map and
its derivative.

We propose our Green’s function as the Gabor-like formV¥���
	��b[\�� O�²³ - d�f � � ² ���Y*,� [ ³ - � m ie´=µ o�¶5·D¸�¹.p µ o j ¶5·D¸�¹¹�º ¹ » (23)

for
�{s¼� [

, with
Vl� u

for
�{v�� [

. When
�B	D� [ v#v ²

,V
tends to the

V~X
of equation (7), for

:4� ³ - E ² , but it is
not translation invariant, neither normalized. Denoting by�2½Ly=�A��

its integral over all
� [

, we can define its normalized
version as ¾ �A�
	�� [ �� V¥�A�
	�� [ �8½Ly=���N (24)

where, for small values of ³ - E ² ,�8½Ly=���N�¿ O�² -�A�93 ²  - 3 ² - (25)

which tends to � for
��v#v ²

.
Given the input image

� ( ����
, we generate its matching

pair through �=-8�A����"T5U ¾ �A�
	D��[_D�M(8����[ÀD`2��[
(26)

The relation between
��(

and
�.-

can then be easily obtained
as �M(P� �O � ³ -² � - �8½Ly6�5[ [- 3
3�Á O � ³ -² � - �8½Ly [ 3 � ³ -² 3?� ³ -² - � �8½Ly�Â^� [- 37�=- (27)
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Figure 2. Estimation from mannequin image. (a)
to (c): Renditions of the estimated surface func-
tion in (d), with lambertian reflectance map and
uniform albedo, for illumination from (1,1,1), (1,-
1,1), and (-1,1,1); (d) Surface function estimated
from Fig. 1(a) through the GPM approach ( �Ã��2���= M¡ , ¢e��£ , ¤�������� ).

and, to first order in ³ - E ² and for
¦ �@¦Fv#v ²

, becomes% ���Ä� ³ -² 3?� ³ -² - � �5[- (28)

where the primes denote differentiation with respect to
�

.
Comparing (28) to (22), we see that the proposed Green’s

function leads to the required matching relation, for:b1/� ³ -² ���! H:L(I�{* ³ -² - (29)

Figure 1 presents an input image and its transformation
according to equation (26), for

JÄ� u
and

JÄ� u�Å ��Æ2Ç .
It shows that the filter

¾ ���
	�� [ 
has an effect consistent

with our goal of emulating rotations in the scene. Figure
2 presents the 3D reconstruction of the imaged surface, as
discussed in the following section.

Before we present our experiments, we should remark
that the form

�)-
in equation (26) is not the only one to sat-

isfy the required matching condition: other matching im-

ages result from the linear combination of
� -

with a solu-
tion to the homogeneous form of equation (27). Such a so-
lution can be obtained by filtering the input image by a formÈ����B	D� [ 

similar to
V¥���B	D� [ 

, but with a cosine substituted
for the sine function in equation (23).

V
and

È
display the

following significant property: when filtering certain Gabor-
function modulated signals, such as model the response of
the simple cells of the visual cortex [8], they yield similar
outputs, but for spatially shifted versions of the input sig-
nal. This can be proven thus: using the complex representa-
tion (and for

��s4� [
)�AÈÃ3�É�VQ=���B	D� [ S& O 0 m�Ê_Ë)Ì h�iNhMjÎÍ m i^´�µ o�¶5·D¸�¹=p µ o j ¶5·D¸�¹¹�º ¹ » (30)

where
0¥& ² E ³ - , we have for the filtered signal� - ����Ï& T U �AÈ�3�É�VQ=���B	D� [ D� ( ��� [ D`2� [

(31)

where �M(2����Ï� m ÊÀÐ h m i^´=µ o�¶8Ñ)¸ ¹¹�º ¹ » �����N (32)

After some trivial manipulation, (31) yields�.-8�A���� m�Ê�Ì_Ð h2iNÒ�Í m ie´ µ o�¶5ÑM¸�¹¹�º ¹ » �b�A�� (33)

where�����N�� O 0 T U m Ê�ÌÀÓ iNÔ8Í\Õ�Ö�× ¹ i Ì_Ó iNÔ8Í\Õ�Ö�× ¹ ������*ZØ2D`2Ø (34)



(a) (b) (c)

(d)
and Ù �Ú�]Û;*�Ü ³ - �EF�]ÛK* ²  . As can be verified (com-
pare with (5) and (6)), we have

�����N�&Ý�����§*{:L
, for:t� ³ - E�� ² *�Û@ . Such result means that

ÈÞ34É�V
provides

a link between the kind of left- and right-eye signals that
are inputs to the disparity-detecting complex cells of the vi-
sual cortex. Moreover, such link is exactly as predicted by
the so-called phase-difference model of disparity encoding
[9], a feature that lends biological plausibility to our shape
estimation approach.

4. Experiments

The initial step of the GPM shape estimation procedure
is the definition of the matching direction parameter

J
, and

of the Green’s functions parameters, ³ and
²
. Then, given

the input image
��(

, its matching pair,
��-

, is obtained by tak-
ing the integral in (26), along the chosen direction, over
the domain

¦ � [ ¦Nv#v ²
, such that the approximation in (28)

holds. Since the matching relation (26) is one-dimensional,³ and
²

- and thus also
: 1

and
: (

- can, in the general case,
be assumed to vary perpendicularly to the matching direc-
tion, i.e., as functions of

���Y*7J��N
, although we have here

considered them as uniform. The disparity field and its dif-
ferential,

:
and � � : , have thus been chosen, consistently

with our approximations, as:��;:�1Ï3 � �93RJN�� 3RJ - � :L(G	ß�2�! �5� :ß�K:�( (35)

Figure 3. (a) Lenna image; (b) and (c): Renditions
of the estimated surface function in (d), with lam-
bertian reflectance map and uniform albedo, for il-
lumination from (0.5,0.5,1) and (0,1,1). GPM param-
eters: ���?� , ¢^��£ , ¤�������� .

and, from the above, the function � �A�
	��F was estimated
through equation (21), with

� -
playing the role of

�
.

Since the reflectance map parameters,
0 1

and
0 (

, are usu-
ally not known, the reconstructions presented here were per-
formed up to the multiplicative factor

0
(
, and with

051
empir-

ically chosen (if the generalized illuminant vector were es-
timated, such as in [6], this would also inform us the match-
ing direction parameter,

J±&�0!-GE�0C(
). Even under such lim-

itations, we have been able to obtain shape estimates of re-
markable quality, as shown by the examples of Figures 2 to
4. The reconstruction from the Paolina image of Fig. 4 is
particularly noteworthy, due to the complex scene illumina-
tion.

5. Summary and Conclusions

Starting from a recently introduced formulation for
photometric-motion shape estimation, applicable for sur-
faces under uniform rotation about the

�
and

�
direc-

tions [7], we have extended this process to single-input,



(a) (b) (c)

(d)
shape-from-shading estimation, in what has been called the
Green’s function photometric motion (GPM).

Theoretically, under similar assumptions, the multiple-
image reconstruction considered in [7] is bound to yield
poorer shape estimates than the single-input GPM version
here introduced. This is because, by means of the Green’s
function, in GPM we generate a perfect match to the in-
put image, under the affine condition of equation (19). If
we use a real motion pair instead, we first have to solve the
tricky optical flow problem of trying to obtain uniform es-
timates,

: 1
and

: (
, such that equation (19) is satisfied. No

matter how the real image of the rotated surface looked, or
what matching algorithm we used, we can expect no better
solution than what would result from matching a single in-
put to its artificial pair, generated as above (incidentally, a
similar conclusion has been reached regarding the results
of the Green’s function shape-from-shading and those of
the disparity-based photometric stereo, the former always
showing higher quality). Such expectation has been con-
firmed by our experiments, which have consistently yielded
better results than those afforded by the multiple-input al-
gorithm of [7].

The reconstructions obtained via GPM are also far supe-
rior to those yielded by its forerunner, the Green’s function
shape from shading (see [4]), and, judging by the results
presented in a recent survey of shape from shading algo-
rithms [1], may be deemed among the best ever, at least for
the Lenna image. One reason why GPM outperforms GSFS
is because their shared assumption of one-dimensional op-

Figure 4. (a) Paolina image; (b) and (c): Rendi-
tions of the estimated surface function in (d), with
lambertian reflectance map and uniform albedo,
for illumination from (0,1,1) and (1,1,1). GPM pa-
rameters: �'�§àI� , ¢e�7£ , ¤����2��� .

tical flow holds for the former, as proven by equation (11),
but only approximately for the latter, as proven in [10].

As described in [11], the Green’s functions considered
here also find application in edge detection. It is interest-
ing to remark that a possible role for edge-detector cells in
SFS estimation has already been suggested by the computer
simulation work in [12].
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