
Loop Snakes: Snakes with Enhanced Topology Control

Antonio Oliveira, Saulo Ribeiro, Ricardo Farias, Cláudio Esperança
Dept. of Systems Engineering and Computer Sciences - COPPE/UFRJ

Rio de Janeiro - R.J. , Brazil
oliveira, saulo, rfarias, esperanc@lcg.ufrj.br

Gilson Giraldi
National Lab. of Scientific Computing

Petŕopolis - R.J. , Brazil
gilson@lncc.br

Abstract

Topologically adaptable snakes, or simply T-snakes, are
a standard tool for automatically identifying multiple seg-
ments in an image. This work introduces a novel approach
for controlling the topology of a T-snake. It focuses on the
loops formed by the so-called projected curve which is ob-
tained at every stage of the snake evolution. The idea is to
make that curve the image of a piecewise linear mapping
of an adequate class. Then, with the help of an additional
structure—the Loop-Tree—it is possible to decide in O(1)
time whether the region enclosed by each loop has already
been explored by the snake. This makes it possible to con-
struct an enhanced algorithm for evolving T-snakes whose
performance is assessed by means of statistics and exam-
ples.

1. Introduction

The use of Active Contour Models or Snakes has be-
come a standard technique for segmenting an image. Hun-
dreds of works about the plain snakes model have been pro-
duced since it was introduced in [2]. One of its most ob-
vious limitations, however, is the fact that for each contour
that must be identified, a different snake has to be initial-
ized by the user. Further, in some applications, all segments
having certain properties must be found or simply counted
and the number of them is large enough as to render this ap-
proach totally inappropriate, for instance: identifying cel-
lular structures of a given type in microscope images, all
blood vessels in an angiogram or electronic components on
a board.

That limitation has been overcome with the introduction
by McInerney and Terzopoulos in [3], of the T-snakes, short

for topologically adaptable snakes. These snakes have the
ability of changing their topology either by subdivision or
by aggregation allowing every segment contour to be ap-
proached by exactly one snake or one snake from inside and
another from outside. In ideal circumstances, T-snakes are
used according to one of the following schemes:

(A) Initially, the whole image is encircled by a closed
snake. During its evolution, that snake is continuously con-
tracted and eventually broken into smaller ones which are
subjected to the same contraction process. When all snakes
have either been adjusted to a target contour or become too
small, the process stops. (B) In a dual way, a series of very
small snakes, theseed snakes, are randomly spread over the
image. They are continuously expanded and when two of
them collide they are merged into a single one. A contour
having seeds in its interior will have a snake approaching
it from the inside, whereas seeds in the background gener-
ate snakes approaching the contours from outside.

The framework of a T-snake, is that of a common snake
plus a 2D-structure—theAuxiliary Structure, in short:AS—
containing information that makes it possible to directly as-
sociate vertices of a polygonal curve which are close in 2D
but far apart along the curve. This additional structure con-
sists of a matrix whose elements are associated to the ver-
tices [3], edges [1] or, as done here, cells of a square mesh
covering the image domain.

The original motivation of our approach was to address
some well-known difficulties of the original strategy pro-
posed in [3], which is described in detail in Section 2. Sim-
ilarly to that strategy, the approach proposed in this work
also generates at a stagek, two curves: (I) Thephysically
transformed curve—TCk—which is defined by the new
locations of the snaxels, after they have been moved by the
forces of the chosen physical model from their positions in
Sk, the initial snake of the stage. (II) The so-calledpro-



jected curve—PCk—, which is defined by the sequence of
intersections betweenTCk and mesh edges.

Assume that the snake moves continuously fromSk to
PCk. Then, it sweeps (or burns or visits, which in this con-
text are used as synonyms), a whole strip of points. Call
visited setthe set of points swept in all stages up to the cur-
rent one. While McInerney’s approach uses the Auxiliary
Sructure to explicitly control that visited set, this is accom-
plished implicitly in our approach. We focus on the loops
formed byPCk, some of which will give rise to the new
snakes in stagek + 1. For this reason, we choose to call
them loop snakes. PCk is considered as the image of a di-
lated version of the snakeSk by a piecewise linear map-
ping Γk. Defining Γk on a dilated version ofSk makes it
easier to satisfy a few local conditions which are necessary
for making the strategy computationally attractive. Section
3 describes those conditions while Section 4 is dedicated to
show how they can be enforced in straightforward way.

Some loops ofPCk, labeledopen or unexplored, de-
limit regions yet to be visited by the snake while others,
the closedor exploredloops, enclose regions that have al-
ready been explored. Results shown in Section 5 demon-
strate that it is possible to infer thelabel of a loop, simply
by examining the label of adjacent loops found earlier. Even
loops that have no earlier adjacent ones can be correctly la-
beled inO(1) time.

The process is quite simple except for the case whenPCk

returns to a cell already visited. Section 6 shows how to han-
dle that case. Two possibilities must then be explored: ei-
therC becomes adouble cell, that is, one with aPCk vertex
on each edge, or a topological change involving the edges
of PCk contained inC must be realized. The implementa-
tion of such a change depends on whetherPCk has a self-
crossing orknot in C, or revisits an edge ofC. Revisiting a
cell triggers a more elaborated process but this occurs very
infrequently if compared to the enormous number of snax-
els generated, as is shown by statistics presented in Section
7.

Section 8 is devoted to conclusions and future works. For
concision sake, here we discuss the case where snakes only
contract. Nevertheless, the method can be easily extended
in order to handle expanding snakes.

2. Other T-snakes Models

Essentially, in the original approach [3], the T-snake of
stepk—Sk = [si , i = 0,...,I]— is evolved as indicated be-
low. The elements of the AS Matrix, which are related to
the mesh vertices, are all initialized with “unvisited”. Inthe
following, τ will be the K1 triangulation of the mesh ver-
tices, that is, the one obtained by cutting each cell along its
main diagonal. Atransition edge will be an edge ofτ link-
ing a visited and an unvisited vertex. Figure 1 represents an

iteration of the method. For the sake of visibilitySk-snaxels
andPCk-vertices on diagonal edges have been excluded.

Procedure Evolving an original T-Snake

• Step 1.Apply to each snaxelsi , the movement deter-
mined by the physical model employed. The obtained
points (ti , i = 0, . . . , I ) define the Transformed Curve,
TCk.

• Step 2.Build the Projected Curve,PCk = [s′j , j = 0, ..., J]
by concatenating the edges [s′j , s′j+1], defined by two
successive intersections ofTCk with edges ofτ.

• Step 3.For i = 0, ..., I , let Qi be the quadrilateral de-
fined by si−1, si , ti and ti−1. These will be termed the
sweeping quadrilaterals ofSk. Check whetherQi con-
tains vertices of the mesh which are still unvisited and
change theAScorresponding element to“visited” .

Figure 1. One iteration of the original T-snake.

• Step 4.Consider that all transition edges are initially
unmarked and traversePCk. Every time an unmarked
transition edgee0 is reached execute:

– a) Let e = e0 and lett be one of the triangles ad-
jacent toe0. Then, do:

∗ i. Mark eand choose a pointxe on it consid-
ering the positions of the vertices ofPCk or
Sk one.
∗ ii . Replacee by e’, the other transition edge

adjacent tot , andt by t’ , the other triangle
adjacent toe’.
∗ iii . Repeati − iii until e= e0.

– b) Take the closed polygonal line defined by
pointsxe as a snake of stagek+ 1.

Thus, a curve representing each connected component of
the visited set boundary is constructed from its intersections
with the transition edges and becomes a new snake in step 4.
Some observations regarding the procedure above are perti-
nent:



• 1. Checking whether unburned vertices are covered by
the sweeping quadrilateralsQi (Step 3) is time con-
suming, since this must be done for every new snaxel.
[3] lists 16 different cases that must be treated.

• 2. PCk may be traversed up to three times. Once in step
3, where it is constructed and twice in step 4, while
searching for initial transition edges and during the de-
termination of a new snake contour.

• 3. Moving snaxels on diagonal edges has already been
proved not to be a good option. The possible gain in
precision to be obtained by considering is largely off-
set by the effort necessary to make them evolve.

• 4. The use of aK1 triangulation allows curves with
4 snaxels in a square cell to be generated only if that
curve does not cross the main diagonal of the cell. This
makes the process orientation biased since there are
curves which can be approximated by it but would lose
that property if rotated.

From these observations a set of goals which must be
pursued by a new T-snake schema can be established: (A)
No vertex burning because this can be costly. (B) No tri-
angulations or, more generally,no orientation bias. (C) All
curves of a stage must be traversed only once (one turn
property). We will add thatno history must be necessary
— a stage should only process information obtained within
the stage itself. This property makes it easier to refine the
mesh during the process.

A first approach with those properties was introduced by
Bischoff and Kobbeit in [1]. That schema reduces the time
step thus allowing the Transformed Curve to inherit the sim-
plicity of snakeSk. The price of such a simplification is paid
mainly by slowing the snake evolution and thus requiring a
large number of iterations.

3. Theoretical background

We propose a method which repeats steps 1 and 2 of the
algorithm presented earlier except that a vertex ofPCk is
computed as soon as the segment ofTCk containing it be-
comes available. Also, our method does not use a triangu-
lated mesh.

As the focus of this work is the control of a snake topol-
ogy, we consider that the physical displacement of a snaxel
is computed by a “black-box”. We only assume, as is usual
in the context of T-snakes, that physical displacements have
amplitudes which are smaller than the edge length—d—of
cells in theAS. Also, hereafter,µ will refer to the mesh con-
taining these cells.

We call aµ-curve any polygonal line such that: (a) Its
vertices are the points where it intersects the edges ofµ.
(b) No vertex of the curve coincides with any vertex ofµ.

A regular µ-curve is one which is simple and has a sin-
gle vertex on a mesh edge. Since T-snakes must be regular
µ-curves, so are the loops obtained by the approach given
here. Twoµ-curves crossing the same sequence of mesh
edges are said to beequivalent.

To represent aµ-curveS = [si ; i = 0, . . . , I − 1] we use
theCell—Edge of the cell—Point of the edge (CEP)system
where eachsi is represented by: (a) Thecell coordinate—
Ci —indicating theµ-cell containing [si , si+1]. (b) Theedge
coordinate E(si) indicating which of the four edges ofCi

containssi(the left, top, right and bottom edges ofCi are
represented by 0, 1, 2 and 3, respectively). (c)p(si), the dis-
tance betweensi and its out-vertex expressed in pixels. The
out-vertex of si , termedvi is the vertex of theµ-edge con-
taining si which is outside the region delimited byS (the
in-vertex ofsi is defined analogously). Also, defineE(si)−1,
similarly to E(si), as the code of the edge wheresi is on as
an edge of the adjacent cellC(si−1). See Figure 2 below.

Figure 2. Elements used in the CEP system.

The reason for adopting the CEP-system is that it makes
loop-processing more straightforward than using plain line-
column coordinates. In factCi and E(si) have to be com-
puted anyway, no matter the system used.

The µ-Dilation of S—µD(S)—is the curve obtained by
replacing everysi by wi = vi + ε(si − vi), whereε is a small
positive number.µD(S) is a curve,µ-equivalent toS, which
passes very close to the out-vertices ofsi , i = 0, . . . , I − 1.

Given twoµ-curves,S andR , let C1, . . . ,Ck be a max-
imal sequence of mesh cells intersected by consecutive
edges of both curves. We say thatS µ-intersects Rwithin
C1, . . . ,Ck if any µ-curve equivalent toS crossesR within
one of those cells. This concept is illustrated in Figure 3

The existence or not of aµ-intersection within the se-
quenceC1, . . . ,Ck can be determined by computing the
product of three functions taking values in{-1,1}which
can be tabulated:Xini : {0,1,2,3}3 → {−1,1} depend-
ing on the three edges ofC1 crossed by theµ-curves,



Figure 3. (a) Two µ-curves which do not µ-inter-
sect and (b) A µ-intersection and the three func-
tions used to detect it.

Xcom : {0,1,2,3}2 → {−1,1}, which depends on the first
and lastµ-edges crossed by both curves within the se-
quence of cells, andXend : {0,1,2,3}3 → {−1,1}, which is
like Xini for Cn.

We call an elementary mapping (ore-map) a transfor-
mation between curves obtained at the same stagek of the
T-snake evolution. In this work, three e-maps will be used:
Two e-maps take the initial snake of the stageSk ontoTCk

and ontoPCk. These will be termedTk andPk, respectively.
E-mapΓk takes theµ-dilation ofSk ontoPCk.

Tk can be easily defined due to the correspondence be-
tween the vertices ofSk andTCk. On the other hand, there
is no natural definition forPk andΓk. The first objective is
to make them continuous order-preserving piecewise linear
mappings which associate points close to each other. To es-
tablish this last requirement in a more formal way the con-
cept of aµ-bounded e-map is introduced below.

Let f be a facet ofµ (i.e, a vertex, edge or cell). Call
N(f) the union of all cells which are adjacent to the ver-
tices of f . An e-mapM is said to beµ-boundedif for every
s ∈ f , M(s) is in the interior ofN(f). Of course, if the phys-
ical displacement of all snaxels is less thand, thenTk will
beµ-bounded, and in that case, we may enforce this prop-
erty onPk andΓk, too.

Theray of a mappingM at points is defined as the open
segment delimited bysandM(s). If ei = [si , si+1] is an edge
of the domain ofM, the pointssi , si+1,M(si)andM(si+1 de-
fine thesweeping quadrilateralof M generated byei (Qi).

A contractingµ-bounded e-map is said to beadequateif
every one of its raysr i is interior to the union of the sweep-
ing quadrilateralsQi−1 andQi , adjacent to it. Figure 4 illus-
trates this concept.

If Pk is adequate, then it generates no reverse sweeping
quadrilaterals and thus all of its rays will be interior to the
strip swept by the snake of stagek. This means that the bor-
der of the visited set is completely contained inPCk. If Γk

is adequate, each connected component of that border isµ-
equivalent to a loop ofPCk, which is sufficient for our pur-
poses. Also, a series of results, given in Section 5 can be ex-
plored to label these loops.

Figure 4. Non-Adequate ((a)-(b))and Adequate
Mappings ((c)-(d)).

4. Making the Mapping Γk Adequate

Making Pk adequate can be too restrictive since the ray
of Pk at a given snaxel must be constrained to the cone de-
termined by the internal angle ofSk at that snaxel. This can
be too strong a restriction if that angle is small.

Making Γk adequate avoids the case where a snake re-
visits a cell it has already totally swept and, as the inter-
nal angles ofµD(Sk) have at least 90◦, the rays will not be
too constrained. Moreover, this new objective requires con-
siderably less computation. It can be achieved by acting in
two moments. First, when physical displacements are com-
puted, we avoid moving a snaxelSi across the line orthogo-
nal to its edge which passes by its out-vertex If∆i is the co-
ordinate of the displacement applied to a snaxelsi in the di-
rection (horizontal or vertical) of its edge, prevent that pos-
sibility by doing:

if E(si) > 1 then∆i = min
(

∆i , p(si)
)

else∆i = max
(

∆i − p(si)
)

.

There are no additional restrictions to be imposed on the
movement in the other direction.

The second intervention is performed when a vertex of
PCk is generated. It aims at avoiding two undesirable con-
figurations composed ofSk snaxels andPCk vertices. In
the first configuration, depicted in Figure 5(A),PCk crosses
µD(Sk) which makesΓk not contracting. That configuration
is characterized by: (1) Snaxelssi−1 and si , contained in a
cell C1 and having the same out-vertexvi ; (2) the intersec-
tion of [Tk(si−1), Tk(si)] with cell C2, diagonally opposed to
C1 in relation tovi , is the segment delimited by thePCk ver-
tices,s′j−1 ands′j , both lying on edges adjacent tovi , and (3)
si ands′j must belong to the same cellC. If such a configu-
ration is detected, the intersection betweenPCk andµD(Sk)
is eliminated by replacings′j−1 ands′j by si−1 andsi , respec-
tively.

The second configuration to be avoided concerns the ex-
istence of reverse sweeping quadrilaterals. It is shown in



Figure 5. Undesirable configurations.

Figure 5(B), where snaxelssi andsi+1 lay on edges which
are external to a cellC, but are adjacent to the same ver-
tex of C, which is cut into two parts by

[

Tk(si−1),Tk(si)
]

.
The two vertices ofPCk in C, s′j ands′j+1, lay on the same
mesh lines assi andsi+1, respectively, which is only possi-
ble if the quadrilateralQi is reverse. The correction, in this
case, consists merely of replacingTk(si) by s′j .

Both cases are simultaneously handled by the procedure
given below. The following notation is used:s’ cur and
s’ prev refer to the two most recently obtainedPCk ver-
tices; i cur and i prev denote the indices of the two con-
secutive snaxels such thats’ cur ∈ [Tk(si prev), Tk(si cur)].
Also, si cur andsi prev are denoted bys cur ands prev, re-
spectively andt-cur is the current vertex ofTCk.

ProcedureMaking Γk Adequate
if i cur = i prevthen

if E(s′ cur) =
(

E(s cur)
)−1

then
t cur← s′ cur;

else
if E(s′ cur) = E(s prev) and C(s′ cur) = C(s cur) then

s′ prev← s prev; s′ cur← s cur

It should be noted that this procedure embodies all that
must be done when computing a new vertex ofPCk in or-
der to ensure thatΓk is adequate. We consider remarkable
that, in spite of the many complicate cases determined by
sequences of consecutive reverse sweeping quadrilaterals
or clusters ofTCk vertices in the same cell, the problem
of makingΓk adequate admits such a simple solution.

5. Loop-Trees and the Labeling Process

A Loop-Treeof a closed curveC with no multiple self-
intersection points is a graph that can be obtained by the
following process: choose a points in C and a circulationD
(either clockwise or counter-clockwise). TraverseC in that
direction starting ats. Every time a pointx is revisited cre-
ate a node to represent the loop formed by the part ofC be-
tween the two visits tox. Then, collapse that loop intox and
continue the tour. After having completed it, for every loop
L1 which has been collapsed to a point of another loopL2,

create an oriented edge from the node ofL1 to the node of
L2 (See Figure 6).

Loop-Trees of different topologies or with the same
topology, but with different loop-node associations can be
obtained for the same curve depending on the initial point
taken and the circulation used in traversing the curve. For-
tunately, any problems originated from this fact are avoided
if Γk is adequate, as can be derived from Lemma 5.1 be-
low.

Lemma 5.1. If k is an adequate mapping then (A) ev-
ery open loop of PCk is disjoint from other loops found
in the process, and (B) any loop in a sub-tree rooted at
an open loop L will be disjoint from those in the other
sub-trees rooted at L and also from the ancestors of L
in the tree.

So, if Γk is adequate, item (A) leads us to conclude that
the regions enclosed by the open loops ofPCk will be to-
tally unexplored. In view of that, these loops can be made
the T-snakes of stage k+1. Also, (A) and (B) together imply
that these loops are represented in any Loop-Tree ofPCk.
This means that these new T-snakes are independent of both
the initial point from whichPCk is traversed and the circu-
lation used for that.

With respect to the labeling process, ifΓk is an adequate
mapping, then the following results regarding the nodes of
a PCk Loop-Tree can be applied:

Lemma 5.2. The parent of an open node is a closed
node. A closed node, however, can have both open and
closed parents.

Figure 6. A curve and its Loop-Tree.

Lemma 5.3. If both parent and child are closed they
must intersect each other.

These results allow us to label a loop by examining the
label of its children in the Loop-Tree. Lemma 5.2 can be



used to label asclosed every node having anopen child.
A loop having onlyclosed children, will beopen, if it is
disjoint from its children (Lemma 5.1), or closed, if it inter-
sects those children (Lemma 5.3). To start the process, how-
ever, we must devise a method for labeling the leaves. Even
if Γk is adequate, it is not possible to get the label of aPCk

Loop-Tree leaf if we focus only on the curve itself. It is nec-
essary to analyze the neighborhood of a snaxel in the loop.
The information necessary for that analysis is provided by
the Auxiliary Structure and the following result can be ap-
plied if the leaf is a proper loop ofPCk.

Lemma 5.4. Let s be any snaxel of a leaf L which is a
proper loop of PCk. Then, L is a closed loop if all cells
adjacent to the out-vertex of s are crossed by it.

It remains to consider the case where the wholePCk is a
simple loop. The simplest alternative in this case is to check
whether the in-vertex ofs′0 has been swept by the snake.

6. Revisiting a cell

If a cell is revisited, either it will become a double one or
a loop has been formed. To describe the actions taken by the
algorithm to identify a double cell or a loop and to make op-
erational the results of Section 5 with respect to labeling a
loop, some previous considerations are necessary.
(A) The Loop in Construction—LiC—is the polygonal line
defined by thePCk vertices already determined which nei-
ther belong to the loops already found nor have been elim-
inated for laying on the same edge as a neighbor one. The
LiC can be considered as the root of the Loop-Tree of the
part ofPCk already determined.
(B) To use the results of Section 5 it is not necessary to
build the whole LoopTree ofPCk. It suffices to know the
children of theLiC and their labels. For that reason, at the
creation of a loop, the indexes of its initial and final ver-
tices are pushed onto a stack relative to the loops with its
label—either the Open or the Closed stack. When the par-
ent of the loop is determined, and it is a child of theLiC
no more, if those indexes are still there, they can be popped
out.
(C) To make it possible to obtain the so-called, “one turn”
property, it is necessary to have a direct link between the
initial and final vertices of a loop. For that, the element
of AS associated to a cellC stores a code identifying
Last vertex(C), also notedSc, the most recently found ver-
tex of a projected curve which is inC. That code consists of:
(1) the stage at whichsc was created and (2) a record con-
taining both the CEP-coordinates ofsc and links (.prv and
.nxt) to the records of its antecessor and successor in the last
loop containing it or in the currentLiC . If (1) is not the cur-
rent stage then (2) is of no use.
(D) A loop just found is valid if it is totally contained in
the LiC , while a non-valid one shares part of its contour

with a loop found before and must not be added to the loop
tree. The algorithm distinguishes between valid and non-
valid loops in the following way: WhenPCk revisits a cell
C, all elements of the Open and Closed stacks greater than
the index ofLast vertex(C)are popped out. If a new loop is
formed whenPCk returns toC and the number of remain-
ing elements in each stack is even, then that loop will be
valid. Otherwise, it will be non-valid. For simplicity, hence-
forth we will assume that all loops formed are valid.

As loops must be regularµ-curves, if theLiC returns
to an edgee, it is considered that a new loop has been
formed. Other loops are determined by the knots ofPCk.
These loops are identified by a configuration where a cell
has two consecutive vertices ofPCk on its horizontal edges
and other two consecutive ones on its vertical edges.

The fact that the characterization of one type of loop is
related to an edge and the other to a cell determines that
they are treated in different ways. Let us start with the case
wherePCk revisits an edge.

A typical configuration in this case is depicted in Fig-
ure 7 A. sj−m, . . . , sj , si , . . . , si+m with j < i areLiC ver-
tices which form what is called abottleneck. That configu-
ration is characterized by: (A)si+n andsj−n are on the same
edge, for n= 0,. . . , m. (B) If theLiC enters a cellCn at
si+n then, at the moment that vertex is generated,Last ver-
tex(Cn) = sj−n.

Whensi is generated, the loopL0 , delimited bysj+1 and
si−1, is identified. Also, any vertex of the bottleneck is dis-
carded for laying on the same edge of anotherLiC vertex.
However, the treatment of a bottleneck is not restricted to
that because for labeling the loop, yet to be formed, con-
tainingsi+m+1, it is necessary to check whetherPCk has aµ-
self-intersection within the cells containing vertices ofthe
bottleneck. If that intersection does not exist the label of
that loop must be that ofL0 and both must be associated to
a same Loop-Tree node. They are, in fact, parts of a larger
loop which is subdivided into components which are reg-
ular µ-curves. On the other hand, if theµ-self-intersection
exists L0 becomes a child of theLiC and its extremi-
ties must be pushed onto the stack of its label. The exis-
tence of aµ-self-intersection is checked by using the tabu-
lated functionsXini , Xcom andXend introduced in Section 3.
Thus, the complete treatment of a bottleneck can be de-
scribed as follows: (A) At the beginning of the bottleneck:
Let Eini = E(si), evaluateXini and find the label ofL0. (B) At
the end of the bottleneck: EvaluateXend andXcom which de-
pends onEini , andE(sj−n). If the productXini .Xcom.Xend in-
dicates that aµ-self-intersection exists, thensj−n and si+m

must be pushed onto the stack of the label ofL0. In any case,
sj−n−1 andsi+m+1 must be linked to maintain theLiC con-
nected. (C) For concision sake, the unusual case where there
is a loop between two consecutive elements ofsj−m, . . . , sj

will not be considered here. In view of that, no action is re-



quired at the non-extreme vertices of the bottleneck other
than updating theLink vertex . That vertex must be linked
to the next vertex to be generated, if the bottleneck finishes
at the current one, in order to maintain theLiC connected.

Figure 7. A bottleneck(7A) and a knot loop(7B).

In the case of a bottleneck, the repeated edge of a vis-
ited cellC is always that whereLast vertex(C)is on. It re-
mains to consider the case wherePCk returns to the edge of
Last vertex(C).prev. In that second case, bottlenecks can-
not occur and there is always aµ-intersection between the
loop formed and theLiC . Thus, that loop must be repre-
sented in one of the stacks. Eventually, if that second case
determines the end of a bottleneck, the specific treatment for
that situation, given above, must be applied. In Procedure
RepeatedEdge below, all steps described above for treat-
ing the two cases are put together.

Procedure RepeatedEdge
if E(Cur vertex) = E(Last vertex(C))−1 then:

if Cur vertex.prv is not in a bottleneckthen:
Loop(Lastvertex(C).nxt,Curvertex.prv)
Apply the Begining of a Bottleneck treatment

elseLink vertex← Last vertex(C).prv
else ifE(Cur vertex)= E(Last vertex(C).prv)then:

if Cur vertex.prvis in a bottleneckthen:
Apply the End of a Bottleneck treatment

Loop(Lastvertex(C).prv, Curvertex.prv)

Now, assume that theLiC reenters an already visited cell
C by crossing a non repeated edge -ei - at vertexsi (See Fig-
ure 7B). When the next vertex -si+1 - is determined, there
are three possibilities: (A) Ifsi+1 is on a repeated edge, a
loop will be created by the routine Repeatededge above.
(B) If si+1 is also on a non-repeated edge with the same ori-
entation ofei , C∩ LiC will consist of two crossing seg-
ments with extremities onµ-edges of the same direction. In
that case a knot loop must be generated. (C) Ifsi and si+1
are on non-repeated edges of different directions,C will be-
come a double cell. Thus, at the creation of a second con-
secutive vertex in a non-repeated edge (likesi+1) either case

(B) or case (C) must be treated. At the creation of the first of
these vertices (likesi), however, the only action that may be
necessary is to apply the End of Bottleneck treatment. All
these steps are summarized in the following procedure.

Procedure NonRepeatedEdge
if Cur vertex.previs also in a non repeated edgethen:

if E(Cur vertex) = E(Cur vertex.prv) then:
Loop(Lastvertex(C(Currvertexprev)), Curvertex.prv)

elsethe cell has become a double one
else ifCur vertex.previs in a bottleneckthen:

Apply the End of a Bottleneck treatment

Finally, a loop can be labeled and processed by the pro-
cedure Loop below.

Procedure Loop(Ini vertex,Endvertex)
if Ini vertex> Last loop endthen Leaf Label(Endvertex)
else if Ini vertex< Last intersection

or Ini vertex< Top(OpenS tack) then Label← CLOS ED
elseLabel← OPEN
Last loop end← End vertex
Remove the elements> Ini vertexfrom the two stacks
PushIni vertexandEnd vertexonto (Label)-Stack
Link End vertex.nxtto Ini vertex.prv

A leaf L of the Loop-Tree can be identified by the fact
that its initial vertex has been created after any vertex in
a loop already found. Its label must be determined by one
of the schemes exposed in Section 5. Now, let us consider
the way a non-leaf loopL is labeled. If a new loop inter-
sects another already found then, by Lemma 5.3, it must
be closed. That intersection exists if the loop initiates be-
fore the last intersection of theLiC with one of its chil-
dren. If this is not the case, one may try to labelL by us-
ing Lemma 5.2 which establishes that any loop having an
open child is closed. An open child exists iff the initial ver-
tex of L, Ini vertex, has been generated before the one on
the top of the Open-Stack. IfL has not been labeled up to
this point, then it must be open , since a non-leaf closed loop
either has an open child or intersects its children. Besidesla-
beling the new loop, it is necessary to update the stacks and
extend theLiC .

7. Statistics and Examples of Segmentation

A program for evolving Loop-Snakes has been imple-
mented and applied to a series of test examples. The statis-
tics obtained from these validation tests are the best argu-
ment in favor of the approach introduced here. For evalu-
ating the overall computational effort required by that ap-
proach, the snaxels have been classified according to the
number of operations, with regard to the topology control,
that must be performed when they are processed. Here,
for simplicity, they will be grouped in the three following
classes: (A) snaxelssi such that [Tk(si−1),Tk(si)] cuts a cell
into two parts. (B) snaxels at which the procedure to make



Γk adequate takes a corrective action . (C) Snaxelssi such
that [Tk(si−1),Tk(si)] intersects an already visited cell. The
number of snaxels in each of these classes was computed
for images of four different types - Synthetized images (I),
Noisy images (II), Images with many segments (III) and
Images with cells on a textured background (IV). The re-
sults obtained are presented in Table 1. It can be observed

Images I Images II Images III Images IV
Group A 142.605 937.837 360.687 425.618
Group B 1.806 95.357 22.453 44.866
Group C 6.359 8.540 12.541 3.808
Overall 557.282 2.847.313 1.183.100 1.212.631

Table 1. The number of snaxels computed.

that the number of most costly snaxels, that is, those deter-
mining thatPCk revisits a cell (Group C), is considerably
small compared with the total number of snaxels, not reach-
ing 1.2%. Also, the snaxels in group A are no more than
36%, of the total which means that for the other, at least
64% of them, the only action specific of this approach is
testing whetheri cur = i prev, since limiting the displace-
ment of the snaxels and checking and updating theAS are
common to all approaches. Moreover, for the snaxels not in
B, at least 96% of the overall number , that action is lim-
ited to 4 tests. This means that: (1) the number of snaxels
requiring additional work is a negligible fraction of the to-
tal and (2) for those 96% of the snaxels, the performance
of Loop-Snakes is clearly hard to beat. In fact, the num-
bers above attest the adequacy of the strategy employed in
this work: spend minimum effort when processing a plain
snaxel and delay all the complication to the moment a loop
may be found.

Two examples where the method has been applied are il-
lustrated in figures 8 and 9. The first one shows the ability of
ignoring small artifacts present in the background. The sec-
ond is an example where the T-snake splits multiple times.
The solutions indicated in both cases, have been obtained
without refining the mesh or applying any post-processing.

8. Conclusions and Future Work

A series of theoretical results (Sections 3 - 5) had to be
developed to support the Loop-Snakes approach. Based on
those results it was possible to create a methodology satis-
fying the four desired properties indicated in Section 2 and
having a clear computational gain when compared to the ex-
isting methods, as seen in Section 7.

With respect to future works , the possibility of expand-
ing the results obtained here for T-surfaces evolving in 3D-
images can be considered in the following context: IfΓk

is adequate, the work of burning the mesh vertices swept
by the T-snake can be reduced to label as visited the out-
vertex of everyPCk vertex generated. This property can be
extended to T-Surfaces and give origin to a faster method.
There are also 2D variants of the method yet to be explored.
The most promising one does not even require that the pro-
jected curve be determined.

References

[1] Bischoff and L. Kobbeit. Snakes with topology control.The
Visual Computer.

[2] A. W. M. Kass and D. Terzopoulos. Snakes:active contour
models.The Visual Computer.

[3] T. McInerney and D.Terzopoulos. Topologically adaptable
snakes. Proc. of Int. Conf on Computer Vision, pages 840–
845, 1995.

[4] A. Oliveira and S. Ribeiro. The loop snakes page:
http://ganimede.lcg.ufrj.br/projetos/loopsnakes. 2004.

Figure 8. An image with two cells.

Figure 9. Evolution with multiple splits.


