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Abstract. This paper suggests an hierarchical region based representation to implement detection of
shapes in gray-scale images. The Max-Tree structure has demonstrated to be useful for this purpose,
offering a semantic objects vision of the image, therefore, reducing the number of elements to process in
relation to the pixel based representation. In this way, a particular thresholding information, associated
with a specific shape analysis, can be used to determine the segmentation or filtering of regions of interest
with lesser computational effort. For to demonstrate this technique, a generic application of detection of
lines is proposed using the distance transform approach on each connected component from the depth
searching in the mentioned tree.

1 Introduction

In most image processing based applications, an im-
age is usually viewed as a set of pixels placed on a
retangular grid. The developed works, in general, are
based on this point of view. One of the difficulties
when working directly with a pixel based representa-
tion is the large number of these elements in an image
and mainly in a video sequence. But it is possible to
understand an image as a set of regions. This has been
done, for instance, in development of the MPEG-4 [3]
or MPEG-7 [17, 14] standards. Both interpret the im-
age or video as a set of audiovisual objects. Thus new
representations of the image (not pixel based) with the
implicit notion of region should be developed.

Some structures as adjacency graphs or hierarchi-
cal graphs has demonstrated to be useful for image pro-
cessing based on region. Among the considered models
that allow the extraction of semantic properties [14]
of an image, we can cite: Region adjacency graph [5],
Components Tree [12], Binary Partition Tree [16], Tree
of Critical Lakes [15, 4] and Max-Tree (Min-Tree) [8].

Watershed-based [2] applications are sufficiently
common. We can generate the multiscale lines of wa-
tershed from the cited tree of critical lakes. In other
words, we determine objects in some scales (partitions)
from coarsest to finest. Another tool very used and suf-
ficiently powerful is the simple or adaptive threshold-
ing that can directly be obtained by the algorithm of
Max-Tree construction. This structure will be studied
in this work aiming the elaboration of new algorithms
for segmentation and filtering of images in gray-scales.
Hough transform is frequently used for line extraction

(segmentation) [7, 13]. There are works also using
wavelet [9] and space-scale [1]. Our results are impor-
tant task in the identifying of lines in images, such as
roads and markings in digitized GIS map images and
remotely sensed satellite images, among others exam-
ples.

The Section 2 shows preliminary definitions of im-
age processing, besides introducing the Max-Tree con-
struction. The Section 3 illustrates the proposed al-
gorithm for detection of lines. In Section 4, we have
some experimental results. Finally, conclusions are
commented in Section 5.

2 Preliminary Definitions

Let E ⊂ Z×Z be a rectangular finite subset of points.
Let K = [0, k] be a totally ordered set. Denote by
Fun[E, K] the set of all functions f : E → K. An im-
age is traditionally one of these functions. Particularly,
if K = [0, 1], f is a binary image.

LetNE(x) be the set containing the neighbourhood
[11] of x, x ∈ E. We define a path from x to y, where
x, y ∈ E, as a sequence C = (p0, p1, ..., pn) from E,
where p0 = x, pn = y and ∀i ∈ [0, n−1], pi ∈ NE(pi+1).

A connected component of E is a subset CC ⊂ E
such that, ∀x, y ∈ CC, there is a path C entirely inside
CC.

A flat zone of f is a connected component CC ⊂
E, such that f(x) = f(y), ∀x, y ∈ CC.

A regional maximum is a flat zone Z such that
f(z) > f(n), z ∈ Z, n ∈ N,N ∈ FZ , where FZ is a set
of all flat zones adjacent to Z [6].

A partition P = {R1, R2, · · · , Rn} of E is a set of



regions (connected components) Ri, i = [1, n], where⋃
Ri = E, Ri ∩Rj = ∅, ∀i, j ∈ [1, n], i 6= j.

A partition hierarchy or nestled partitions sequence
H = {P1,P2, · · · ,Pn} is a set of partitions Pi, i = [1, n]
if, for ∀i, j ∈ [1, n], i < j, Pi ⊃ Pj .

Dilation and erosion are morphological operators
[10] and are denoted, respectively, by δB and εB through-
out this text.

Definition 1 Let f ∈ Fun[E, K], K = [0, k], and x ∈
E, the negative operator is defined by

ν (f) = k − f (x) .

Notice that, when k = 1 (binary images), ν(f) is the
set-complement of f .

Definition 2 Let f ∈ Fun[E,K], K = [0, 1], x ∈
E, and Bc a structuring element, the distance trans-
form consists in the determination of the lesser dis-
tance from x to complementary set of f , or ν(f), and
is defined by

DTBc(f) =
∞∑

i

ε(i·Bc)(f) .

When the erosion generates a null image, the cal-
culation of DTBc(f) will be finished, and it will not be
more necessary to increase the value i.

Definition 3 Let f,m ∈ Fun[E,K], K = [0, k], and
Bc a structuring element, the reconstruction is given
by

γBc,m(f) = δBc,f (δBc,f (· · · δBc,f (f ∧m)))︸ ︷︷ ︸
∞

,

δBc,f (·) = δBc(·) ∧ f .

The created image is given by an infinite number
of recursive iterations (until stability) of the dilation of
m by Bc conditioned to f . In other words, γBc,m(f) is
the reconstruction of f from the marker m.

Definition 4 Let f ∈ Fun[E,K], K = [0, 1], and Bc

a structuring element, the labeling is given by

ΛBc(f)(x) =
{

min{y1 + Hy2|y ∈ γBc,{x}(f)} (1)

0 (2)

(1) if γBc,{x}(f) 6= ∅; (2) otherwise. Where H is
the number of image rows, y1 and y2 are the row and
column coordinates respectively.

Definition 5 The morphological gradient, ∀f ∈ Fun[E,
K], and for every structuring element Bdil (of dilation)
and Bero (of erosion), is given by

ΨBdil,Bero(f) = δBdil
(f)− εBero(f) .

This operator is frequently used to enhance con-
tours or non homogeneous regions.

The intention of this work is to redefine an im-
age through a hierarchical structure where each repre-
sented connected component is a classic binary image.

2.1 Max-Tree Representation

Figure 1a shows a created synthetic image to illustrate
the Max-Tree construction process. A topographical
surface representation of this image is shown in Fig-
ure 1b. The Max-Tree is like a kind of skeleton of this
surface, as it can be observed in Figure 1c, where each
node of the tree corresponds to a connected compo-
nent in a determined level of the image. The thresh-
olding at level 0 generates all the pixels equals to 1
(unique component represented by root of the Max-
Tree). When this value increases (until 255 for un-
signed byte type images), new ramifications can appear
in the tree. The levels will correspond to the regional
maximum regions. Algorithm 1 implements this struc-
ture construction. The inputs are: gray-level image f ,
and structuring element SE (neighbourhood informa-
tion). As outputs we have: Max-Tree data structure
graph, and the flooding sequence SEQ for region re-
trieval. STATUS is a structure that registers if a pixel
already was visited. FIFO represents an hierarchi-
cal queue with operations of removal (FIFO FIRST )
and insertion (FIFO ADD) with a level-set of the
image associated. The auxiliary vectors node at level
and number nodes indicate, respectively, if there are
nodes and the number of nodes in each level of the
image. FIFO consists of a dictionary structure whose
key is a level-set of the image pointing to the position
and gray value of the pixel (x, y, f(x, y)). Finally, the
graph structure also is a dictionary, where the key is a
node (level, label) of the Max-Tree pointing to its chil-
dren. APPEND is the function of insertion of a node
in the graph when the key already exists and points to
a list of children. Otherwise, the insertion is only an
attribution. The recursive calling is done at line 18.

An numeric example is given in Figure 2a to en-
rich the visualization of this process. After the ending
of the algorithm execution, we have the data struc-
ture shown in Figure 2b. It is constructed of several
lists, each one referenced by a key. Each element is
indicated by its level in the gray-level image, and its
labeled connected component in this level (this retriev-
ing is possible through of the output SEQ from the
algorithm). Observe that the thresholding at a certain



(a)
(b) (c)

Figure 1: (a) Original image (b) Topographical surface
(c) Max-Tree representation

level can generate several connected components and
this produces ramifications in the tree, or hierarchical
partitions of the Max-Tree.

(a)

(b) (c)

Figure 2: (a) Matrix of the original image (b) Data
structure generated by the algorithm (c) Illustrative
representation of the Max-Tree

3 The Proposed Detection of Lines

In this section, we describe each step of our proposed
technique for detection of lines in gray-scale images
from the Max-Tree information. The idea consists of
a searching in depth on graph structure and, for each
visited node (each connected component or region), a
shape analysis is performed. We can consider that all
the pixels of a line are distant of 1 unit in relation to
object boundary (for lines, is convenient to use cross
structuring element). An approach by distance trans-
form can be introduced in this way: max(DTSE(f)) =
1. Case the line thickness is important then: dmin ≤
max(DTSE(f)) ≤ dmax. Therefore, we will search
lines with thickness between dmin and dmax, or the
maximum value of the distance transform must be in
this interval of tolerance. The inputs of the algorithm
are: original image f , the Max-Tree graph, the flood-
ing sequence SEQ, and the structuring element SE
(cross). Algorithm 2 describes this purpose in details,
where CCnode is the retrieved connected component

Algorithm 1: Max-Tree construction algorithm.
Input: f , SE
Output: graph, SEQ

Initialization:
1 graph ← ∅; S ← 1
2 number nodes ←©256 //zeros vector
3 node at level ← B256 //booleans vector
4 STATUS ← SEQ ←©shape(f)

5 FIFO ← 0 : {0, 0, f [0, 0]}

Flood(h)
6 while h 6= ∅
7 p ← FIFO FIRST (h)
8 SEQ[p] ← S
9 S ← S + 1
10 STATUS[p] ← number nodes[h] + 1
11 for each q ∈ NSE(p)
12 if STATUS[q] =“not analysed”
13 m ← f [q]
14 FIFO ADD(m : {q[0], q[1], m})
15 STATUS[q] ←“in the queue”
16 node at level[m] ← TRUE
17 while m > h
18 m ← Flood(m)
19 m ← h− 1
20 while m ≥ 0 and (not node at level[m])
21 m ← m− 1
22 if m ≥ 0
23 i ← number nodes[h] + 1
24 j ← number nodes[m] + 1

25 UpCCj
m ← (m, j)

26 UpCCi
h ← (h, i)

27 if UpCCj
m ∈ graph

28 APPEND(graph[UpCCj
m], UpCCi

h)
29 else
30 graph[UpCCj

m] ← UpCCi
h

31 else
32 UpCC1

h ← (min(f), 1)

33 graph[“root”] ← UpCC1
h

34 node at level[h] ← FALSE
35 number nodes[h] ← number nodes[h] + 1
36 return m

given by Algorithm 3 from a visited tree node. It is a
model to implementation of detection of others shapes.
As outputs we have: two images, gh with the associ-
ated thresholdings to each detected object and, garea

with associated areas. Both images have the same con-
nected component set with the found lines but, in ad-
dition to segmentation of lines, we can classify them
in according with the criterion of level-set or area. For
instance, we can filter all the detected lines with area
greater than a predetermined value k: garea ≥ k.

4 Experimental Results

In this section, some examples are illustrated to demon-
strate particularitities of our technique. Figure 3 shows
four input images of lines with illumination gradient
and distinct backgrounds, and its respective outputs



Algorithm 2: Algorithm for detection of lines.
Input: f , graph, SEQ, SE, dmin, dmax

Output: gh, garea

Initialization:
1 gh ← garea ←©shape(f)

2 LIFO ← graph[graph[“root”]]

Line Depth Search
3 while LIFO 6= ∅
4 node ← LIFO POP ()
5 LIFO PUSH(node)
6 line ← dmin ≤ max (DTSE (CCnode)) ≤ dmax

7 if line
8 gh ← gh · ν(line) + node[0] · line
9 garea ← garea · ν(line) + area(line) · line
10 else if node ∈ graph
11 if LIFO
12 LIFO PUSH(graph[node])
13 else
14 LIFO ← graph[node]
15 return gh, garea

Algorithm 3: Algorithm for connected component
retrieval from a node of the graph.
Input: f , SEQ, SE, node
Output: CCnode

Region Retrieval
1 blobs ← γ(SE,f=node[0])(f ≥ node[0])
2 label ← ΛSE(blobs)
3 for i ← 1 to max(label)
4 bi ← label = i
5 mi ← min(SEQ · blobs · bi)
6 n ← sort(m)
7 CCnode ← {bi|mi = nnode[1]}
8 return CCnode

after the algorithm execution. Figure 3a shows the
line with all the pixels greater than 0 and a black back-
ground, resulting in the complete detection of the line
conforming Figure 3b. Figure 3c contains half of the
background gray-level coincident with parts of the line,
resulting in the two breaks of the line of Figure 3d (the
second gap can be suppressed from Algorithm 4 - see
also Figure 4). In Figure 3e, all the background as-
sumes the same value greater than 0 and this results
in the increase of the second gap as shown in Figure 3f.
Finally, in Figure 3g we have the negation of the last
input image and the respective output in Figure 3h.
From the last example, we can observe that is interest-
ing to process the original image and its negation for a
more accurate detection by the union of both outputs
(we also can use a Min-Tree structure [8] for this).

Algorithm 4 purposes a refinement of the detec-
tion of lines, when it is visually possible to find a
line, but the analysis made previously does not allow
to affirm that a processed connected component is a
line. Suppose we have the object of Figure 4a (gener-

(a) f1 (c) f2 (e) f3 (g) ν (f3)

(b) g1 (d) g2 (f) g3 (h) g4

Figure 3: (a),(c),(e),(g) Original images; (b),(d),(f),(h)
Respective results of the segmentation

ated by thresholding on Figure 3c). Its distance trans-
form corresponds to Figure 4b. Observe the maximum
value is high (70) and is out of the interval for a line.
When implementing this algorithm, we eliminate the
regions where the distance transform is greater than
pre-defined limit dmax of the line. Figure 4c shows
this result.

Algorithm 4: Algorithm to improve the detection
of lines in connected component whose distance trans-
form maximum is greater than dmax limit.
Input: SE, CCnode, dmax

Output: lines

Refinement
1 a1 ← δB(dmax·box) (DTSE (CCnode) > dmax)

2 a2 ← CCnode − a1

3 a3 ← (a2 > 0) · a2

4 lines ← CCnode ∩ δBcross (a3)
5 return lines

(a) f5 = f2 > 0 (b) DTSE(f5) (c) g5

Figure 4: (a) Thesholding of the f2 image at level 1 (b)
Distance image of the f5, where the maximum value is
70 (c) Line retrieval by the proposed refinement

Figure 5 shows the line segmentation of portion of
a Brazilian climatic map, using dmin = 1 and dmax =
2. Figure 5a,b,c are: the original image, its histogram,
and the detection resulting (thresholding at level 1 in
gh or garea output). Observe circles, rectangles, trian-
gles and other shapes are not considered. Figure 5d,e
shows: gh with associated level-sets in each detected
line, and its histogram. We can perceive this histogram
h(gh) has only two components and to take a thresh-
olding decision is facilitated in this format in relation
to original image. For instance, we take the level 200



and generated Figure 5f image. Figure 5g,h shows:
garea with associated areas in each detected line, and
its histogram. Figure 5i shows a filtering by area of
value 35 based on generated garea and its histogram
h(garea).

(a) f (d) gh (g) garea
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Figure 5: (a) Original image f (b) Histogram of f
(c) Result of the segmentation (d) Output gh (e) His-
togram of gh (f) Threshold 200 of gh (g) Output garea

(h) Histogram of garea (i) Threshold 35 of garea

Our next example is the purposed algorithm ap-
plication of line detection on a photographic image of a
clock. Figure 6a shows the original image. We aim to
segment dark lines and, therefore, we take the negation
of the clock image gererating Figure 6b. For dmin = 1
and dmax = 1, gh > 0 or garea > 0 corresponds to
Figure 6c image. For dmin = 1 and dmax = 2, we have
the segmentation of Figure 6d image. In the last case,
thicker lines was found.

(a) f (b) ν(f) (c) g{1,1} (d) g{1,2}

Figure 6: (a) Original image f (b) Negation of f (c)
Binary ouput for dmin = 1 and dmax = 1 (d) Binary
ouput for dmin = 1 and dmax = 2

Finally, the last example consists in detection of
lines in another photographic image of a cameraman.

The original image is in Figure 7a. Its gradient is
used to enhancement the contours and is shown in Fig-
ure 7b. The algorithm is applied resulting in Figure 7c.
Two thresholdings are tested to illustrate some outputs
in Figure 7d and Figure 7e.

(a) f (b) Ψ(f)

(c) g{1,2} (d) gh > 100 (e) garea > 50

Figure 7: (a) Original image f (b) Gradient of f (c)
Binary ouput for dmin = 1 and dmax = 2 (d) Threshold
100 of gh (e) Threshold 50 of garea

5 Conclusions

The presented Max-Tree algorithm is fast with run-
time of kxn on gray-scale images of n pixels. k com-
parisons, where k is the number of neighbours of a
pixel (line 11 of Algorithm 1), are performed for each
pixel extracted from hierarchical queue. The proposed
algorithm implements linear time operations, such as
the distance transform, on each node of the subtree of
the Max-Tree. The region retrieving method (Algo-
rithm 3) still can be improved. The classical Hough
transform is very used in detection of lines and does
mxp computations, being m the number of points in a
binary image (therefore, a pre-processing is necessary)
and p the number of subdivisions of the space of pa-
rameters. Several variants were introduced to improve
perfomance in classical Hough transform, which has
high complexity in the practice.

During the line detection processing, whenever a
line is found the descendent nodes do not need be
visited. Figure 8 demonstrates this feature. A per-
formance gain is obtained by this issue. Instead of
line analysis we could easily take a circle, an ellipse,
a rectangle or any other simple geometric figure. Ob-
serve these examples were not detected because are not
included in the distance transform approach adopted
here. More complex objects can also be detected by



statistical analysis (classification) or other specific mech-
anisms (contour derivation, convex hull, neural net-
works, among others).
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Figure 8: Number of created nodes (“+” markers) by
Max-Tree and number of visited nodes (“x” markers)
by proposed algorithm for several random images with
increasing size

The generated image gh has simplified histogram
and a thresholding decision is facilitated, aiming to
find lines with a certain gray-level. The output garea

is useful in filtering of lines by area. If dmin = 1 and
dmax = 1 then a classification by line length can be
performed. The line thickness is not normally consid-
ered and only straight lines are usually extracted in
works using Hough transform. This paper offers an
image semantic vision allowing to detect any line con-
form to a defined thickness. Moreover, the proposed
algorithm can be expanded to segment other shapes or
objects.

For each visited tree node, we must know the con-
nected component correspondent. Further work is re-
quired to avoid any redundant processing of connected
component retrieval as, for instance, the labeling or
distance transform in a determined image thresholding.
Information as these would be registered only once and
consulted when necessary. The algorithm could also
generate a labeled image glabel, characterizing each line
and, from this, gh and garea could be created. Intrinsic
Max-Tree characteristics will be studied for segmenta-
tion of other objects and filtering. Line detection in
other hierarchical region based representation as the
Tree of Critical Lakes must also be implemented for
comparisons.
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(b) f ′
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Figure 9: Application of vehicle plate detection (a)
Original image (b) Reduction of contrast and negation
of the original image (c) Result of the proposed algo-
rithm applied on the second image using dmin = 1 and
dmax = 2


