
On Extending Collaboration in Virtual Reality Environments

Vı́ctor Theoktisto and Marta Fairén
Departament de Llenguatges i Sistemes Informàtics

Universitat Polit̀ecnica de Catalunya, Barcelona, Spain
{vtheok,mfairen}@lsi.upc.es

Abstract

We characterize the feature superset of Collaborative
Virtual Reality Environments (CVREs) out of existing im-
plementations, and derive a novel component framework
for transforming standalone VR tools into full-fledged
multithreaded collaborative environments. The contribu-
tions of our approach rely on cost-effective techniques
for loading graphics rendering, user interaction and net-
work communications software components into separate
threads, with a top thread for session collaboration. The
framework recasts VR tools under a scalable peer-to-
peer topology for scene sharing, callback hooks for event
broadcasting and multicamera perspectives of avatar in-
teraction. We validate the framework by applying it to
our own ALICE VR Navigator. Experimental results show
good performance of our approach in the collaborative
inspection of complex models.

1. Introduction
Virtual Reality (VR) and Augmented Reality (AR) tools

have been applied in all engineering fields in order to avoid
the use of physical prototypes, to train in high risk situa-
tions, and to interpret real or simulated results. In medical
applications they help patient monitoring, interpretation of
scanned data and surgery planning. In architectural settings
enable designing, building, visiting and stress-testing up-
coming facilities. In these virtual reality environments or
VREs, individual users inspect 3D scenes, navigate inside
models and manipulate objects and properties.

Most implementations of VREs begin as standalone
applications, with collaboration requests arising from the
natural desire of exchanging experiences. Allowing several
clients to collaborate on the inspection of a model usually
requires the development of a whole new application with
distributed capabilities, adding network communications,
and in general confronting code portability problems due
to the absence of a known migration strategy.

We propose a “snap-on” superset framework for evolv-
ing complete Collaborative Virtual Reality Environments
(CVREs) out of existing VR applications. The main con-
tribution of our approach is a novel multithreaded archi-
tecture with a scalable peer-to-peer network topology that

incorporates session layer management, a crossplatform
message-passing communications library, and a hybrid
collaborative interaction model with multiple avatar roles.
The framework adjusts easily to working VR tools without
affecting graphics performance.

In section 2 we evaluate existing CVREs under a feature
superset characterization, and explain relevant collabora-
tive interface paradigms. Later in section 3 we develop
the blueprint for the transformation of VR navigators into
medium scale CVREs, using a generic framework for
network and session management. In section 4 we validate
the framework in the conversion of the ALICE VR Real
Time Inspector (developed at the Universitat Politècnica de
Catalunya) into a complete collaborative VR environment.

Section 5 shows performance test results of enhanced
ALICE clients using high-level display systems in a busy
network set-up. Finally in section 6 we plan for extending
new capabilities into the framework.

2. Collaborative Virtual Reality Environ-
ments

Applications in which remote users collaborate on
tasks to accomplish a common goal fall under the term
Computer Support for Cooperative Work(CSCW) [1].
When combined with network model sharing, 3D data
visualization, and real world user-interaction metaphors
they become Collaborative Virtual Reality Environments.
Remote participants using visual identities (calledavatars)
may navigate inside the virtual space, interact with other
remote avatars, and propagate changes to neighbouring
objects.

A representative sample of existing CVREs were pro-
filed as part of this research in [2]. The categories, summa-
rized next, allow the designer to specify the most suitable
feature set for creating a visual sense of presence within a
collaboration framework

i) Session awareness:the enduring effect of user ac-
tions [3]; Persistance may be just during thesession,
journaled for laterstate recovery(Massive-3 [4]) or
continuous(SIMNET [5]).

ii) Scalable topology:the scene sharing scheme among
participants [6], such as

– Homogeneous replication, independent replicas
broadcasting changes (SIMNET, DIVE [7]);

– Shared-centralized on a server, one scene
shared by all, managed at a central server
(CAVERN [8], NPSNET-V [9]);

– Shared-distributed with client/server groups,
in which clients are connected to the near-
est server (DIVE, Massive-3, Octopus [10],
VELVET [11]);

– Shared-distributed using P2P actualization,
peer-to-peer connections among clients, comes
in two flavors:
P2Pr, replicating the same scene graph at each
node (DOI [12]).
P2Ps, shared distributed scene graph [13]
with remote objects (Diverse [14],
GNU/Maverik [15])

iii) Network transmission: appropriate protocol, UDP
or TCP/IP; broadcast (as in SIMNET), use of unicast
(most systems) or multicast addresses (CAVERN,
DIVE, Diverse, DOI, GNU/Maverik, Massive-̃3,
NPSNET-V, Octopus, VELVET); networklatency
issues [16] [17].

iv) Collaborative user interaction features: the col-
laborative set of manipulation and visualization in-
terfaces, teleconference capabilities (chat, video and
audio), flexible support for model construction, syn-
chronous and asynchronous collaboration modes,
adaptive multiresolution strategies, interoperability
standards, and virtual space shared utilization.
Crucial features for CRVEs are: action indicators for
remote event notification, alternate views, selectable
avatars, and expected low latency response times.

v) Object granularity: determines the network broad-
casting cost of scene changes [18], as

– Light objects, short state messages for event and
control information (all systems).

– Remote references, network references to remote
objects (All but SIMNET).

– Heavy objects, medium-atomic objects, able to
fit in the client’s memory, e.g. object 3D geom-
etry (all systems).

– Real-time streams, large-segmented data to be
transmitted in pieces or continuously, e.g. vol-
umes, textures, video (CAVERN, Massive-3).

¿From the above, it is evident that most CVREs use
unicast or multicast protocols for UDP or TCP/IP commu-
nications. The most recent environments tend to P2P or
small client/server groupings topologies, with replicated
or shared scene graphs. Only CAVERN and Massive-3
fully integrate large segmented data such as video feeds,
while some of the others resort to variable multiresolution
schemes or out-of-core segmentation.

Massive-3 is the lone provider of a journaling mech-
anism for interaction recovery. Avatars are a common
feature, but none allow multiple perspectives. Only DIVE,
Massive-3, VELVET, GNU/Maverik seem capable of han-
dling large user loads or huge data models.

As far as the former reviews show, there is no clear
strategy allowing an orderly and easy migration path from
standalone VR applications to collaborative ones.

2.1. Collaborative Interaction Models
A special attention must be provided to interaction

issues in distributed setups. There are two widely used
conceptual paradigms in the design of user interfaces: the
Model-View-Controller paradigm, known as MVC [19],
and the Abstraction-Link-View paradigm or ALV [20],
shown inFigure 1 . MVC is the classical model for user
interface design, factoring all application objects in three
categories according to their functional roles:

Model objects residing in an algorithmic layer.
View objects located in a visualization layer.
Controller objects, user interface widgets’ layer

that translates interaction into actions.

Communication among layers is achieved by an in-
ternal messaging system that feeds user actions into an
switchboard event loop with dispatcher. Callbacks connect
each switch hook with the corresponding widget object(s),
which in turn effect changes in the domain.

In the Abstraction-Link-View (ALV) paradigm, objects
are factored in abstraction, view and link layers.

Abstraction objects are models shared by all users.
View objects handle user interaction and vi-

sual rendering
Link objects are constraint sets synchronizing

abstraction and view objects.

The ALV’s Abstraction layer is equivalent to the MVC’s
Model layer, while the ALV’s View component layer
merges both View and Controller layers of MVC. The
ALV’s links connect abstractions and their views, using
references to remote objects. Consistency in ALV is kept

� � � � � � � � � �� � � � � � � � � � � � 	 � �
 � � � � �� � 	 � �
 � � � � �

 � � � � � � � � � � � �� � � �

� � � �� � � �

� � � �� � � �

� � � �� � � �� � � �� � � �

� � � � � � � � � �� � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � ! � �� � � � � � ! � �

Figure 1. Side-by-side correspondence between the
MVC and ALV collaborative user interaction paradigms.

tracking local state changes at a central repository, while
the MVC’s Controllers handle communications among all
its objects.

For CRVEs, the decoupled MVC approach proves in-
sufficient because it does not provide for a common per-
sistence layer to hold the shared state properties of remote
interactions. The ALV model does provide a method for
keeping track of object and session changes, but it is
heavily slanted toward a client-server distributed model.
In subsection 3.3 we propose a more suitable session
management model to render reliable object flows at high
speed rates.

3. Collaboration Framework Architecture
Many virtual reality applications begin as scene and

object visualization environments, having special user in-
terface metaphors for navigation and manipulation, and
shown on display devices ranging from CRTs to immersive
stereo projection systems. Most science disciplines (and
the entertainment industry) use VR techniques to enhance
user experiences. As research shows, usersalwaysdesire to
share these virtual experiences, either by showing models
to prospective audiences, or by having an active remote
participation in the environment.

Evolving collaboration at this stage usually entails the
redesign and development of a (new) application, inserting
a networking infrastructure under the environment, and
other software-porting problems. Issues such as synchrony
overheads, concurrent user load and system lags may
degrade interaction and adversely affect graphics perfor-
mance. There are generic API libraries for implementing
shared scene graphs [21] that could be used for building
multithreaded CVREs. The rationale behind our approach
is that the object-oriented nature of current standalone VR
applications, usually having rendering and user-interface
components, would facilitate their transformation into
complete CVRE’s, by allowing the seamless attachment
of a network-based component to enable collaboration.

In the following subsections we describe the collabora-
tive features for the proposed superset framework. Given
that the different VR tools may spread across platforms and
support varied output display systems, the ideal solution
should not compromise current designs or imply extensive
recoding of components when fitting the collaborative
framework. Massive or large-scale implementations were
discarded due to user administration performance consid-
erations, although the proposed framework has scaled well
for a reasonable number of (less than twenty) participants.

Based on the features described in Section 2, our
solution involves the implementation of amultithreaded
software componentsarchitecture, a scalableP2P sharing
topology, a layer implementingsession awareness capa-
bilities, and a flexiblecrossplatform library for network

transmission. We have left for a future implementation
the treatment of real-time streaming, since the framework
does not modify the currentobject granularityof the target
application. On the practical side, it is a portable generic
framework, requiring only the instantiation of a custom
message interpreting class for the shared session.

3.1. Multithreaded Software Components
We asume that a good VR tool is the final product of a

sound systems design, developed under a classical MVC
paradigm. A standard software engineering practice in
Computer Graphics is the factoring of application objects
into at least two weakly cohesive software functional
components, graphics rendering and user interface. We
decouple the Graphics Rendering (GR) and User Interface
(UI) parts and instantiate them in separate threads. The
same approach is taken with the new network commu-
nications component (NC), launched in its own separate
concurrent thread. In this way, advantage is taken of the
underlying operating system’s context switching, loading
the new software components without altering functioning
code. This extensible approach allows the addition of more
component threads, such as one dedicated to tracker data
acquisition or interaction with haptic devices.

A snapshot of a working framework model is shown
in Figure 2 , detailing each software component. The NC
component thread handles communications and message
parsing; the top Shared Session (SS) management layer
(see the MVCS model in subsection 3.3) launches all
concurrent threads, tracks users’ avatars, propagate state
changes to the UI and GR components using callbacks,
and is in general responsible for the emerging collaborative
behavior; the GR and UI components are mostly untouched
except for the connecting “glue” to the Shared Session
layer.

This setup is implemented by means of an abstract class
wrapper incorporating network awareness and a corre-
sponding message protocol. An appropriate set of mutexes

� � � � � � � � � � � � 	� � � � � � � � � � � � 	

 � �
 � � � �� �� � �� �� �� �� � �� �

�� �� � � �� � �� � � � � �� �� � � �� � �� � � � �
� � � � � � � � �� � � � �!� � � � � � � � �� � � � � !

" # $ � % & � � � 	" # $ � % & � � � 	

# � ' () * ' + , � - � � 	# � ' () * ' + , � - � � 	

. � 	 	 / 0 � ' 1 , � � 	 	 � 2 0. � 	 	 / 0 � ' 1 , � � 	 	 � 2 0� % & � � � 3 � 2 4 � 1 � 2 0� % & � � � 3 � 2 4 � 1 � 2 0

Figure 2. Collaboration-enabling threaded processes.
The framework includes original components (GR and
UI), and adds a session layer (SS) with the network
component (NC).

avoid shared state inconsistencies and race conditions
when updating information.

3.2. P2P Sharing Topology
Fitting any of the client/server topologies would have

implied the creation of at least one central server from
scratch and compromised the applications’ standalone be-
havior. We chose instead a peer-to-peer scalable topology,
the most adequate for equal participants with separate
access to their models. There are two possible topologies
available in the framework: P2Pr [Peer-to-Peer with scene
replication] and P2Ps [Peer-to-Peer with scene sharing].

In a P2Pr topology, each client has its own local
replica of the scene. Since only a few scene objects are
modified in the session, collaboration starts as soon as
all clients have loaded their common model, and situated
themselves within it. If there are no other participants in
the environment, it defaults naturally to the standalone
behavior.

A P2Ps topology must first build a shared scene graph,
with each individual client adding whole chunks. For a
particular client, scene graph objects are labeledlocal or
remotedepending on whether they are cached internally
or need to be fetched elsewhere. If a client fails, its part
of the shared scene must be reconstructed by the others.

Having no central server, both approaches require a
third party application providing locating services for
clients willing to enter in a session.

Thin broker for session administration
In our proposal, this third party is called amessage broker,
tracking session participation and interaction, as seen in
Figure 3 . It is based on some CORBA [22] facilities, but
without the associated overhead. Shared state information
is kept through the following services:

• A name service for location and client registration.
• A session management service.
• A session and client state report and mirroring ser-

vice.

Given that the broker is not a bridge, client messages
go directly to their destiny. Each client keeps track of other
participants, and periodically may send its current state to
the broker for shared session recording purposes.

3.3. Session Awareness Management
After analyzing the desirable characteristics exhibited

by existing CRVEs, we concluded that a minimal collab-
oration feature set should include the following:

• Collaborative user interface model.
• Session administration with differentiated user roles.
• Client awareness usingavatars.
• Shared annotation and 3D marker highlighting.
• External real-time verbal communication channel.

For a client in this scenario, there must be percep-
tual evidence that other entities (human or otherwise)
are participating, so 3D client embodiments (avatars) are
used to dynamically reflect their position and state in the
scene. Clients may want to call others to attention by
placing special 3D signals, leaving trails in the scene or
modifying the environment. Some users could just browse
through the model, while others could have object editing
privileges. A collaborative interface metaphor allows the
remote manipulation of objects, and session tasks may
keep a journaled record of the interaction.

� � � � � �� � � � � �� � � �� � � 	 �� � � �� � � 	 �
� � �
 �� � �
 �

� � � �� �� � � �� � � �
� � � � � � � � �

� � � � � � � �� � � � � �
� � � � � � � � �� � � � � �

� � � � � �

�� � � � � � � �
� � � � � � ! " # $ % & '() &! " # $ % & '() &

* $) + $) '() &* $) + $) '() &

� � � �� � � �

�� �� � �� � � � � �
� �� � � � � � � �, - .

Figure 3. Peer-to-Peer Broker class model. Both peers
and broker have proxy instances of each other.

Collaborative user interface model
The problem to solve when recasting existing VR naviga-

tors as CVREs is how to implement the maximal collabora-
tive feature set with the least possible implementation cost,
and without affecting the original standalone behavior.
We pick from each category of Section 2 the items that
better support awareness under a hybrid Model-View-
Controller-Session (MVCS) approach, tying the ALV’s
links as network pipelines to MVC objects, in which:

• MVC objects may not all reside together at the
same network node, having their Model (structure
and behavior) defined at one client, many different
Views elsewhere (renderings, at least one for each
client), and flow control effected by all. Nodes may
have several visualization layers (cameras), allowing
for multiple perspectives and resolutions of the same
scene.

• Controllers operate on both using a callback mech-
anism, routing to the corresponding network nodes
for non-local objects, as shown onFigure 4 . Session
layer coherence is maintained by existing network-
aware controllers at each node, who also notify
the broker. It does not matter whether objects are
shared or replicated, so it allows either P2Pr or P2Ps
approaches.

Session administration with differentiated session roles
We have identified five different collaborative user be-
haviors:standalone, peer, incognito, slave,andmaster. A

� � � � � � � � � 	 	
 � � �� � � � � � � � � 	 	
 � � � � � � � � � � � � � � �� � � � � � � � � � � �

� � � � �� � � � �

� � � �� � � �

� � � � � � � � � �� � � � � � � � � �

� � � � � �� � � � � �
� ! ! " # $� ! ! " # $

% & & '% & & ' % & & '% & & '
� � � � �� � � � �

� � � �� � � �

� � � � � � � � � �� � � � � � � � � �

Figure 4. Model-View-Controller-Session (MVCS) ob-
jects showing an external broker maintaining session
states.

standaloneclient is not aware of other clients. It defaults
to the original isolated behavior of the application.Peers
are clients that communicate among themselves using the
common message protocol. Users travelingincognitomay
observe scene interaction in “voyeur” mode without other
clients knowing it. A slave is a peer that is bound to
another, correspondly called amaster, in the sense that
themaster’s current state is continuously replicated by the
remote slave(s). A self-explanatory three bit code cata-
logues their functional role (from left-to-right):bit 2 means
whether the client broadcasts its messages to others,bit 1
whether the client listens to remote messages, andbit 0
whether there is a special binding between clients. Thus,
[standalone(000),peer(110),incognito(010),slave(011),
master (111)], leaving open the possibility of adding more.
These client roles are voluntary and changeable during a
session.

Client awareness usingavatars
Each client has its own 3D representation traversing the
environment, having several active camera perspectives at
any time. Avatars broadcast a number of state attributes,
such asposition, orientation and velocity camera vectors
for dead reckoning calculations.

Shared annotation and 3D marker highlighting
Users must not only be aware of each other, they must be
able to call the attention of remote participants to some
feature or object in the environment. This is accomplished
by temporal 3D markers such as arrows, billboards or
banners, objects that a “guide” pins at some interesting
locations.

External real-time verbal communication channel
Collaborative environments use at least one real-time com-
munication channel to allow the human users behind the
workstations to exchange impressions about the virtual ex-
perience. The framework does not provide this service, but
external suitable cross-platform alternatives such as Gaim,
Gnomeeting and others have been used with equivalent
ease.

3.4. Crossplatform Network Transmission

Since communication is what enables collaboration, the
new software component handles network communication
capabilities. This is done by a cross-platform network-
ing class that allows either datagram-oriented (UDP) or
connection-oriented (TCP) communications under IPv4
and IPv6 networks. The NC thread, under a common
message protocol implements the following basic kind of
services, each one running on its own separate listening
socket:

• Shared event pipeline for sending environment state
changes and callback messages

• Continuous streaming of some client properties, such
as camera position and orientation

• A notifying service for theBroker.

When a client reports to the broker, it posts its network
address and listening ports. A configurable setup accounts
for external firewalling rules, allowing several clients to run
concurrently on the same machine by choosing unique port
numbers. This enhances performance tests, because it per-
mits the simulation of heavier client loads independently
of available workstations. Network traffic is generated only
for broker requests, for position or orientation changes, and
for shared callbacks (such as object manipulation).

System synchronization
The framework avoids hosting a central time server by
keeping relative time differences for every peer-to-peer
connection at the client’s side. The local event time or
timestampis included in each network message. Clients at
the other end may process incoming messages as either

Immediate: messages are processed at once, or
Buffered: messages are queued by timestamp.

When using the first approach, network latencies may
produce jumpy updates and short temporal inconsistencies.
The second is more suitable for replaying events in exact
time sequence, at the expense of bigger time delays.

4. The ALICE Virtual Reality Navigator

The ALICE VR Real Time Inspector and Navigator [23]
is a standalone VR software platform for the real time
inspection and navigation of very complex virtual models,
developed at the Universitat Politècnica de Catalunya.
It has been used in a number of applications such as
navigation in urban environments or interior ship design
among others.

In order to allow the users of these applications to be
able to navigate and inspect complex 3D models in several
VR systems, ALICE offers the following features:

• Several modes for stereoscopic visualization: active
stereo for our local CAVE; passive stereo for a less
expensive system such as the MiniVR system [24]

• User position and orientation tracking: allowing im-
plicit interaction by following input device move-
ments, making the user feel that he is inspecting a
real object instead of a virtual one.

• Use of varied interaction devices: mouse, joystick,
VR gloves, and haptic devices.

In addition, ALICE stores objects and information such
as textures in an hierarchical scene graph. It implements
an extensible callback system for interactively working
in highly complex scenes, using many advanced data
structures and computer graphics algorithms for levels of
detail handling, visibility culling and collision detection.

4.1. Framework validation in ALICE
The ALICE application is already factored into two

software components, Graphics Rendering and User In-
terface. The User Interface component is provided by v3.x
of Qt, an object-oriented user interface toolkit (using the
MVC paradigm), with cross-platform deployability in MS
Windows, Linux, several flavors of UNIX and MacOS X.

The decoupled callback hook system in ALICE con-
nects user events to the graphics pipeline by means of a
indexed command list. Each element of the lists stores a
settable reference (the “hook”) to some object’s method
(the “callback”). When an UI event triggers a particular
command, its corresponding callback hook is executed
with the provided event information and current environ-
ment state.

Given all the above, it was considered a suitable candi-
date for enhancing its collaboration features. Just changing
some flags at the compiling phase allows the UI component
to run in its own thread as needed. Next, the following
steps were taken to fit ALICE into the framework:

1) Instantiate the shared session (SS) layer class, hold-
ing all common state awareness attributes, such as
the scene graph, Avatars, remote references for the
broker and the list of participants.

2) Choose the scalable topology (P2Pr, for this ver-
sion).

3) Devise thepeer-to-peerandpeer-to-brokermessage
protocols.

4) Instantiate the message parser class to process event
messages, and place it in the networking communi-
cations (NC) component.

5) Wrap the GR, UI and NC software components as
SS layer class attributes, and launch each of them
in a separate thread.

6) Add one method call to provide a callback hook
linking the message parser class in the NC com-
ponent to the session-update method of the SS
component.

7) Add one method call in the UI’s main method to
provide a callback hook to the SS layer.

8) Add one method call in the GC to provide the
callback hook syncing the cameras and states of
network peers just before rendering.

9) Instantiate the broker class, adding the necessary
services.

A scalable P2Pr topology was initially chosen, given
that all clients already function with local scene replicas
and it would not change much ALICE’s behavior. In shared
mode, the broker indicates the remote reference of the
current scene, so hopefully everyone would be placed in
the same model.

The message protocol is short and simple. There are
three kinds of messages:session, location and manipula-
tion. Session messages are the ones exchanged between
the broker and the clients: connecting and disconnect-
ing, reporting internet addresses and ports, number of
active cameras, avatar appearance, global scene file, and
other relevant data. Location messages are mostly for
avatarproperties being broadcasted among all participants.
Manipulation messages (such as a local client touching,
grabbing, adding or modifying an object) are sent to remote
users by the callback system to maintain scene coherence
among all participants. Out of the growing callback set of
ALICE (around 100), only a subset of 14 affect issues as
model integrity, shared scene state and object appearance,
although more may be defined in the protocol.

Since all of this happens in the NC thread, mutexes
are activated when this thread is modifying data such as
clients’ cameras. There is a corresponding set of mutexes
placed just before rendering to avoid race conditions so
common to concurrent programming.

The broker must be active for a session to be initiated
by at least two subscribing participants. Each client may
choose a session role (usuallypeer) and an avatar rep-
resentation (from a menu), as shown inFigure 5 , while
keeping a list of the current active interactions with other
users. As they navigate, clients may chat to each other, or
place 3D markers to call attention to some feature.

Clients can also take the role of “voluntary slaves” for
some other user, which now becomes a camera server. The
slaveshuts down its own cameras and reflects themaster’s
camera viewpoint and actions, the latter effectively taking
possession of the slave’s remote display devices. This
feature may also be used to “teleport” a participant to
the position of another, which is very useful to avoid
losing virtual eye-contact among peers. Each node does
independent renderings, which allows a client to show a
wireframe representation while another fully renders the
same scene.

A practical side arising of an implementation based on
abstract wrapper classes, is that it is platform-agnostic and
extensible, which makes it quite portable. Each application
only needs to inherit from the message parsing class, add

Figure 5. Peers collaborate on an inspection (the
“camera” and “upecito” avatars), as seen from an
incognito client’s viewscene. Videos of peer interaction
may be seen at http://crv1.lsi.upc.es/ vtheok/siacg04/ .

its own protocol processing code and provide the hooks
for the UI and GR components.

5. Performance Evaluation of the Architec-
ture

We have tested ALICE’s remote collaboration and nav-
igation services in the several VR systems in our lab, and
also in sessions with the Girona University (located 100
Km. from the Barcelona campus) through a 10Mb wide
area network connection. In our lab we have available
HMDs, a stereoscopic table, a CAVE, a MiniVR system
and flat displays; and a similar setup at the Girona campus.
The results obtained from our tests can be seen in the
following table. The scene used on these tests (the interior
of a ship) contains 50.000 polygons, but on purpose
does not have complex textures that could skew graphics
performance. The table shows the results obtained in the
communication of 2, 4 and 8 workstations using unicast
addresses from both sites.

Participants 1 2 4 8
Av. Number of messages – 2539 8067 14331
Av. Total Net. Time (msec) – 35 31 46
Av. Roundtrip Time (msec) – 13 46 57
Framerate 47.3 45.2 44.2 42.7

In the table we observe the average total number of mes-
sages sent through the network in a series of repeated navi-
gation trials, each test lasting 4 minutes. The total network
time (in milliseconds) gives information about how much
time ALICE spent in the transmission of messages during
these 4 minutes tests (this means that only around 0.1-0.2%
of total time was spent in network communications). The
roundtrip time is also indicated in milliseconds. Since for
this test we use unicast addresses, roundtrip time increases
as more peers participate in the session. Finally, the table
shows the average rendering framerate achieved for each

case, which indicates that increasing the number of nodes
affects graphics performance very slightly compared to
the standalone performance, and is comparable to similar
setups in the studied environments.

As already stated in subsection 4.1, the migration of
ALICE to a CVRE was fast and uneventful. Based on the
fact that the application was already designed considering
graphics rendering and user interface as separate compo-
nents, its porting to our framework only required to define
an adequate message protocol, connect the appropriate
callback hooks, and add two method calls and correspond-
ing code hooks in order to attach the application to the new
network and session parts. Following the same migration
scheme, it would be easy as well to transform any other VR
application into a collaborative VR application. In fact we
are presently porting another application built in our lab
which addresses inspection and management of medical
models.

Some fine-tuning must be performed to adjust threaded
execution. A highly textured model may take a while
to render, making timely interaction slow and difficult.
Although this can not be avoided, it may be reduced
by changing thread priorities to model complexity and
network traffic. Although we have not done experiments
in slow networks, we simulated a fictitious one and we
found out that sequential processing of arriving avatar
information may cause clients to fall out-of-sync. In order
to minimize these latency problems, there is an option to
process only the most recently received information packet
from each camera in the environment, at the expense of a
somewhat jumpier navigation.

The proposed mechanism for camera management and
sharing is reasonably easy to learn for users and seem to be
adequate for collaboration tasks. We want to make some
experiments with untrained users soon in order to have a
more accurate perception of ease-of-use.

6. Conclusions and Future Work

Based on a characterization of generic collaborative
features for VR systems, we have proposed a versatile
framework for evolving collaborative capabilities in stan-
dalone VR navigators. Our approach incorporates a hybrid
distributed user interaction model, multithreaded software
components, network communications under a peer-to-peer
scalable topology, message passing channels with a custom
protocol, and changeable user roles in a multicamera
subscription model.

The framework’s development has been validated by
a fast porting of the ALICE VR Navigator. The generic
cross-platform design allows an easy migration of similar
VR applications into complete collaborative virtual reality
environments.

As for future work, we are working on extending
the collaborative breadth of the framework by including
in the Session layer a fourth thread for handling haptic
devices, adding high frequency force-feedback events to
the interactive session repertoire. Given the huge scene
size of current VR scenes and objects, we plan to migrate
applications towards a peer-to-peer with sharing scheme
(P2Ps), and also to allow the incremental streaming of
multiresolution objects to improve rendering performance
and scalability.

Acknowledgements
We want to thank professor Isabel Navazo for many

fruitful discussions on different aspects of the paper. This
work has been partially funded by the Spanish project
TIC2001-2226-C02-01.

References

[1] S. C., J. Schummer, and S. P., “Modeling collaboration
using shared objects,” inProceedings of the international
ACM SIGGROUP conference on Supporting group work,
Phoenix, Arizona, United States, 1999.

[2] V. Theoktisto, M. Faiŕen, and I. Navazo, “Enabling
collaboration in virtual reality navigators,” Univer-
sitat Polit̀ecnica de Catalunya, Barcelona, Spain,
Tech. Rep. LSI-04-13-R, 2004. [Online]. Available:
http://www.lsi.upc.es/dept/techreps/

[3] J. Leigh, A. E. Johnson, and T. A. DeFanti, “Issues in the
design of a flexible distributed architecture for supporting
persistence and interoperability in collaborative virtual en-
vironments,” inProceedings of the 1997 ACM/IEEE Con-
ference on Supercomputing (CDROM). ACM Press, 1997,
pp. 1–14.

[4] C. Greenhalg, M. Flintham, J. Purbricc, and S. Benford,
“Application of temporal links: Recording and replaying
virtual environments,” inProceedings of the IEEE VR, 2002,
2002.

[5] M. R. Stytz, “Distributed virtual environments,”Computer
Graphics and Applications, vol. 16, no. 3, pp. 19–31, 1996.

[6] D. Duce, D. Giorgetti, C. Cooper, J. Gallop, K. Johnson, and
C. Seelig, “Reference models for distributed cooperative
visualization.” Computer Graphics Forum, vol. 17, no. 4,
pp. 219–233, 1998.

[7] C. Carlsson and O. Hagsand, “Dive: A platform
for multi-user virtual environments.” Computers
and Graphics, vol. 17, no. 6, pp. 663–669, 1993,
http://www.sics.se/dce/dive.html.

[8] J. Leigh, A. E. Johnson, and T. DeFanti, “Cavern: A
distributed architecture for supporting scalable persistence
and interoperability in collaborative virtual environments,”
Journal of Virtual Reality Research, Development and Ap-
plications, vol. 2, no. 2, pp. 217–237, 1996.

[9] M. Capps, D. McGregor, D. Brutzman, and M. Zyda,
“Npsnet-v: A new beginning for dynamically extensible
virtual environments,”IEEE Computer Graphics and Ap-
plications, vol. 20, no. 5, pp. 12–15, 2000.

[10] P. Harting, C. Just, and C. Cruz-Neira, “Distributed virtual
reality using octopus,” inProceedings of IEEE Virtual
Reality 2001, March 2001, pp. 53–62.

[11] J. C. de Oliveira and N. D. Georganas, “Velvet: An adaptive
hybrid architecture for very large virtual environments,”
Presence, vol. 16, no. 6, pp. 555–580, December 2003.

[12] G. Hesina, D. Schmalstieg, A. Fuhrmann, and W. Purgath-
ofer, “Distributed open inventor: A practical approach to
distributed 3d graphics,” inProceedings of ACM VRST’99,
1999, pp. 74–80.

[13] B. Zeleznik, L. Holden, M. Capps, H. Abrams, and
T. Miller, “Scene-graph-as-bus: Collaboration between het-
erogeneous stand-alone 3-d graphical applications,” inEU-
ROGRAPHICS 2000, M. Gross and F. H. G. Editors), Eds.,
vol. 19, 2000.

[14] J. Kelso, S. G. Satterfield, L. E. Arsenault, P. M. Ketchan,
and R. D. Kriz, “Diverse: a framework for building extensi-
ble and reconfigurable device-independent virtual environ-
ments and distributed asynchronous simulations,”Presence:
Teleoper. Virtual Environ., vol. 12, no. 1, pp. 19–36, 2003.

[15] R. Hubbold, J. Cook, M. Keates, S. Gibson, T. Howard,
A. Murta, A. West, and S. Pettifer, “Gnu/maverik: A micro-
kernel for large-scale virtual environments,” inProceedings
of the ACM Symposium on VR Software and Technology.
ACM Press, 1999, pp. 66–73.

[16] M. Mauve, “How to keep a dead man from shooting,” in
Lecture Notes in Computer Science, vol. 1905. Springer-
Verlag Heidelberg, 2000.

[17] M. Meister and C. A. Ẅuthrich, “On synchronized
simulation in a distributed virtual environment,” inWSCG
2001 Conference Proceedings, V. Skala, Ed., 2001.
[Online]. Available: http://visinfo.zib.de/EVlib/Show?EVL-
2001-7

[18] D. Brutzman, M. Zyda, K. Watsen, and M. Macedonia,
“Virtual reality transfer protocol (vrtp) design rationale,”
in Workshops on Enabling Technology: Infrastructure for
Collaborative Enterprises (WET ICE): Sharing a Dis-
tributed Virtual Reality, Massachusetts Institute of Technol-
ogy, Cambridge Massachusetts, June 1997.

[19] G. E. Krasner and T. Stephen, “Pope, a cookbook for
using the model-view controller user interface paradigm
in smalltalk-80,”Journal of Object-Oriented Programming,
vol. 1, no. 3, pp. 26–49, 1988.

[20] R. D. Hill, “The abstraction-link-view paradigm: Using
constraints to connect user interfaces to applications,” in
Proceedings of the SIGCHI Conference on Human Fac-
tors and Computing Systems, Monterey, California, United
States, 1992, pp. 335–342.

[21] G. Voss, J. Behr, D. Reiners, and M. Roth, “A multi-thread
safe foundation for scenegraphs and its extension to clus-
ters,” in 4th Eurographics Workshop on Parallel Graphics
and Visualization, EGPGV02, Blaubeuren, Germany, 2002.

[22] F. Deriggi, M. Kubo, A. Sementille, J. Ferreira, S. dos
Santos, and C. Kirner., “Corba platform as support for
distributed virtual environments,” inProceedings of IEEE,
Virtual Reality’99, Houston, Texas, March 1999.

[23] C. Andújar, M. Faiŕen, and P. Brunet, “Affordable pro-
jection system for 3d interaction,” in1st Ibero-American
Symposium in Computer Graphics. University of Minho,
Portugal, July 2002.

[24] M. Fairén, P. Brunet, and T. Techmann, “Minivr: A portable
virtual reality system,”Computers & Graphics, vol. 28,
no. 2, April 2004.

