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Abstract

This paper aims at proposing an elastically deformable
surface with use of differential geometric structures. On the
basis of the Theory of a Cosserat Surface, a computationally
processable equation that relates the accumulated elastic
energy and the variations in the differential geometry vari-
ables (metric and curvature tensors) of the deformable sur-
face is presented. On the basis of our analysis, we propose
a novel algorithm to compute more precisely, without com-
promising the interface’s simplicity, the potential deforma-
tion energy in terms of the derivatives of the surface. With
our proposal, we may maintain the finite difference scheme
for computing deformations iteratively. Some simulation re-
sults are included.

1. Introduction

Deformable surface modeling techniques have been pro-
posed either for support garment engineering or for en-
tertainment and advertising purposes. They range from
pure geometrical models, such as the pioneering work
by Weil [15], to the models based on different shell the-
ories, such as the fabric models proposed by Chen and
Govindaraj [4], Eischen et al. [6] and Au et al. [1].

Using the fact that the energy stored in a deformable
model was the sum of the energy due to stretching, bend-
ing, and the work done by the external forces, Terzopoulos
et al. [14] developed a deformable surface model which re-
lates the Lagrangian motion equation with the intrinsic ge-
ometry of the deforming surface

µ
∂2r
∂t2

+ γ
∂r
∂t

+
δε(r)
δr

= f(r, t), (1)

whereµ is the mass density andγ is the dumping constant at
a pointr. The vectorf denotes the total contribution of ex-
ternal forces atr in an instantt. The term corresponding to

the internal energyU , accumulated due to elastical defor-
mationε(r), is estimated from the following empirical con-
sideration

ε(r) =
∫

Ω

∑

i,j

(Φij(Gij−G0
ij)

2+Ψij(Bij−B0
ij)

2)da1da2

(2)
whereGij − G0

ij andBij − B0
ij are, respectively, the vari-

ation of the metric and the curvature tensors with respect to
its rest state, as detailed in Section 2, andΦij andΨij are
the elasticity constants. Roughly speaking, the metric ten-
sors measure the variation of the area of the deforming sur-
face and the curvature tensors give us the amount that a sur-
face bends while it is deforming.

Instead of considering the deformable surface as a de-
generated solid described in terms of a local Cartesian frame
[6], the model proposed by Terzopoulos et al. embeds the
surface displacements and normal vector variations in com-
ponents described in terms of a Gaussian (intrinsic) frame.
This approach explicits the variables that controls directly
the local geometric behavior of the deforming surface.

In a previous work [8, 12], Ramos et al. noted that the
model suffers from correct behavior under the resistance
against bending. They conjectured that the problem came
from the lack in the control of the relationship between the
metric and curvature tensors while the surface is deform-
ing. It is known that the metric and curvature tensors must
satisfy certain compatibility differential equations known as
Gauss formula and Mainardi-Codazzi equations [13, 3, 2].
However, from their tests, they concluded that, even when
the compatibility equations are satisfied, unrealistic deform-
ing behaviors concerning with bending may be yielded.

Attracted by the potential of the model in providing a
more intuitive interface to the users, we decided to investi-
gate more carefully the existing paradigms for implement-
ing deformable surfaces on the basis of the local geome-
try properties. Our starting point is the classical shell the-
ory, which regards a surface as a collection of points to
each of which a vector out of a surface, called adirector,



is assigned [7]. Its deformation is characterized by both the
transformation of its coordinates as well as that of its di-
rectors. This surface is denominated Cosserat surface and
presents the advantages that its formulation is performed in
an analytic way, more appropriate for devising an interface
that most of users are used to.

Simo and Fox [9, 10, 11] presented an efficient numeri-
cal implementation of the Cosserat surface, free from math-
ematical complexities such as the Christoffel symbols and
the curvature tensors, in order to make it suitable for nu-
merical analysis and finite element implementation. Mode-
ling and control of fabrics has been benefited from their
work [4, 6]. On the other hand, the implicitization of the ge-
ometric parameters, such as the curvature tensors, turns the
relation between “what you control” and “what you see”
more obscure.

Motivated by the user interface considerations, we pre-
sent in this paper a novel proposal for a deformable model
on the basis of the elastic Cosserat surface, maintaining
all the components relative to a Gaussian (intrinsic) frame,
such that we may define the dynamics of a surface shape
through a set of constants calleddeformation constants, η,
ξ andφ. Similar to the work of Terzopoulous et al., the con-
stantη determines the amount that a surface stretches un-
der the external forces and the constantξ, how the surface
bends. The new parameterφ controls the amount that the
surface bends in each direction.

The paper is organized as follows. In section 2 some ba-
sic concepts of Differential Geometry are presented. We
show the basis of the elastic Cosserat surface in section 3.
Then, we present our proposal for modeling the kinematics
of a deformable surface on the basis of the elastic Cosserat
surface in section 4. Some simulation results is given in sec-
tion 5 to illustrate the relationship between the specified
elasticity parameters in our model and the obtained visual
effects. Finally, in section 6 some concluding remarks are
drawn.

2. Concepts

To be self-consistent some fundamental concepts neces-
sary for understanding this paper are given.

Let r : Ω → R3 be a regular surfaceS [3] given by
r(a1, a2) = (x(a1, a2), y(a1, a2), z(a1, a2)), a1, a2 ∈ Ω.
As we have

dr =
∂r
∂a1

da1 +
∂r
∂a2

da2, (3)

the squared lengthI(w) of an arc of a parameterized curve
α(t) = r(a1(t), a2(t)), t ∈ (−δ, δ), with P = α(0) =
r(a0

1, a
0
2) andw = α′(0), can be expressed by

I(w) = dr · dr =
2∑

i,j=1

Gijdaidaj

=
[

dai daj

] [
G11 G12

G21 G22

] [
dai

daj

]
(4)

where

Gij(r(a)) =
∂r
∂ai

· ∂r
∂aj

. (5)

The quadratic form, defined by Eq.(4), is thefirst fun-
damental formor metric tensorand their componentsGij ,
given by Eq.(4), are called themetric. Since the inner prod-
uct is symmetric, we haveG12 = G21.

With the first fundamental form we can treat metric ques-
tions on a regular surface without further references to the
ambient spaceR3 where the surface lies. Therefore, all ge-
ometric properties expressed in terms of the metric coeffi-
cients, such as length, area, and angle, are invariant under
isometries and are calledintrinsic geometric properties.

The coefficientsGij of the inverse matrix of the matrix
given in Eq.(4) are

G11 =
G22

G
, G12 = G21 = −G12

G
, G22 =

G11

G
, (6)

where
G = G11G22 −G12G21. (7)

The superscripts and subscripts denote, respectively,con-
travariant and covariant tensors. The difference between
them is how they transform under a smooth change of co-
ordinates. We denoteGij

0 the coefficientsGij of the initial
surface.

It can be shown that thenormal curvaturekn of α(t) =
r(a1(t), a2(t)) at the pointP = α(0) with w = α′(0) can
be expressed as

II(w) = kn(w) =

∑2
i,j=1 Bijdaidaj∑2
i,j=1 Gijdaidaj

, (8)

where

Bij = n · ∂2r
∂ai∂aj

(9)

with

n = (
∂r
∂a1

× ∂r
∂a2

)/
∥∥∥∥

∂r
∂a1

× ∂r
∂a2

∥∥∥∥ (10)

corresponding to the normal vector ofS atP . The term

2∑

i,j=1

Bijdaidaj =
[

dai daj

] [
B11 B12

B21 B22

] [
dai

daj

]

(11)



is called thesecond fundamental formor curvature tensor
and the elementsBij are thecurvature coefficients. The cur-
vature coefficients are symmetric, that is,B12 = B21.

The directions for which the normal curvatures (or the
distances) is the minimum or maximum are calledcurva-
ture directions. We call the normal curvatures in the curva-
ture directions theprincipal curvatures, and denote them by
k1 andk2.

In terms of the principal curvatures, we may define the
mean curvature

H =
k1 + k2

2
=

G11B22 − 2G12B12 + G22B11

2(G11G22 −G2
12)

(12)

and theGaussian curvature

K = k1k2 =
B11B22 −B2

12

(G11G22 −G2
12)

. (13)

If S is orientable, it is possible to assign to each point a
basis given by the vectors∂r/∂a1, ∂r/∂a2 andn. By ex-
pressing the derivatives of∂r/∂a1 and∂r/∂a2 in the basis
∂r/∂a1, ∂r/∂a2, n, we obtain the Gauss formula

∂2r
∂ai∂aj

=
2∑

k=1

Γk
ij

∂r
∂ak

+ Bijn, i, j = 1, 2, (14)

whereΓk
ij are the Christoffel symbols that depend exclu-

sively on the coefficients of the first fundamental form and
their derivatives as follows

Γk
ij =

2∑

l=1

1
2
Gkl

(∂Gjl

∂ai
+

∂Gli

∂aj
− ∂Gij

∂al

)

=
2∑

l=1

Gkl
( ∂2r

∂ai∂aj
· ∂r
∂al

)
. (15)

Hence, they are also intrinsic properties ofS and all ge-
ometric concepts and properties expressed in terms of the
Christoffel symbols are invariant under isometries. Since
∂2r/∂ajai = ∂2r/∂aiaj , the Christoffel symbols are sym-
metric relative to the lower indices; that is,Γk

ij = Γk
ji.

The most surprising result is that all geometric proper-
ties expressed in terms of the Gaussian curvatureK are
bending invariant, that is, the properties that are unchanged
by deformations which do not involve stretching, shrink-
ing, or tearing. For example, a cylinder and a plane have
the same Gaussian curvature. For distinguishing these two
classes of shapes, we should use other measurements, such
as the mean curvatureH: the mean curvature of a plane is
zero while that of a cylinder is nonzero. Unlike the Gaus-
sian curvature, the mean curvature depends on the embed-
ding and is closely related to the first variation of surface
area.

When the intrinsic metric properties (distances of points
along curvilinear coordinates or angles of their tangent di-
rections at a point) change, the coefficients of the first and
the second fundamental forms cannot vary independently.
They should obey the Mainardi-Codazzi equations

∂B11

∂a2
− ∂B12

∂a1
=B11Γ1

12 + B12(Γ2
12 − Γ1

11)−B22Γ2
11

∂B12

∂a2
− ∂B22

∂a1
=B11Γ1

22 + B12(Γ2
22 − Γ1

12)−B22Γ2
12

(16)

3. An elastic Cosserat Surface

A Cosserat surface is a surface that lies in the ambient
spaceR3, to evey point of which is assigned a vector point-
ing outwards the surface, called adirector. The deforma-
tion of a Cosserat surface is characterized by both the ba-
sis vectors as well as that of its directors. The basis vectors
provide the deformations of the intrinsic geometry of a sur-
face while the directors may provide deformations that are
not bending invariants. Figure 1 illustrates the change of the
shapeSi of a deforming surface at timeti to the shapeSi+1

at time ti+1 by moving each pointj along a directionvj

which results in a new set of points in 3D-space. The The-
ory of a Cosserat Surface ensures that this new set of points
defines a regular surface, since a set of constitutive equa-
tions and the equation of balance of energy are satisfied [7].

Si

d

Si+1

d

Figure 1. A Cosserat surface.

Let (x1, x2, x3) refer to a fixed right-handed Cartesian
coordinate system andt the time. Let(a1, a2, a3) denote an
arbitrary curvilinear coordinate system defined by the trans-
formation

xi = xi(a1, a2, a3, t), det
[∂xi

∂aj

]
> 0, (17)

and its inverse. Let

r(a1, a2, 0) = (x1(a1, a2, 0), x2(a1, a2, 0), x3(a1, a2, 0))
(18)

be a surfaceS that has two curvilinear coordinate curves,
a1- anda2-curves, on it, and the third coordinatea3 along



its normal n. In the rest of this paper, we simply use
xi(a1, a2) for referringxi(a1, a2, 0). Let d(t) be a direc-
tor assigned to every point ofS. The motion of a Cosserat
surface is characterized by

xi = xi(a1, a2, t), d = d(a1, a2, t), (19)

whered has the property that its components, referred to the
base vectors{ ∂r

∂a1
, ∂r

∂a2
,n}, remain invariant when the mo-

tion is altered only by superposed rigid body motions.
Let σ, the area ofS at time t, be bounded by a closed

curvec and letν be the outward unit normal toc lying in
the surface. IfN is a three-dimensional vector field and, if,
for all arbitrary velocity fieldsv, the scalarN · v repre-
sents a rate of work per unit length ofc, thenN is acurve
force vectormeasured per unit length. Similarly, ifM is a
three-dimensional vector field and if, for all arbitrary direc-
tor velocity fieldsw, the scalarM · w represents a rate of
work per unit length ofc, thenM is adirector force vector
measured per unit length. They may be expressed in terms
of the base vectorsai

Ni =
2∑

j=1

N ji ∂r
∂aj

+ N3in, i = 1, 2,

Mi =
2∑

j=1

M ji ∂r
∂aj

+ M3in, i = 1, 2, (20)

and transform as contravariant surface vectors. Thus,N ij

are surface tensors under transformation of surface coordi-
nates.

Green et al. [7] showed that, with the assumption that
the state ofS remains unchanged under superposed uniform
rigid body translational velocities, we may derive, from the
equation of balance of energy, the equation of motion

µ
∂2r
∂t2

−
2∑

i=1

Ni|i = f(r, t) , (21)

whereµ is the mass density and the vectorf(r, t) is the total
contribution of external forces atr in an instantt. The term
Ni|i is the covariant derivative ofNi in relation toai at a
pointr; that is

Ni|i =
∂Ni

∂ai
+

∑

j

Γi
jiN

j . (22)

In addition, if d = n at any instantt, the variablesεij

andκij that describe how the material behaves are given in
terms of the variation of the coefficients of the first and the
second fundamental forms,Gij andBij , with respect to the
(initial) undeformed state,G0

ij andB0
ij

εij =
1
2

(
Gij −G0

ij

)
and κij = −

(
Bij −B0

ij

)
. (23)

For an elastic Cosserat surface which is anisotropic in
its initial undeformed state and whose internal state is unal-
tered under uniform superposed rigid body angular veloci-
ties, Green et al. further derived the tensorsMij andN∗ij

in terms of the internal energyU

N∗ij = µ
1
2

( ∂U

∂εij
+

∂U

∂εji

)

M ij = µ
1
2

( ∂U

∂κij
+

∂U

∂κji

)
. (24)

These tensors are related with the tensorsN ij in Eq.(20)
through the expressions

N ij = N∗ij−
2∑

k=1

Bi
kM jk and N3j =

2∑

k=1

M jk|k +L̄j ,

(25)
whereM jk|k is the covariant derivative ofM jk with re-
spect to the coordinateak, L̄ is the difference of the as-
signed director force per unit mass,L, and the inertia terms
due to the director displacement, and

Bi
j =

2∑

k=1

GikBjk. (26)

If the surfaceS is initially homogeneous, free from curve
and director forces, and is at a constant temperature and en-
tropy in the state of rest, then an approximation to the inter-
nal energyU may be written in the form

µ0U =
2∑

i,j,k,l=1

[
Aijklεijεkl +Bijklκijκkl +Cijklεijκkl

]
,

(27)
some of which satisfy certain symmetry conditions, if the
elastic Cosserat surface possesses holohedral isotropy

Aijkl = Ajikl = Aijlk = Aklij

= β1G
ij
0 Gkl

0 + β2G
ik
0 Gjl

0 + β3G
il
0 Gjk

0

Bijkl = Bjikl = Bijlk = Bklij

= β4G
ij
0 Gkl

0 + β5G
ik
0 Gjl

0 + β6G
il
0 Gjk

0

Cijkl = Cjikl = Cijlk = Cklij

= β7G
ij
0 Gkl

0 + β8G
ik
0 Gjl

0 + β9G
il
0 Gjk

0 , (28)

once the holohedral isotropic materials are formed of crys-
talline substances having all faces symmetric; hence, their
elastic properties are independent of the orientation of co-
ordinate axes.

4. Our Proposal

From our exhaustive experimentations [8, 16], we ob-
served that the simplified model proposed by Terzopoulos



et al. [14] cannot handle correctly the cases in which the in-
trinsic properties (length, angle, area, etc) change without
affecting visually the curvature of the surface. More pre-
cisely, when the parametersΨij in Eq.(2) are different from
zero, it is very difficult to obtain the expected behavior.

In [16], we presented the first proposal to improve the
results generated by the model proposed by Terzopoulos et
al. Our contribution was restricted to the implementation
level: instead of approximating the normal vectors by the
second derivatives, we used the Gauss formula to compute
them. Larger range of satisfying visual effects was achieved.
From the parametersΨij , we could easily differ the drap-
ing behavior of clothes from the behavior of card papers.
However, we still had difficulties to specify behavior such
as creases and folds. The question we posed was: although
both are bending invariant (the Gaussian curvature is the
same), what these two classes of behavior differ from?

A careful analysis led us to conclude that the two classes
of bendings differ in the variation of the mean curvature
and Eq.(12) shows us that the mean curvature depends on
the mixed product of the coefficients of the first and the sec-
ond fundamental form. It makes us to refer back to the ex-
isting theories for deforming surfaces to seek the one that
takes the mixed terms into consideration.

We find these terms in Eq.(27) of the theory of elas-
tic Cosserat surfaces. To simplify the expression, we fur-
ther consider that the elastic material is holohedral isotropic.
Although no material can be regarded as being holohedral
isotropic in very small portions, the assumption of isotropy,
when applied to an entire body, often does not lead to seri-
ous discrepancies between the experimental ans theoretical
results. This lies in the fact that crystals are so small in com-
parison with the body and they are chaotically distributed in
it that, in the large, the material behaves as though it were
isotropic.

Since generally the contribution of the terms
Cijklεijκkl, i, j 6= k, l is dominated by the contribu-
tion of the diagonal terms (i = k andj = l), and aiming
to a simple interface, we adopt the following simplified ex-
pression for computing the internal energy

µU =
2∑

i,j=1

[
Φij(εij)2 + Ψij(κij)2 + Θijεijκij

]
, (29)

whereεij andκij are given in Eq.(23).
Comparing Eq.(29) with Eq.(2), one may note that they

differ basically in the third termΘijεijκkl. This term is fun-
damental for controlling behaviors that are bending invari-
ant, such as folds and creases.

According to Eq.(28), the elasticity coefficients,Φij , Ψij

and Θij , are dependent on the metric tensor, which may
vary while a surface is deforming. Again, in order to meet
the tradeoff between the efficiency and the visual effects,

we neglect the mixed terms in Eq.(28) which becomes

Φij = ηij

(
2(Gij

0 )2 + Gii
0 Gjj

0

)
,

Ψij = ξij

(
2(Gij

0 )2 + Gii
0 Gjj

0

)
and

Θij = φij

(
2(Gij

0 )2 + Gii
0 Gjj

0

)
, (30)

whereηij , ξij , andφij are referred as theelasticity con-
stants. It is worth remarking that the elasticity constants in
Eq.(2) are, in fact, particular cases of Eq.(30) in which the
metric tensor at each point isG0

ii = 1 andG0
12 = G0

12 = 0.
The most relevant difference that we observed in our exper-
iments is that the constants supplied by the user,ηij , ξij ,
andφij , tend to be invariant with respect to the mesh dis-
cretization (Section 5), whileΦij , Ψij andΘij must be ad-
justed for each chosen discretization step.

With the internal energy in hand, we may determine its
corresponding elastic force. We further propose to substi-
tute the termNi|i in Eq.(21) for δε(r)

δr in Eq.(1), which
yields

µ
∂2r
∂t2

+ λ
∂r
∂t
−

2∑

i=1

Ni|i = f(r, t) . (31)

The replacement leads to the explicit inclusion of ge-
ometric and physical restrictions, including the Mainardi-
Codazzi compatibility equations (Eq.(16)), into the motion
equation. The reason lies in the fact thatNi|i depends on
the Christoffel symbols and the components of the curve
force vector,Ni (Eq.(22)). The components ofNi are, in
their turn, dependent on the variation of the internal energy
U with respect to the variation of the differential geometric
properties of the deforming surface – the metric and the cur-
vature tensors – from the rest state (Eqs.(24 and 25)). Thus,
additional compatibility tests may be avoided.

Finally, we recall that the expression we proposed to be
used for getting the internal energyU differs from the one
used in the previous works [1, 5, 14]: Eq.(29) contains one
more termΘijεijκij . We decomposeNi|i into two compo-
nents

−
2∑

i=1

Ni|i = l + t, (32)

wherel depends only on the termΘijεijκij andt on the
term (Φij(εij)2 + Ψij(κij)2) of the internal energy. This
decomposition not only solves the singularity problem that
we have when the rest state of the deforming surface is a
plane (Bij=0) but also let us to reduce the partial differen-
tial motion equations into a system of linked ordinary differ-
ential equations (Section 5). Replacing the sum in Eq.(31),
we have as the motion equation

µ
∂2r
∂t2

+ λ
∂r
∂t

+ t = f(r, t)− l . (33)



5. Simulation Results

Following the finite difference scheme proposed by Ter-
zopoulos et al. [14], Eq.(33) is transformed into a system
of linear equations. We should, however, assume thatl is
known in each iterationti. Our solution is, then, to usel
of the iterationti−1. We believe that if the time step is suf-
ficiently small, the errors should be acceptable for the vi-
sual purposes. Furthermore, the continuous spaceΩ is dis-
cretized into ap×q-node mesh, where each node(k, l) rep-
resents a discrete point (or anodal variable) r(k, l) in 3D
space to which its normal is assigned as its director vec-
tor.

The values ofNij at iterationti are computed from the
differential geometric properties obtained at iterationti−1.
We used the scheme presented in [16] for determining the
normal vectors at each iteration. It is worth observing that
Eq.(14) is only appliable in the cases whereBij 6= 0. For
overcoming this restriction, whenBij = 0, we assume that
the normal vectors do not change from the iterationti−1 to
ti, that is, we use the normal vector of the iterationti−1 in
the iterationti computed by Eq. (10).

After some algebraic manipulations, we achieve the sim-
ilar coupled system of differential equations as in [14] for
each iterationti

M
∂2R
∂t2

+ C
∂R
∂t

+ K(r)R = F − L (34)

where

• M is the diagonal matrix formed by the mass density
of each element,

• C, the diagonal matrix formed by the dumping density
of each element,

• K(r)R corresponds tot, whereK(r) is called the
rigidity matrix,

• F is a column matrix containing the external force ap-
plied to each element, calculated fromf(r, t), and

• L is a column matrix containing the internal forcel ap-
plied to each element at the iterationti−1.

Hence, the integration of the system through time for
simulating the dynamics of a deforming surface may use
the same step-by-step process presented in [14].

Eq.(30) shows that the material behavior of a deform-
ing surface may be specified through three classes ofdefor-
mation constants: ηij for stretching,ξij for bending, andφij

for the way the surface bends in the neighborhood of a point.
Eqs.(29) and (31) tell us that the mass density, the damp-
ing density and the external forces should be provided. In
our implementation, we simplified the interface by accept-
ing the total massm and the total damping factorc as in-
put and the densities,µ andλ, are reevaluated according to
the total area at timet

µ0 =
m

Area(S(0))
, µ =

Area(S(0))
Area(S(t))

µ0

λ0 =
c

Area(S(0))
, λ =

Area(S(t))
Area(S(0))

λ0. (35)

In this section, we present some simulation results to il-
lustrate and comment a few aspects related to the proposed
model discussed so far. In the simulations presented, the ini-
tial shape is a plane, which is a singular case for our pro-
posal.

(a) Photo

(b) without mixed terms (c) with mixed terms

Figure 2. The draping of a cotton tablecloth.

In the first example we present the draping of a table-
cloth 60 × 60 on a circular table. The discretization res-
olution used for the simulation was31 × 31. The simula-
tion parameters were:m = 738, c = 506.02,ηii = 30.5,
η12 = η21 = 35.5, ξij = 1.0, φij = 0.5, the external
force is the gravitational force, and all the nodes in con-
tact with the table are fixed. For comparison purpose, Fig-
ure 2a shows a photo of a tablecloth and Figure 2b, the im-
age generated from our proposed dynamics model. We be-
lieve that the almost realistic visual effect is due to the fact
that the Mainardi-Codazzi equations are satisfied. In Fig-
ure 2c we include a result generated by a model that does
not neglect the mixed terms in Eq.(28) for illustrating its
similarity to the previous one.

To reinforce the importance of the Mainardi-Codazzi
equations in governing the change of the coefficients of the
first and the second fundamental forms, we present in Fig-
ure 3 the simulation of a waving flag (dimensions:6.0×6.0)



whose two left vertices are fixed. The simulation parameters
were:m=5.0,c=2.0,ηij = 8.0 × 10−1, ξij = 1.0 × 10−3,
φij = 1.0× 10−4, and the external force is the sum of [14]

ffluid = 0.032
[
n ·

(
u− ∂r(a1, a2, t)

∂t

)]
n, (36)

where the constant stream velocityu is (0, 3.0, 0), and a
gravitational force

fgravity = µg, (37)

with g = (−0.1, 0, 0). The discretization resolution was
15 × 15 in Figure 3a. It is interesting to note that if we in-
crease the discretization resolution to20 × 20, we may get
similar visual effects with the same simulation parameters
(Figure 3b).

(a)15× 15 (b) 20× 20

Figure 3. A waving flag.

For validating the efficiency of our model in simulating
creases and folds, we present three more simulations.

Figure 4 aims to show the folds that we may create when
we apply normal forces to the section of a shell, parallel
to the curvilinear coordinate curves. Observe that the Gaus-
sian curvature is maintained, while the mean curvature is in-
creased. For allowing the variation of the normal curvatures
in the vicinity of each point,φij should be different from
zero. In this particular case, the following simulation param-
eters were used: discretization resolution=20 × 20, m=5.0,
c=3.0,ηij = 1.0, ξi,j = 5.0× 10−4, φij = 1.0× 10−3, and
the normal forces were applied on the nodes (4,4), (4,15),
(15,4) and (15,15).

Figure 4. Folds due to the normal forces.

Figure 5 presents the simulation results for which we
only changed the directions of the external forces: instead
of being parallel to the curvilinear coordinate curves, they
are from each vertex towards the center of the shell. Effects
similar to the creases are generated.

Figure 5. Creases.

Finally, we show in Figure 6b the simulation of a cot-
ton handkerchief (dimensions:60 × 60) hanging on a
point. Only the gravitational force acts in it. The simula-
tion parameters were: discretization resolution =30 × 30,
m=737.4,c=220.0,ηii = 190.5, η12 = η21 = 220.5,
ξij = 1.0× 10−4, andφij = 1.0× 10−4. A photo of a real
situation is included for comparison.

6. Concluding Remarks

We present a deformation model on the basis of the the-
ory of the Cosserat surface. In comparison with the well-
known physically-based deformation model proposed by
Terzopoulos et al., our model has the same strong geomet-
ric appeal and

1. presents one more term in the expression of the inter-
nal energy, providing a direct way to specify how a sur-
face should bend in the neighborhood of each point on
the surface, in order to model more naturally the fold-
ings and the creases;



(a) Photo (b) Simulation

Figure 6. A hanging handkerchief.

2. ensures the geometrical compatibility, providing more
realistic visual effects; and

3. presents a set of elasticity constants that are invariant
with respect to the discretization resolution, providing
more intuitive interface to its users.

However, our simulations present problems concerning
with the boundary conditions of the method of finite dif-
ferences we used. In the way that we implemented the finite
differences, the first and the second derivatives are not com-
pletely defined in two edges of the border of the domainΩ.
This may cause unexpected visual effects as illustrates Fig-
ure 7. Observe that two opposite extremes of the tablecloth
crease in a unrealistic way, while the other two opposite ex-
tremes present a realistic behavior. The extremes that crease
unnaturally belong to the edges whose boundary conditions
are not well-defined.

(a) Photo (b) Simulation

Figure 7. A square tablecloth.

Additionally, to make our model effectively applicable
we should integrate an efficient algorithm of handling colli-
sions and self-intersections. This will leave as further work.
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