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Abstract

This paper presents a method for generating multi-
resolution triangulations of non-manifold objects com-
posed of several regions with arbitrary geometry. The
process of adapting the triangulation to the bound-
ary of the object is based on physical compression, more
specifically, a mass-spring system. The final triangula-
tion usually has no degenerated triangles and provides an
approximation of the boundary based on a chosen resolu-
tion.

1. Introduction

Numerical simulations have become an essential step in
the development of engineering products, or in the predic-
tion of the behavior of physical phenomena, such as weather
conditions, oil generation, tide movement, earthquakes, etc.

In order to be able to carry out any simulation it is nec-
essary to discretize the domain of interest, onto which a set
of equations, describing physical laws, must be solved. This
discretization process is generically referred to as the trian-
gulation of the domain.

Although several triangulation algorithms have been pro-
posed in the past three decades, these algorithms are meant
mainly to deal with mechanical parts, produced by CAD
systems. However, there are numerous important applica-
tions where the domain presents no symmetry at all, and
boundaries are not well or clearly established.

Geological models, for instance, are often composed of
several regions (forming the geological layers), and pos-
sess an irregular geometry, where surfaces can meet at very
small angles, a situation known as a “pinch-out”. The geom-
etry of the surfaces (horizons and faults) are obtained from

seismic data, by a process which is not automatic and de-
mands the interpretation of a geologist. As a consequence,
the whole process of creating the model is not exact, and
tends to be error prone.

Traditional triangulation algorithms can be classified ac-
cording to the way they work. Delaunay based algorithms
recover the boundaries after triangulating the convex hull of
the pointset [2]. Ruppert and Shewchuck [10, 11, 12] insert
a vertex at the circumcenter of a bad element to improve the
mesh quality. In practice, if the original model already con-
tains small angles, their algorithms have problems in con-
verging, specially in 3D. Advancing front algorithms [8],
on the other hand, start at the boundaries and proceed to-
ward the center of the model, inserting new vertices to cre-
ate good shaped elements. The trick is to merge the differ-
ent fronts without generating any inconsistency. The suc-
cess of the algorithm is highly dependent on the simplic-
ity of the geometry of the boundary. Packing sphere algo-
rithms [1, 7, 6] generate a distribution of vertices, forcing
edges and faces to be present in the final mesh, which can
be then generated, by a Delaunay like algorithm.

These traditional triangulation algorithms are hard to im-
plement, have difficulty to deal with models having com-
plex and irregular boundaries, and do not support multi-
resolution. Even when a triangulation algorithm does a good
job meshing this kind of model, it may generate small an-
gles in the final mesh, which usually cause problems when
running numerical simulations. Furthermore, if the original
model already contains small angles these methods cannot
eliminate them.

This paper presents an adaptative algorithm to triangu-
late non-manifold, multi-region models, which approximate
their irregular boundaries instead of trying to match them
exactly. Our main concern is to generate a good mesh, al-
though the boundary is just an approximation, as close as
possible to the original one.



Figure 1. 2D slice taken from a 3D Gulf of
Mexico model.

Physically based triangulation algorithms are not new.
Molino [9] has used a similar approach to obtain numeri-
cal meshes. Nonetheless, despite his good results, he con-
sidered only single region manifold objects. In this paper
we extend Molino’s work to be able to deal with non-
manifold multi-region objects, which are necessary to ad-
dress a broader set of applications.

The algorithm has two main steps. In the first step, a grid
is created over the object, adptatively, in order to subdivide
the surrounding space. Some techniques to efficiently cre-
ate the subdivision are also described in section 2. The rep-
resentation of the input data is explained in section 3, and
Section 4 describes the distance function used to speed up
the geometrical search in the algorithm.

The second step, described in section 6, conforms the
vertices of the grid to the boundary of the object through a
compression scheme, while trying to maintain good shaped
elements.

Although the main goal is to be able to triangulate 3D
models, in this paper we focus only 2D models, sometimes
obtained by slicing a 3D model (Figure 1). The input data
is then a set of polygonal curves, which describe the bound-
aries (possibly disconnected) of 2D multi-region objects.

2. Spatial Subdivision

The first step of the algorithm is to subdivide the sur-
rounding space of the model. An adaptive 4-8 mesh is used
to hold the subdivision.

A 4-8 mesh is a triangulated quadrangulation [16, 13,
14, 15], which means it combines structural properties of
triangular and quadrilateral meshes. The grid obtained from
the subdivision is also the base simplicial complex for the
triangulation.

The criterion used for subdividing the space is the dis-
tance from an edge to the boundary, that is, the grid will
be more densely refined at the boundary neighborhood. 4-8
adaptive meshes support multi-resolution naturally, and also
have the property of producing a gradual transition of reso-

lution, therefore leaving no gap between levels in the subdi-
vision process.

To subdivide a particular edge, the following conditions
must hold:

� the maximum subdivision level has not been reached;
� the distance from its midpoint to the boundary is

greater than a given tolerance, and
� its length is greater than the distance of its midpoint to

the boundary.

The maximum subdivision level and the tolerance are set
by the user, and have a great influence on the number of cre-
ated triangles (Figure 2).

All triangles in a 4-8 mesh have angles equal to � /4 or
� /2. This is an important property since there will be no
small angle. The goal is to preserve these angles wherever
possible.

2.1. Local Subdivision

The maximum level set by the user has a global influence
in the final mesh, but usually some regions will be more re-
fined than others. A low maximum subdivision level will
approximate a complex feature on the boundary poorly. A
high maximum level will generate too many triangles for
simple regions. In order to improve the subdivision algo-
rithm a local subdivision process is performed.

The local subdivision looks for triangles containing more
than one point and subdivides them. If there is a triangle
with many points inside it, the approximation in that area
will be poor. Triangles crossed by more than one segment
are also further subdivided.

There are then two maximum levels: one for the entire
mesh and a higher one for the local subdivision process.
A low global maximum level followed by a local subdivi-
sion produces the best results. In Figure 3 it is shown a gui-
tar triangulated using the local subdivision process. Note
that there are more triangles near the knobs than around the
body.

3. Polygon Representation

The set of polygons creates a partition of the space. A
two-dimensional cell is called a region. The algorithm re-
quires a good distance function, to speed up the classifica-
tion of points according to this partition.

A polygon is represented by two structures: a vertex list
and a binary tree containing its segments (one tree for each
region). Each node of the tree contains one or more adja-
cent segments of the curve, and holds a pointer to the first
and last vertices. The root node, for example, covers the
whole polygon. Hence, it has pointers to the first and last
vertices of the curve. If the curve has no boundary, the root



Figure 2. Polygonal curve subdivided with 3 different levels. The level defines the maximum number
of times an edge can be subdivided.

Figure 3. Subdivision grid over the guitar
model.

Figure 4. Binary tree representing a polygo-
nal curve with eight vertices.

node has two pointers to the same vertex. Child nodes con-
tain the two halves of the parent node.

For a polygon with eight vertices, for example, the root
node has pointers to vertices 1 and 8, its left child to vertices
1 and 4, and its right child to vertices 5 and 8. Going down
the tree, the segments are further split in two halves, until
there is only one segment, as shown in Figure 4. The union
of all nodes in a given level produces the whole polygonal
curve.

To optimize the distance function, the maximum distance
inside a node is also computed and stored. This value is the
maximum distance from all vertices in a node to the seg-
ment defined by the first and last vertices of the node. This
particular segment is called the central segment of a node.

Figure 5. The bounding region of a node
defined by the maximum internal distance
(dashed black line). The line with endpoints��� and ��� is the central segment.

4. Distance Function

A distance function is needed throughout the execution
of the algorithm. The signed distance function we chose is
based on [4, 5], and uses the binary tree of the polygon rep-
resentation (section 3).

To compute the smallest distance from a point to a polyg-
onal curve the binary tree is traversed. The maximum dis-
tance stored in each node defines a bounding region for it
(Figure 5). An auxiliary heap is also created to keep track
of visited nodes.

The sorting criterion for the heap is the difference be-
tween the node maximum internal distance, and the distance
from the given point to the node’s central segment, i.e., the
distance from the point to the node’s bounding region.

When a node is visited, it is removed from the heap.
Then, the criterion distance for sorting is computed for its
child nodes, which are inserted in the heap.

The algorithm will repeatedly visit the node with the
smallest distance (the node at the front of the heap) until
it finds a node with no child (a leaf node contains only one
segment). So, when the stop criterion is met, it means that
the exact distance to the closest segment has been found.
The reason is that the distance from a point, � , to the node’s
polygonal line, � , will be not smaller than the distance from
� , to the node’s bounding region, � :

�
	 �������� �
	 ���������
To perform a point in region testing, a signed distance



Figure 6. Final boundary after face classifica-
tion. Edges between faces with different tags
defines the approximated boundary.

function is necessary. Using the closest segment to the
point, and a few cross products, it is possible to determine
the sign of the distance based on the boundary circulation.
The sign is positive when the point is inside the region, and
negative otherwise.

When dealing with multi-region objects, the distance of
a point is taken considering each region separately. Regions
with holes are possible, since the signed distance can be
used to determine the inclusion of a region into another.
Points inside a hole are considered outside the model (just
one level of holes).

5. Mesh classification

An essential step to obtain the final triangulation is to
classify the initial mesh elements, using the distance func-
tion. A vertex may be classified in three different ways:
(1) being inside the unlimited external region, (2) onto the
boundary of a region, (3) or inside a region. In the last case,
the vertex saves the region it is into as an attribute.

Edges are classified in a similar way. There are exterior
edges, intersection edges and interior edges. The region the
edge is into is also stored.

Faces are only classified after the completion of the com-
pression stage, as described in section 6. Faces must belong
to one polygon region or to none (exterior faces). Those
crossing a boundary are classified as belonging to the region
containing its barycenter. After all faces have been properly
classified, the edges are reclassified. Edges whose two ad-
jacent faces have different tags are classified as boundary
edges, therefore defining the final approximated boundary,
see Figure 6. All other edges are classified as either inte-
rior or exterior.

6. Mesh Compression

After classifying the grid elements, the simplicial com-
plex has to adapt to the boundary. As a matter of fact, grids
refined densely will produce better approximations.

The goal is to push some of the vertices near the bound-
ary towards it, as shown in Figure 7. A simple projection

Figure 7. Compressing the grid inside the
polygon boundarys.

Figure 8. Projection springs: springs be-
tween black and white vertices. White repre-
sents auxiliary vertices, and black real ver-
tices.

would result in many collapsed triangles, and consequently
small angles. To maintain good shaped triangles, there are
springs associated to each triangle, forming a mass-spring
physical system.

The mesh can be thought of as so many connected
springs. When the outer springs are pushed inward, the in-
terior ones distribute the compression forces thus rearrang-
ing themselves.

6.1. Spring Configurations

The springs may be placed in different configurations,
e.g., one spring for each edge. Several configurations have
been tested, and the code is implemented so as to allow new
configurations to be added easily.

Triangles cannot collapse during the compression, as this
would cause zero or negative areas. The configuration that
worked best in our tests uses one spring per edge plus one
spring per projection edge, as shown in Figure 8. This con-
figuration proved to prevent collapses efficiently [3].

There are two global coefficients: spring elasticity and
damping constant. The only information that needs to be
stored per spring is its rest length, which is stored as an
edge attribute. For some configurations there may be more
than one spring per edge. The extra springs are called aux-
iliary springs. Some auxiliary vertices are also created by
these springs, i.e., non-real vertices. In Figure 8 the auxil-
iary vertices are drawn in white.

To compute spring forces there are two different equa-
tions: one for edge springs and the other for repulsion



springs (projection edges). The edge spring equation is the
Hooke’s Law:

��������� 	
	 ���	������ ��� ����� � ��� ��	 ��	 � � ��	 ���	
Where ks and kd are the elasticity and damping constant,� � is the rest length and

��
and

� � are the vertices posi-
tion and velocity differences.

For the repulsion spring there is a non-linear equation, as
explained in [3]. These non-linear springs apply an infinity
force when their lengths go to zero.

����������� 	 ���	 � � �	 ���	!� � ��	 ��"	
6.2. Particle System

To simulate the mass-spring oscillatory movement, the
mesh is treated as a particle system [17]. Each vertex rep-
resents a particle in the system, and particles are associ-
ated to spring endpoints. Some temporary particles may be
introduced to represent auxiliary vertices. These particles
only exist when computing the force associated to auxiliary
springs, having only local influence in the system.

Each particle has the following attributes: position, ve-
locity, force, and mass. The system iterates in time steps,
updating at each cycle, the particles’ position and velocity.
At each time step there is an iteration through all edges to
compute the forces at their particles. The force on each ver-
tex is the sum of the forces applied by all incident springs.

The duration of one step can be redefined by the user.
Usually, small steps are better because they create less os-
cillatory movement on the springs. However, smaller time
steps result in more iterations, and consequently longer sim-
ulation running times.

Each system iteration has three main phases:

1. computation of the force accumulators for each vertex;

2. calculation of derivative values;

3. computation of new positions and velocities.

6.2.1. Force Accumulators The force accumulated in
each vertex is the sum of all contributions from all inci-
dent springs. Auxiliary vertices are not considered, but
they contribute to the force accumulated on the other end-
point of the spring, if the endpoint is a real vertex.

The first step is to reset all force accumulators, with a
simple iteration through all particles. Next, the edges are ex-
amined in order to compute the forces applied on their ver-
tices. If there is any auxiliary spring associated to the cur-
rent edge, the forces on its endpoints are also computed.

6.2.2. Derivative Values In this step, each particles’ po-
sition and velocity derivatives are calculated, i.e., its veloc-
ity and acceleration, respectively. Here, an auxiliary array
is created to hold all of the values. The vector size is #%$ ,
where $ is the number of particles in the system. The deriva-
tive vector is scaled for the time of one iteration step.

Another array is used to hold the particles’ current posi-
tion and velocity. The vector size is the same of the deriva-
tive vector. To compute the new attribute values the two vec-
tors are added, and the particles are updated with the result-
ing values.

6.3. Compression Criteria

The springs rest lengths are set to their initial length,
meaning that initially the particle system is completely sta-
ble. Unless some disturbance is applied on the system, it
will not change. To start the compression some vertices are
marked to be pushed towards the boundary.

There are many different ways to compress the mesh,
and the first question is which particles should be pushed.
We implemented different rules for choosing these particles,
form the candidate set of all endpoints of edges that inter-
sect the boundary.

The first criterion is to push all vertices in the candi-
date set. This is actually not a good choice because push-
ing many vertices will cause many collapses. Actually, in
all criteria, triangles may collapse and have to be treated at
a later stage in the simulation. However, this rule collapses
more triangles than the other rules.

The second criterion is to push all vertices lying at one
side of the boundary. If the boundary is a frontier between
a region and the exterior, all exterior vertices are pushed. If
it is a frontier between two regions, all the vertices in one
of the regions are pushed. This criterion collapses few trian-
gles because all vertices are pushed in the same direction.

The third criterion is to push the vertices closest to the
boundary. By choosing some vertices in each side of the
boundary there is a great chance of squishing the triangles,
but not as many as with the first criterion. The advantage of
this method is that there is less particle movement, prevent-
ing too much oscillation.

Tests show that the second criterion usually behaves bet-
ter than the others. In all of them, the vertices are pushed in
an orthogonal direction to the boundary, with a constant ve-
locity.

The particles associated to marked vertices, i.e., the ones
being pushed, will behave differently from the others in
the system. In particular, they will not suffer any influence
from the other particles. After the initial push, they will not
change course or speed until they reach the boundary, or un-
til they cannot go further, without collapsing a triangle. If
these vertices were allowed to interact freely with the sys-



Figure 9. Scattering the particles that landed
too close.

tem after the push, the system would eventually return to its
initial state.

Since these vertices are not treated in a physically sound
way, it cannot be guaranteed that the springs will prevent the
triangles from collapsing. It is necessary to do some simple
tests to ensure that this will not happen. A check is made
to find out if a particle movement will cross one of its adja-
cent springs in each step. For each particle-spring pair, two
cross products are compared. If the test predicts a collapse,
the particle movement is restrained until the next time step.

6.4. Scattering Boundary Vertices

After all particles have reached the boundary, or have
gone as far as they can go without collapsing any trian-
gle, they are allowed to interact with the rest of the system.
Many particles will land close together generating small an-
gles in the triangulation. To spread them apart their restraint
is loosened, but not completely. Their movement must re-
main limited to the boundary. We might think of it as if
particles were running on a rail while the edges between
them generate the necessary repulsion forces to spread them
apart.

In order to obtain a perfect match of the original bound-
ary it is necessary to have one mesh vertex placed at each
polygon point. For this reason, a vertex is restrained from
further movement when it passes over a boundary point with
high curvature. Therefore, boundary points almost collinear
are not fixed.

6.5. Handling Degeneration

When pushing the vertices towards the boundary, and
even while scattering, some triangles might collapse, or get
stuck with a very small area. To solve these problems, the
longest edge of these triangles are flipped. This check is
done every few time steps so that after flipping the edges,
the vertices may continue to move along the boundary. This
procedure continues until no small angles are found, or the
system stabilizes. However, flips must be only applied at
the end of the process, for not losing the multi-resolution
scheme.

Figure 10. (a) Mesh resolution is not high
enough to place triangles inside all thin re-
gions causing aliasing. (b) The same mesh
after face classification.

6.6. Aliasing

Aliasing occurs around areas in which there are two or
more very narrow adjacent regions. The mesh resolution
might not be high enough to place a triangle inside just a
single region. After compression, triangles may cross a re-
gion without having any vertex inside, or clipped against
its boundary. In Figure 10, it is shown an example of alias-
ing. The triangles in the middle might belong to any of the
three thin regions, by using the barycenter rule. Some re-
gions are split in several smaller regions, and the topology
cannot be always preserved.

As a solution, the mesh can be further refined around
these regions until the triangles are small enough to fit in-
side them. However, near “pinch-outs” or very thin regions,
this process may be unfeasible, because of the number of
triangles required.

7. Results and Conclusions

The Lake Superior, Figure 11, is triangulated with a
bound of ���

�
, and has 1906 triangles. The smallest angle is

��� � �
�
, and 87.4% of the angles are in the range � ���

�
, ���

�	�
.

The magnified detail of the model depicts that the bound-
ary is slightly different, but well approximated, as can be
seen in Figure 12.

Another example is the salt dome (Figure 13). It has 6
different regions with 6183 triangles. The smallest angle is
��� � # � , and 89.4% of the angles are in the range � ���

�
, ���

�	�
.

In Figure 14 it is shown the triangulation of a 2D slice of
the Gulf of Mexico model. This slice is composed of 15 dif-
ferent regions, and possesses 11015 triangles. The smallest
angle is �
��
��

�
, and 75% of the angles are in the range � ���

�
,

���
�	�

. Some regions of the mesh are shown in detail in Fig-
ure 15. Aliasing occurs near the ”pinch out”, and, as a con-



Figure 11. Lake Superior.

Figure 12. Detail of the Lake Superior. Ap-
proximated boundary of the small islands.
Original boundaries are represented by line
contours, and the final triangulated regions
are filled.

sequence, the boundary is not well approximated, as can be
seen in Figure 15(b).

We have presented an algorithm for triangulating multi-
region, non-manifold 2D models. Although the boundaries
of the triangulation may differ from the boundary of the
original model, there are several applications where this is
acceptable.

Our algorithm has many advantages over traditional tri-
angulation techniques, such as: (1) being easy to implement,
and offering, at the same time, multi-resolution; (2) being
capable of dealing with models possessing complex and ir-
regular boundaries; and (3) being not affected in a high de-
gree by numerical issues.

The algorithm is also easily extendable to 3D, although
new data structures are necessary in this case.
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