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Abstract

Image morphing has been extensively studied in com-
puter graphics. Given two input images, morphing al-
gorithms produce a sequence of inbetween images which
transforms the source image into the target image in a visu-
ally pleasant way. In this paper, we propose an algorithm,
based on recent advances from texture-from-sample ideas,
which synthesizes a morphing sequence targeted specifi-
cally for textures. We use the idea of binary masks (ortexton
masks) to control the morphing sequence and guarantee a
coherent transition from the source texture to the target tex-
ture.

1 Introduction

The transformation of one source image into a target im-
age is a technique generally referred to in computer graph-
ics as two dimensional morphing, or justmorphing. Since
the introduction of the first morphing algorithm in the 1992
Black and White video [3], the power of this technique
is being extensively explored in the entertainment industry
(movies, games and television). One of the main issues re-
lated with these morphing techniques is the control of re-
sults. In order to achieve a visually smooth transition (for
instance, when morphing two faces, an eye in the source
image should map also to an eye in the target image) most
techniques make use of user-defined features which will
control the morphing process and guarantee a pleasant re-
sult. In this paper we address the morphing of textures1,
which are not amenable for control by features, since there
are no relevant features to start with. For example, consider
the two textures shown in Figure 1. Intuitively, one might
expect that each green structure should morph into a blue
structure. It is also obvious that a simple interpolation from

1It is relevant here to explain how images in general differ from tex-
tures. As presented in [21], for an image, different regionsdefined through
a moving square are perceived to be different, while for textures they are
perceived to be similar.

source pixels into target pixels will not, in general, result in
a good visual result, in the sense that the structures are not
preserved.

Figure 1. Two example textures.

A general solution to this problem for any two arbitrary
input textures is very hard. In [15] Liu and colleagues pre-
sented a solution to this problem. Their solution synthesizes
smooth morph sequences, however the user must specify a
correspondence between a pattern in the source image and
a pattern in the target image. We explore in this paper an
alternative approach without user intervention. Our main
idea is to use texton masks to control the transition of the
source texture into the target. The texton masks can be au-
tomatically computed from the original textures and help
identify elements in both textures. These elements, once
identified, can be made to morph into one another. This idea
explores recent advances in image-based texture synthesis,
particularly the synthesis of progressively variant textures
(PVTs) [24] in the context of morphing textures. At the
same time, since our solution is based on texture from sam-
ple ideas, the output resolution of the inbetween images can
be arbitrarily established. In Figure 2 we illustrate a result
from our algorithm.

2 Related Work

Our work combines research from texture synthesis from
samples and image morphing. Therefore we present the rel-
evant work in both areas.

Texture synthesis. Texture synthesis is an old research
subject in both Image Processing and Computer Graphics



Figure 2. Example of morphing sequence result. Image resolu tion = 64x64. N(pS) = 11, N(pT ) = 15.
For meaning of parameters see Section 3.

fields, with research going back as far as the late seven-
ties [16]. The many different models and approaches have
always tried to generate textures either to validate texture
models (mostly in Image Processing tasks) or simply to use
the result in some application. The idea of using a sam-
ple as input information to create the result has always been
present (see for instance [16, 17, 4, 8]). Until recently, de-
spite progress, such techniques were either too slow to be
of practical use or the results were not general enough to be
useful [9, 5, 18].

The work of Efros and Leung presented in 1999 [7] in-
troduced a new simple way of looking at this problem by
“growing” a texture one pixel at a time from an initial seed.
The color of a given pixel is determined by scanning over
square patches of the sample texture that are similar to the
patch on the texture being generated. A random patch in
the sample is selected among the few satisfying the simi-
larity criterion. The similarity is measured with aL2 norm
(sum of squared differences) weighted by a Gaussian ker-
nel. The original Efros and Leung’s algorithm is slow and
recent extensions have improved its performance, particu-
larly the work of Wei and Levoy [21]. They have used a
raster scan ordering to transform noise pixels into the result
texture and have also improved the performance of the algo-
rithm by using a multi-scale framework and vector quanti-
zation. Their approach also minimizes theL2 norm in RGB
space but without any weighting. Efros and Freeman intro-
duced yet another way of synthesizing image-based textures
by stitching together random blocks of the sample and mod-
ifying them in a consistent way [6]. They call the technique
“image quilting”. The idea improves dramatically on the
one-pixel-at-a-time approach since it builds the texture at a
much coarser scale while being able to keep high frequen-
cies of the sample. The same idea of using patches from the
sample to synthesize the result was explored by Lianget al
[13]. In this work they were able to achieve real-time gen-
eration of large textures using special data structures and
optimization techniques.

More recently, Zhang and colleagues introduced an
image-based texture synthesis method for rendering ofPro-
gressively Variant Textures(PVTs) [24]. Although not for-
mally defined in the paper, the concept of PVT is an im-

portant one for texture synthesis, since it captures the class
of textures where the texture elements vary in a progres-
sive fashion, typical examples being mammalian fur pat-
terns (e.g., leopard skin, Figure 3(a)). From an homoge-
neous texture sample they were able to synthesize a PVT.
One main idea in their work, explored in our approach, was
the notion oftexton masks. A texton mask is a binary im-
age marking prominent features or texture elements in the
texture. In their synthesis algorithm, the texton masks pre-
vent the disintegration of texture elements during synthesis.
In Figure 3 we illustrate a texton mask for a leopard skin
texture.

(a) Texture (b) Mask

Figure 3. Example of Leopard Texture and cor-
responding Texton Mask.

Image Morphing Image morphing techniques were intro-
duced in the movie Willow [19] and in the Black and White
video [3] and have become a very popular technique for spe-
cial effects. The main idea is to compute, given a source and
a target image, a sequence of images such that the user has
the feeling that somehow the source image transformed (or
it was morphed) smoothly into the target image. For im-
ages in general the problem can be broken down into three
steps [22, 23]: feature specification, warp generation, and
transition control. Feature specification is used to compute
a mapping function that defines the spatial relationship be-
tween the points in the source and target images; warp gen-
eration is concerned with how the feature specification is
used to derive changes for the whole image; transition con-
trol specifies the rate of warping and color blending across
the morph sequence. Many advances have been made since
the introduction of the first morphing techniques, partic-
ularly for computing the warp functions. The main ap-



proaches are mesh warping [19], field morphing [3], radial
basis functions [2], thin plate splines [10], energy minimiza-
tion [11], and multilevel freeform deformations [12].

Texture morphing can be viewed as a particular case of
image morphing. There is not much work targeted specif-
ically for this task. In [20], a solution is presented for a
related case where the images contain a single pattern ele-
ment and the morphing sequence maintains the pattern co-
herence throughout the transformation (for example, a baby
deer morphing into an adult deer). The closest approach to
ours is the work of Liuet al [15]. They presented a solution
for morphing a source texture into a target texture with the
user defining how apattern from the source texture maps
to a pattern into the target texture. A pattern is defined
as a “. . . semantic unit that composes a group of feature
points” [15]. Their solution suffers from a common draw-
back common to all feature-based transformations, which
is the specification of features. For textures in general there
are no relevant features that could be used for controlling
the transition. This makes the problem more interesting.
Simple interpolation will not, in general, map textons from
the source image into textons of the target image. We use
the definition of texton as a prominent group of pixels in the
texture, as presented in [24]. We illustrate in Figure 4 what
we mean by textons.

Figure 4. The idea of Textons.

Our approach computes a texton mask for the source and
target images and uses this mask to control the interpola-
tion, as presented in the next section.

3 Our Solution

The main idea behind our solution is the use of texton
masks to control the morphing process. Basically, we want
to guarantee that a texton from the source image will map
to a texton in the target image. We augment the texture
synthesis process of Wei&Levoy [21] (here called theWL
algorithm) with the information from the masks, inspired
on the use of masks from [24].

Our algorithm is an extension on the basic algorithm of
Wey and Levoy [21] and therefore we start this section with
a brief overview of their approach. Figure 5 illustrates the
general idea.

(a) (b)

Figure 5. Illustration of Wey and Levoy’s syn-
thesis algorithm. (a) Sample being scanned
for the best match (b) Noise pixels being
transformed into the final texture. The im-
ages have been enlarged to illustrate the al-
gorithm.

The algorithm starts with a small texture sample as in-
put (Figure 5 (a)). This sample will be used to construct a
texture with the same overall visual appeal as the sample.
Even though it is not strictly necessary, the synthesized tex-
ture is usually larger than the sample. In order to do this
a noise texture is transformed in a raster scan ordering one
pixel-at-a-time (Figure 5 (b)). Starting with the pixel at the
upper leftmost corner, the algorithm searches on the sam-
ple for the best match measured with aL2 norm in RGB

space. The search uses a user-defined neighborhood size.
The sample is searched using continuous boundary condi-
tions (toroidal).

(a) SourceS (b) TargetT

(c) Mask MS

for (a)
(d) Mask MT

for (b)

Figure 6. Example of input for our algorithm.

Now we present our solution. Our problem can be stated
as: given an input source textureS, a corresponding in-
put texton maskMS for S, an input target textureT , and



a corresponding input texton maskMT for T , computem
texturesOm which will be called themorph sequence. In
general,S, T , andOm do not necessarily have the same
resolution. For each textureOm being computed, we build
a corresponding maskMm which is a weighted combina-
tion from masksMS and MT . In Figure 8 we illustrate
two of these masks. The weight is linearly proportional to
the distance from the source. This mask is responsible for
mantaining the coherence between frames and therefore for
the whole morphing sequence. In Figure 6 we illustrate a
possible input for our algorithm.

3.1 Computing the Texton Masks

The computation of the texton masks is automatic and
simple. We compute a binary image by color thresholding
the grayscale image of the input texturesS andT . We con-
vert the color texture into a grayscale luminance value us-
ing the following formula [1]:Y = 0.2125R + 0.7154G +
0.0721B. The greyscale luminance is converted to either
a black or white pixel using a user-specified threshold for
each input texture. Although very simple, the computed
masks capture the texton structures, as we can see in Fig-
ure 6(c)(d). A slightly more elaborated solution, as pre-
sented in [24], asks the user to specify a foreground and a
background color for thresholding.

3.2 Synthesis

Once the masks are computed, our synthesis procedure
follows the WL algorithm. The algorithm follows a raster
scan ordering, starting in the upper left corner. To gener-
ate theOk frame, the algorithm requiresS, MS , T , MT ,
Ok−1 andMk−1. Exceptionally for the first frame,Ok−1

andMk−1 are noise images. Figure 7 shows a schematic of
our morphing textures algorithm.

Figure 8. Example of intermediate masks.

Below we summarize our synthesis procedure for a given
intermediate textureOk:

1. Find best match inMS following the WL algorithm on
maskMk−1. Call this best match pixelbS

2. Find best match inMT following the WL algorithm on
maskMk−1. Call this best match pixelbT

3. Computeb = probk ∗ bS + (1 − probk) ∗ bT

4. UpdateMk with theb gray value. Note that this mask
Mk will be used in theM(k + 1) synthesis.

5. Find best match inS following the WL algorithm on
textureS, taking into accountbS . Call this best match
pixel pS

6. Find best match inT following the WL algorithm on
textureT , taking into accountbT . Call this best match
pixel pT

7. Compute final best pixelp = probk∗pS+(1−probk)∗
pT

8. ReturnOk andMk.

The main departure from the basic WL algorithm is the
use of information from the masks (steps 1,2,3) to decide
on the final best match (steps 4,5,6). When searching for
the best match in the source and target textures, this best
match will have to be of the same type as the information
b computed in step 3. Intuitively, this means that the best
match will have to satisfy both a color criterion (normL2 in
RGB space) and a “mask” criterion, that is, the best match
must be of the same type as its mask, expressed by the value
b.

Steps3 and6 make use of a probabilityprobk for com-
puting the final best pixelp. This probability captures,
for the morph sequence, how far we are on the morph-
ing process from the source texture, based on the number
m of desired intermediate textures. For an intermediate
textureOk, k = 0, . . . , m probk is computed as follows:
probk = m−k

m
. When searching for the best match, the WL

algorithm uses a user-specified neighborhoodN(p) around
the pixelp. For our solution the user will have to specify
two neighborhoods, one for the input textureN(pS) and
one for the input textureN(pT ).

4 Results

Here we present some results with our approach. For
the first sequence of results, in Figure 9, we used the same
source and target textures as presented in [15]. We can see
that our approach achieved a similar result while not de-
manding feature specification from the user.

For comparison we present in Figure 10 the result of sim-
ple interpolation between corresponding pixels in the same
source and target images from Figure 9. Even though it is
difficult to assess the differences, we can see that in our ap-
proach, particularly the 4th and 5th frames, the texton struc-
ture is more visible than for the interpolation case (the tex-
tures are more blurred).



Figure 7. Schematic representation of our texture synthesi s algorithm with texton masks.

In general we can see that our solution generates visually
adequate morphing sequences, similar to the results pre-
sented in [15], although in their case, since the user controls
how the mapping is established, more elaborated transitions
are possible.

5 Conclusions

We presented a morphing technique specifically for tex-
tures. Our solutions automatically produces a series of tran-
sition textures between a source and a target textures. For
both source and target textures we compute a texton mask,
and from these masks we derive the transitions. Since our
approach combines texture morphing with texture synthesis
from samples, we can generate arbitrarily sized morphing
sequences, a feature not presented in [15]. An interesting
challenge would be to enhance our solution using a patch-
based texture synthesis approach, as presented in [14].
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