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Abstract 

 
Force feedback plays an important role in 

collaborative virtual reality environments, mainly for 
programmers of haptic visualization tools. Whereas a 
great deal of work has gone into graphical displays 
over the past years, little has changed on the input 
side. One of the problems that has slowed down 
development in this area is the difficulty of integrating 
the visualization of a scene, the interaction of the user 
with the scene, the feeling for the user to be immersed 
inside the scene, and finally, the input devices. In this 
paper, we describe the architecture we have designed, 
implemented and tested for a collaborative virtual 
training using force feedback devices. In particular, it 
provides device independence and easy extensibility 
through a compartmentalized and multilayered model. 
We also present examples of how force feedback 
joysticks can be integrated into training exercises 
using our prototype.  

 
 
1. Introduction 
 

A collaborative virtual environment can be defined 
as a single virtual reality space shared by multiple 
participants connected from different hosts. Most 
collaborative existing systems however restrict the 
communication between the participants to text 
messages or audio communication [1]. The natural 
means of human communication are richer than this. 
During collaborative training, for example, other 
effects of coordinated visual and touch feedback play 
also an important role and create a more realistic 
experience to the users. More specifically, during 
training sessions, the users are expected to perform 
some tasks under the supervision of a trainer during 
navigating and interacting realistically with the virtual 

environment. In this case, realism not only includes 
believable appearance and simulation of the virtual 
world, but also implies the visual embodiment of the 
users and the means of interaction with the world and 
feeling various attributes of it using the senses. 
Actually, collaborative virtual training is an area that 
puts special demands on input [2] and so does on 
output, when using force feedback devices.  

We believe that collaborative virtual training using 
force feedback devices may benefit from being able to 
manipulate work models, feel the form and contact of 
collision, weight, surface friction, texture, and softness 
or hardness of objects remotely. Motivated by this, we 
are particularly interested in the development of a 
collaborative virtual training system in which users 
using any type of force feedback device can not only 
manipulate and explore a single virtual reality 
environment, but can also make realistic touch contact 
with it and with the other users and objects. To address 
it, we present some related work in the area, and 
generically describe force feedback devices with 
emphasis on a commercial model used in our work, the 
Microsoft SideWinder Force Feedback II [3] (section 2 
and 3, respectively). Then, a collaborative architecture 
for training is proposed, implemented and tested 
(section 4).  In particular, it provides device 
independence and easy extensibility through a 
compartmentalized and multi-layered design. In our 
implementation, according to a communication 
protocol over the network, a trainer (master) can 
control a session attended by many trainees (slaves). 
The trainees are expected to perform some tasks under 
the trainer supervision, during navigating and 
interacting via force feedback with the virtual reality 
environment. A trainer can also temporarily hand the 
control over to one of the trainees, either by the 
trainer’s own initiative or upon request by the trainee. 
As collaboration is achieved, there is no need for the 
trainer and trainee to be present at the same location. 



The prototype was evaluated using three force 
feedback joysticks working collaboratively during two 
training sessions (section 5). More specifically, one 
session was carried out in playback mode while the 
other one was realized in real-time, including 
geometric collision effects. Finally, conclusions and 
future directions for collaborative virtual training using 
force feedback devices are given (section 6). 
 
2. Related work 
 

We are particularly interested in related work on 
collaborative virtual environments and on using force 
feedback devices for interacting with tri-dimensional 
virtual spaces during training.  

Most collaborative virtual reality systems consist of 
basic components such as a virtual reality space stored 
in a computer, a device or interface, a communication 
protocol, and the user. These components are 
integrated using multiple program layers. In particular, 
there are some platforms and applications that have 
been developed for robust distributed virtual worlds. 
Examples are MASSIVE [10], EQUIP [11], DIVE 
[12], OpenMASK [13], among others. MASSIVE has 
support for data consistency, and world structuring. It 
adopts a distributed database model, in which all 
changes to items in the database are represented by 
explicit events that are themselves visible to the system 
[10]. It can also support a certain number of mutually 
aware users using real-time audio. EQUIP is a 
dynamically extensible open-source framework for 
integrating C++/Java applications with a variety of 
interfaces and devices, ranging from wireless portable 
devices through to fully immersive and large systems 
[11]. DIVE is a collaborative virtual environment 
based on communication protocols that already 
incorporate facilities for sharing states in a 
heterogeneous network environment [12]. OpenMASK 
is an open-source middleware for the development and 

execution of modular applications in the fields of 
animation, simulation, and virtual reality [13]. 
Collaboration between distant users within virtual 
environments is possible with OpenMASK in which 
several users can share simultaneous interactions with 
the same interactive object. 

A major problem with these generic and large 
systems is that they are generally not open-source 
(MASSIVE, DIVE), nor well documented (MASSIVE, 
EQUIP, DIVE). Hence, they are difficult to be re-used 
or extended to other scenarios. Recently, for portability 
reasons, some developers have launched a Java version 
of their code (EQUIP) which is still under testing. 
Other systems, although reasonable documented, only 
run under Linux/Unix operational system 
(OpenMASK). Finally, most systems remain mainly 
limited to sharing text-based data and audio, without 
including force feedback effects.  

Recent enhancements to virtual environments 
allowing users to touch, feel and manipulate the 
simulated objects using mechanical devices (haptic or 
force feedback devices) that mediate communication 
between them and the computer have been mainly 
proposed in the Haptics area [2,4,5,6]. Force feedback 
devices, beyond having the abilities of a standard input 
device such as a mouse or an ordinary joystick, are 
also output devices [7]. This characteristic enables 
them to track a user’s physical manipulation (input) 
and provide realistic touch sensations coordinated with 
on-screen events (output). Each force feedback device 
has its own strengths and weakness, just as each 
application has its own unique demands. Devices 
incorporating force feedback are all net force displays, 
in that they mediate the virtual touch on an object by a 
tool, the tools being the handle of an input-output 
device [8].  A number of studies have shown that 
adding haptic force feedback improves single users’ 
performance during training [14,15,16,17,18].  

 
3. Force feedback devices 

 
We classify the force feedback devices according to 

the number of degrees of freedom (DOFs) that they 
offer force feedback. The most common devices are 
the joysticks that have two DOFs and the force 
feedback applied to both. These DOFs enable the 
joystick to restrict movements, exert forces or to apply 
waveforms to simulate different conditions. 
Professional systems often have three DOFs, 
sometimes six, and force feedback in at least three of 
them. These devices can simulate volumes, and not 
only objects in the plane to which we are constrained 
in the joystick. As a user manipulates the handle of a 

Figure 1 The force feedback joystick used as the 
input-output device. Photographed by one of the 
authors. 



force feedback device, encoder output is transmitted to 
an interface controller at very high rates [5]. The 
information is then processed to determine the position 
of  the end  effector that is sent to the host computer 
running a supporting software application. If the 
supporting software determines that a reaction force is 
required, the host computer sends feedback forces to 
the device. Actuators (motors within the device) apply 
these forces based on mathematical models that 
simulate the desired sensations. For instance, when 
simulating the feel of a rigid wall, the motors apply a 
force that resists the penetration. The farther the user 
penetrates the wall, the harder the motors push back, to 
force the device back to the wall surface. The end 
result is a sensation that feels like a physical encounter 
with an obstacle. 

The basic idea of a force feedback joystick is to 
move the stick in conjunction with onscreen action. 
The Microsoft Sidewinder Force Feedback II joystick 
(see Fig. 1) used in this work is one of several force 
feedback devices currently on the market. It is a low 
cost device developed only in the early 00´s. It has a 
USB port and an on-board 16-bit processor running at 
25 MHz. This processor handles all the force effects. 
There are three force effects that can be represented by 
this input-output device [3]. First, there are time-based 
effects such as jolts and vibrations. These are not really 
related to the orientation of the joystick handle, but 
instead depend on the temporal profile of the force. 
Second, there are space-based effects like springs, 
dampers, and walls. These present a changing force 
depending on the orientation of the joystick handle and 
how fast it is moving. Finally, there are invariant 
effects, constant forces like wind or gravity. Beyond 
these effects, the SideWinder Force Feedback II 
joystick supports a number of effects that may be 
combined to generate new ones. These effects vary 
from simple raw forces in an arbitrary direction, to 
complex force-waves in spatially located walls. The 
co-processor takes care of all the control, decides if the 
joystick is inside or outside the wall, and applies 
corresponding forces. Up to four walls are supported 
concurrently [9]. As with sensible movements, we can 
consider many different properties including DOFs 
supported, range, speed, accuracy and stability. We 
can also consider how the physical form of the 
application affords and constrains some basic 
movements such as translate sideways (↑x), raise and 
lower vertically (↑y), push and pull forwards and 
backwards (↑z), tilt forwards and backwards (αx), 
rotate on vertical axis (αy), and tilt sideways (αz).  

A virtual environment contains information about 
the magnitude and direction of forces to be applied to 

the user, usually depending on the position and 
velocity of a cursor in the environment. Every time the 
user moves the handle of the joystick, the position of 
the cursor changes, allowing for dynamic interactions 
with the virtual reality environment. The information 
about the position, as well as the force to be displayed, 
usually has an update of at least 500Hz for smooth 
haptic display [3]. A major issue occurring in this case, 
is the update frequency of the computers which is 
generally more than an order of magnitude lower than 
the update frequency of the force feedback device [4]. 

The strength of the joystick force is called 
magnitude and it varies according to a percentage 
value. It is measured in units that run from zero 
indicating no force, to 10,000 indicating the   
maximum   force   for   the   device  [3]. A negative 
value indicates force in the opposite direction. 
Magnitudes are linear, so a force of 6,000 is twice as 
great as one of 3,000. All effects have a duration that is 
measured in microseconds. Periodic effects have a 
period, or the duration of one cycle, also measured in 
microseconds. The phase of a periodic effect is the 
point along the wave where playback begins. A ramp 
force has beginning and ending magnitudes. The basic 
magnitude of a periodic effect is the force at the peak 
of the wave. Finally, a force can be constrained within 
a set of range over time by using “envelopes”. They 
are used to specify attack and fade values to modify 
the beginning and ending magnitude of the effect. 
These values have a duration which is used to define 
the time that the magnitude takes to reach or fall away 
from the sustain value. 

In the next section we briefly describe the design 
and the implementation details of the collaborative 
virtual training prototype using force feedback devices 
we have developed. 
 
4. Components of the architecture 
 

In our implementation, Java is the core technology 
of our collaborative virtual training architecture as well 
as the library for creating and manipulating tri-
dimensional geometry in a platform independent way 
using Java3D, which is designed to provide support for 
applications requiring higher levels of performance 
and interaction [19]. The proposed architecture is 
composed of four components, as shown in Fig. 2: a 
Device Interface (that enables the Java Virtual 
Machine, JVM, to access the force feedback device), a 
Virtual Reality Environment (that also handles 
collision detection and response), a Device Handler 
(that is responsible for mapping the movements 
performed by the user in the virtual environment and 
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Figure 2 The compartmentalized and multi-layered 
design of the collaborative virtual training architecture
using force feedback devices. 
 

for mapping the feedback effects to the Java3D), and a 
Collaboration layer (that consists of a communication 
protocol responsible for data sharing and control).  

There are some interesting Application 
Programming Interfaces (APIs) for interacting with 
force feedback devices [20,21,22]. One of the APIs 
investigated as a possible choice for a component of 
our collaborative training architecture was the 
Immersion API [20]. Unfortunately, despite its 
robustness, it is only available commercially. Other 
APIs investigated were Linux APIs [21]. However, 
few of them are available for interacting with force 
feedback devices and even fewer are compatible with 
the Microsoft SideWinder Force Feedback II joystick 
model. Further, these Linux APIs are unluckily ill-
documented.  Finally, a well-documented API that 
particularly allows Windows based systems to run and 
display rich applications in multimedia elements is the 
DirectX [22].  Aware of the main limitations of these 
APIs, the DirectX (version 9.0) was the one chosen to 
interface to the SideWinder Force Feedback II joystick 
(see the Device Interface component in Fig. 2). In our 
application, the DirectX API provides force feedback 
support specifically using the DirectInput interface 
[23]. Generally, custom device drivers for every input 
device involve native code. In particular, under Win32 
it is necessary to implement a layer to the DirectInput 
API to allow the use of a device.  In Fig. 2, the Java 
Native Interface (JNI) is used to interface to the 
Device Interface component (written in C++) that in 
turn calls DirectX methods. 

Advanced input-output devices require advanced 
programming. The difficult issue is how to implement 
a program capable of setting up and handling an input-
output device. Further, there are a large number of 
parameters that need to be set correctly. Most 
importantly, there are two main code segments 
required to develop a force feedback graphical 
application: the routine(s) to create force feedback 
effects and the routine(s) to play them back either from 
code control or triggered by a user hardware event 
(e.g., when the user presses a joystick button).  

Usually, an input-output device consists of the 
lowest   level  interface  with   the  data  source.  In  the 
Device Handler component of Fig. 2, a specific 
element can be represented by a sensor on the force 
feedback device. More specifically, a device processes 
the raw input and fills in the sensor information. In 
particular, an input device can provide information to 
the sensors in one of three fashions: blocking, non 
blocking, and demand driven [24].  We have 
particularly chosen the demand driven implementation. 
It guarantees that data is always available but is only 
presented to the runtime environment when it is 
specifically requested by the application. Comparing to 
the other mentioned approaches, the demand driven 
implementation causes the least load on a runtime 
environment.  

Our designed architecture supports an input-output 
device that takes the input from the joystick hardware 
and supplies information on demand to the runtime 
environment. With DirectInput, the force feedback 
device can react to an application in which the user 
defines effects such as jolts, vibration, or resistance 
when an object collides with an obstacle, or a button or 
trigger is squeezed. In DirectInput terms, a particular 
instance of movement or resistance over a period of 
time is called an effect. DirectInput defines a number 
of standard categories of effects, called forces. Some 
of these forces are described as: constant force (a 
steady force exerted in a single direction), ramp force 
(a force which increases or decreases in magnitude), 
periodic effect (a force that pulsates according to a 
defined wave pattern), and saw-tooth-up/saw-tooth-
down (a waveform which drops/rises vertically after 
reaching a maximum positive/negative force) [3,23].  

The Collaboration component (see Fig. 2) is 
responsible for all exchanges of information among 
users. It consists of a communication protocol over the 
network (see Fig. 3), the directory server that 
corresponds to an entity (master) that holds 
information about all participants in a training session, 
and the communication controller.  



The native platform communication library is 
loaded into the Java environment using the JNI 
through the Device Interface component. Users´ 
actions are sent to all participants of a collaborative 
session through the communication protocol module. 
We have specified in our implementation two types of 
information passed between the application and the 
force server (master). In particular, commands 
affecting system state (starting, initiating local force 
and force feedback computation) should be delivered 
intact and not lost. By contrast, position reports and 

updates to intermediate representation parameters are 
sent frequently, so a lost packet can be ignored since a 
new one will arrive shortly. Currently, we use two 
channels between the client and master, i.e., the 
command and data channels. More specifically, a TCP 
stream connection for the command channel (reliable, 
high overhead) and UDP datagrams (unreliable, low 
overhead) for the data channel, as shown in (a), (b), 
(c) and (d) of Fig. 3. In (a), the trainer creates a 
session and accepts the entrance of a number of 
trainees (clients). The trainee may request the training 
control to the trainer, as displayed in window (b). The 
trainer may accept this request or not. In (c), the 
trainer can take the control back from a trainee at any 
time. The trainer can also temporarily hand the control 
over to one of the trainees by the trainer´s own 
initiative, as displayed in window (d). Our system 
prototype provides an asynchronous continuous 
report, in which the master sends position reports at 
regular intervals, using the data channel, rather than 
upon request. As discussed by Mark [25], this mode 
avoids the wait for a round-trip network message, 
usually required by standard requests. The application 
can poll these continuous reports or block them. In 
particular, we currently use only one channel for UDP 
datagrams (for the force feedback and joystick 
positioning updates). However, the architecture 
proposed in this work can be easily extended to 
support several UDP channels, for instance, for 
collaborative audio transmission as well. In our 
implementation, the actions and feedback interactions 
among users are communicated to other participants to 
have the impression of being involved in a training 
exercise. The status of the training exercise is 
transmitted into the Collaboration layer, as shown in 
Fig. 2. The trainer has the role of the master (see Fig. 
3). The other participants get this status at the 
beginning of their sessions and initialize the training 
scenario with these settings. For example, to explore 
the virtual reality environment (a maze we have 
generated automatically using Java3D), the master can 
use the handle of the joystick to change his positioning 
(through rotations and translations) and interact with 
the environment through force feedback. The 
orientation of all the other participants in their 
respective scenarios is set into the system in real time 
and so is the feedback.  Using our prototype system, 
we are also able to record a training session for later 
playback through a synchronization layer. 

During our collaborative virtual training, collision 
effects between users and maze walls need to be 
detected and taken into account through touching or 
interpenetrating interactions (see the Virtual Reality 
Environment component of Fig. 2). Besides being 

Figure 3 The communication protocol over the
network using a TCP stream connection for the
command channel (dashed lines) and UDP datagrams
for the data channel (solid lines). In (a), the trainer
creates a session and accepts the entrance of a
number of trainees (clients). The trainee may request
the training control to the trainer, as displayed in (b).
The trainer may accept this request or not. In (c), the
trainer can take the control back from a trainee at any
time. The trainer can also temporarily hand the control
over to one of the trainees by the trainer’s own
initiative, as shown in (d). 
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detected, and contact area determined, collisions have 
to be handled for collision response that induces 
instantaneous change in the state of components 
through direct correction of position and speed. These 
interaction forces need to be calculated at high rates to 
satisfy the control requirements of haptic interface 
hardware [16]. We have implemented a traditional 
approach in order to simplify computational costs 
involved during contact. First, we use a bounding 
sphere algorithm to determine whether a point is near 
to a surface maze wall. Then, we calculate the exact 
collision detection point. In particular, the different 
sensors on the joystick are used to detect the distance 
to the closest maze wall in the direction of motion. If 
any sensor detects an object closer than d (a pre-
defined critical distance), the motion is stopped. 
Otherwise, d is used to calculate the velocity to be set 
which represents the force response of the system to 
the collision. 

Standard sensors are used to drive the user´s view 
position in our implementation. In particular, Java3D 
has a set of standard sensor inputs that may be used to 
automate some of the control during a collaborative 
training session. Basically, it is used to provide a 
socket to place any given sensor and allow it to control 
the interactions with the scene graph. Our prototype 
uses a standard sensor that is usually the most 
interesting because it allows to use head move along 
type systems to automatically track where the user is 
looking. Wherever the joystick moves and orientates, 
the viewpoint is moved with it. There are various ways 
to react to sensor input. As our application is using a 
force feedback joystick it may be desirable to read 
sensor data every single frame and react to it. Other 

times, it may be more convenient to the application to 
react to sensor input by creating behaviours that only 
launch when the sensor enters a particular bounding 
region. In our prototype, the former type of reaction 
happens during the whole training session, while the 
latter happens every time that a geometric obstacle is 
found. In either case, the system requires the use of 
behaviours to prepare the application code to read 
information from the sensors and react to it by 
applying this information to the scene graph as well as 
to the feedback response of the joystick. 

All user interactions with the graphical application 
layer are performed using the joystick and its buttons. 
All the feedback is done by the haptic device, which 
can be made to move and react to events. The user is 
free to explore the structure as he can feel the walls 
being simulated by force feedback in the joystick. 
When an exit is found, this is indicated by an 
oscillation. All the structures are simulated in the bi-
dimensional plane that the joystick handle moves in. 
The absolute position within the movement range of 
the handle is used as the desired position in the virtual 
structure. We have mapped three DOFs of the joystick 
(with force feedback applied to two of them) in a very 
intuitive way that mimics a flight control system. The 
throttle button (with one DOF for translations) and the 
handle of the joystick (with two DOFs for rotations), 
as shown in Fig. 1, were mapped to perform roll and 
pitch movements, respectively. More specifically, the 
handle of the joystick is used to map movements such 
as tilt forwards and backwards (αx) as well as 
sideways (αz), and the throttle button is used to map 
movements such as push and pull forwards and 
backwards (↑z). In our implementation, the velocity is 

Figure 4. Three participants (one trainer and two trainees) during a collaborative virtual training using the
SideWinder Force Feedback II joysticks. The trainer is using the handle of the joystick as a flight simulator
controller to navigate on and feel through force feedback a virtual maze. When the trainer finds obstacles with 
the maze walls, the collision effects felt by the master are transmitted collaboratively to the trainees through
force feedback. Photographed by one of the authors. 

 



a parameter that can be also controlled and modified 
by the throttle button. It is measured in units that run 
from zero indicating no velocity, to 65,000 indicating 
the maximum velocity for the joystick [3]. Similarly to 
the force magnitude, the velocity varies according to a 
percentage value. The frame of reference for the 
movement analysis during the collaborative virtual 
training is that of the device itself.  All these mappings 
are implemented in the Device Handler component 
(see Fig. 2).  

 
5. Collaborative virtual training 
 

Collaborative virtual training can be used to 
construct a virtual world where users can share the 
environment in which they preside as well as to 
enhance the way they “feel” the data or objects when 
performing training exercises.  

In our implementation, we designed a collaborative 
system that allows users to navigate a maze, with their 
respective joysticks providing feedback. In the 
graphical scenario, routes are determined following a 
specific trajectory chosen by the master user. Using the 
force feedback joysticks and the sense of touch, users 
are able to feel the effects of phenomena (such as 
viscous damping, stiffness, and inertia) at the same 
time the master is feeling these effects. Indeed, feeling 
the dynamics improves user’s understanding and adds 
an element of a great interest to the training exercise.  

Our collaborative training session can also be 
performed through pre-recorded spaces. During the 
playback, the frame rate is kept at constant rates. A 
trainer (the master) has control over frame rate through 
the force feedback joystick. In addition to speed 
control, as the trainer takes the handle of the joystick 
and moves it from side to side, the position of the 
handle is sensed by all the other users. Based upon the 
position and velocity of the handle, various amounts of 
force are reflected back to the users.  

A realistic demonstration is built with three 
participants handling their respective force feedback 
joysticks simultaneously, as shown in Fig. 4: one 
trainer (master) and two trainees (slaves). Basically, 
the training goal is to navigate on and feel through 
force feedback a virtual reality maze. During the 
training session, collision effects between users and 
maze walls are taken into account, making the 
collaborative virtual training appears as real as 
possible. The haptic properties modelled are texture, 
size, weight and stiffness.  To begin the task, the 
master guides the participants to explore the 
collaborative scenario. The users can feel the surface 

of objects/walls in the common environment in a 
collaborative fashion using the force feedback joystick.  
 
6. Conclusion  

 

A collaborative architecture for the control of force 
feedback devices has been proposed and tested in a 
virtual training scenario. In particular, it provides 
device independence and easy extensibility through a 
compartmentalized and multi-layered design. Force 
feedback adds a lot of value to any graphical 
application and is certainly worth the effort to 
implement it. The combined effects of coordinated 
visual, and touch feedback create a realistic 
experience.  

We believe that collaborative training will be a 
valuable concept for both the developers of haptic 
devices and the end-users of such devices. In our 
training scenario, the low cost commercial force 
feedback joysticks serve as haptic interfaces and 
provide the users with real-time feeling of the virtual 
reality environment interactions. In spite of this, 
collision detection is often the bottleneck of simulation 
applications in terms of calculation time, directly 
related to the scene complexity. In particular, it is a 
critical point for virtual environment applications 
where real-time performance is required. The higher 
the complexity of the computer graphics in a scene, the 
lower is the perceived force feedback response of the 
joystick.  

Performance and subjective measures are currently 
being carried out to quantify the scalability and the 
role of force feedback in our prototype system. The 
preliminary results show that the force feedback 
joystick model used intuitively indicates the user the 
applied force during training sessions. However, there 
are important joystick hardware limitations mostly due 
to limited maximum force capability. As joysticks 
continue to evolve, it is expected that manufacturers 
will take force feedback technology to whole new 
levels. Indeed, force feedback controller technology 
may lead to significant changes in industrial 
machinery, games and medical care. The benefits and 
the number of possible collaborative applications using 
haptic devices are endless. For instance, surgical 
simulations and medical training, development of 
virtual reality environments for people with special 
needs (e.g., to assist blind people), and virtual art 
exhibitions, are some of the areas where feedback 
devices are making an appearance. In the short term, 
our hope is to develop a generic and robust 
collaborative virtual environment using haptic devices 
for training. Libraries of objects can be then created 



and used to provide the component parts for a variety 
of virtual environments that may be shared, simulated, 
felt, analyzed and visualized by the virtual world of 
trainee and instructor using force feedback devices 
ubiquitous as computer keyboards are today.  
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