
Software Shaders in Interactive Environments Using Relief Impostors

ESTEBAN WALTER GONZALEZ CLUA1
BRUNO FEIJÓ1

MARCELO DREUX2,1

FRANCISCO FONSECA1

1 ICAD/IGames/VisionLab, Department of Computer Science, PUC-Rio
{esteban, bruno, ffonseca}@inf.puc-rio.br

2 Department of Mechanical Engineering, PUC-Rio

dreux@mec.puc-rio.br

Abstract. This work presents an architecture for real-time visualization, which is able to render a set of

3D objects by using the CPU idle time. The objects being rendered are sent to the graphics pipeline as relief
impostors. Their depth maps are used to apply 3D image-warping operations in order to prolong the life cycle
of the synthesized images. While an image is within the graphics pipeline the CPU idle time is used to
generate additional necessary images. With this method, it is possible to render images with special
illumination models and effects that are impossible or unsuitable to be implemented with the shaders of the
available graphics cards.

Keywords: relief impostors, real-time rendering, image-based rendering, relief textures, 3D games.

1 Introduction
Graphics hardware is now programmable at the vertex and
at the pixel level. Several illumination effects that in the
past could only be implemented in the CPU are now
possible to be generated in real-time by the new
generation of graphics cards [Fernando, 03] [Mitchell,
02].

The graphics pipeline is increasingly focused in the
GPU (Graphics Processing Unit), reducing the CPU
visualization tasks. Figure 1 shows a comparison between
the CPU workload taken to run a typical game application
in computers with and without a graphics card. In figure
1a, without GPU, the processor is busy 95% of the time
on average. In figure 1b, with GPU, only 3.5% of the CPU
time is being used. In many applications, such as
simulators and 3D games, some idle CPU time is being
allocated to complex tasks of artificial intelligence or
physical simulation, but there is still idle time available.

Nevertheless, the number of illumination models
that can be integrally implemented in the graphics cards

shaders is still limited. The shaders are very specialized
processors, designed to deal with data streams, but limited
to be modified during processing time. Furthermore, they
also have some restrictions regarding memory access and
limitations concerning data input and output.

Ray-tracing [Glassner 89] is, for instance, a model
that cannot be implemented in graphics cards shaders,
since their available programming languages do not
support recursive calls. Volumetric visualization is
another technique that cannot be fully implemented in
GPU’s. It requires access to an enormous amount of
information during rendering time and these data cannot
be entirely loaded in the graphics card memory.

This work presents an approach to take advantage of
the CPU idle time by using it to render some objects of the
scene, through illumination models that are inadequate to
the GPU. With this approach, the result obtained by the
CPU rendering is stored as an impostor [Maciel et al. 95].

(a)

(b)
Figure 1 – CPU workload of a graphics application in a
computer with same camera movements, without GPU (a)
and with GPU (b).

As the frame rate of the objects rendered by the CPU
is lower than the rest of the scene, rendered by the GPU, it
is important to prolong, as much as possible, the life time
of an impostor. In order to achieve this, image-based
rendering techniques are used, more specifically the 3D
warping algorithm [McMillan, 97], with the
improvements described in [Oliveira, 00a]. Moreover,
relief impostors store the geometry and recompute the
image and the depth map in real time, when needed, and
then they are sent as input to the relief texture algorithm.

Although there are many approaches for mutual
cooperations in rendering processes between CPU and
GPU, like [Cebenoyan, 04] and [Denny 03], most of them
describe methods for GPU assuming processes of the
CPU. This paper proposes an original manner of the CPU
running tasks of the GPU.

2 Relief Impostors
Impostors are an efficient way to represent objects by the
use of images. The idea behind it is to represent a 3D
object by a sprite but, differently from the standard
approach, those objects are defined as geometric models,
rendered and finally projected in a plane as a texture with
transparency.

Impostors are real-time generated billboards which
distort the image in a way similar to what happens with
the real object geometry. It is used the axial billboarding
for their representation, which consists of a billboard that
rotates around some fixed world space axis and aligns
itself so as to face the viewer as much as possible within
this range. The impostor texture can also be treated in
real-time to simulate certain effects (e.g. out of focus
images to simulate depth of field).

In practice, an impostor should be re-used by some,
sufficiently close, point of views (exploring frame-by-
frame coherence). Traditional impostors are adequate to
small static objects (or sufficiently distant), while the
proposed technique should also be applied to slow, distant
objects. Tests to determine if a certain impostor is still
valid to the current point of view are of key importance to
the proposed approach.

[Schaufler, 95] and [Schaufler, 97] describe
impostors as an adequate method to minimize the number
of times a complex object need to be rendered, as it is
computationally expensive to be generated [Forsyth, 01].
Generally speaking, impostors are a cache to those
complex objects, since their visualization can be re-used
while it is still valid to the current observer position.

The generated image of the objects can be
proportional to their size on the screen. Thus, if they are
too distant they can be rendered in low resolution. As they
come closer to the observer the images should be rendered
in finer resolutions. In [Damon, 03], it is described an
approach to implement impostors by using video memory
rendering techniques. It increases the number of objects
that can be rendered, as long as enough video memory is
available.

Impostors can also store the depth associated to each
pixel. In that case, some authors name them as nailboards
[Shaufler, 97]. Nevertheless, in this article no distinction
is made between those two terms. The stored depth can be
used in the pipeline z-buffer, so that an object may be
inter-penetrated by other objects, and the occlusion
problems are correctly treated. The depth can be stored in
the alpha channel, leaving one bit to indicate if the texel is
transparent or not.

Relief impostors, firstly described in [Clua, 04],
make use of the 3D image warping equation, defined by
[McMillan, 97]. It consists of a geometric transformation
function w:U’ W⊂ R2 capable to map a source image Is
onto a target image it. The source image should also
contain, besides the pixel colors, the correspondent pixel
depth. Furthermore, camera information of the target
image has be to known (its position sC& as well as the
projection plane).

The above-mentioned equation is obtained by
applying an equivalence between the two camera systems
(source and target) and a point in common. [Ps , Ct]
represents the source camera and [Pt , Ct] represents the
target camera. The equation is given by:

),().(. 11

ssststsst vuCCPxPPx ∂−+= −− &&r
&

r (1)

where),(/1),(ssssss vutvu =∂ is called generalized
disparity of pixel (us, vs) from the source image.

Equation 1 can be seen as a composition of two
bidimensional transformations: the first term represents a
homographic planar perspective transformation to the
source image (can be interpreted as a texture projection)
and the second term is equivalent to a per-pixel
transformation, proportional to the generalized disparity
(given by the term),(sss vu∂) into the direction of the
epipole of the target image.

The perspective transformation term can be solved
by standard implementations of hardware texture
projections. The pixel-per-pixel transformation can be re-
written as a one-dimensional simple structure and hence
allows an efficient software implementation.

An important property related to this equation is that
the pixels depth information of the new image being
generated are not required when the observer moves to a
different position. It is sufficient to know the pixels depth
of the source image only.

Relief textures [Oliveira et al. 00b] consist of a
factorization of the 3D image-warping equation into two
distinct phases. The first, called pre-warping, corresponds
to a per-pixel transformation proportional to the
generalized disparity. The second is simply a conventional
texture mapping, responsible for the perspective
transformation.

The pre-warping is applied to images with depth
information to each texel and is responsible for the
movement (warping) of those texels. The movement is
realized in a way to minimize or to correct the parallax
effect, due to the observer change of position. During the
pre-warping problems related to holes and texel conflicts
are resolved. The second phase, texturing, performs
scaling, rotation filtering and perspective deformations,
which are necessary for the correct relief texture mapping

As already presented, the 3D warping equation,
which describes the movement of a pixel in relation to the
observer position, depends only on his final position.
Therefore, by choosing an adequate orthogonal camera
model, [Oliveira et al. 00b] demonstrates that several
simplifications can be done to the McMillan equation. The
pre-warping equation can be simplified to:

),(1
),(

3

1

ss

sss
i vuk

vukuu
∂+
∂−

= (2)

and

),(1
),(

3

2

ss

sss
i vuk

vukvv
∂+
∂−

= (3)

where
).(
).(,

).(
).(,

).(
).(

321 bac
bafk

acb
acfk

cba
cbfk rrr

rrr

rrr
rrr

rrr

rrr

×
×

=
×
×

=
×
×

= ,

are constants that determine the amount of change in the
coordinates of corresponding pixels in the images of the
orthogonal and perspective projection cameras (figure 2).
Formulas (2) and (3) are called pre-warping relief texture
equations.

Figure 2 – Orthogonal camera model used to generate a
relief impostor. The reference point C& is coincident with
the origin of the image plane and the unit vector f

r
 is

orthogonal to that plane. cr is the vector from the Center
of Projection of the perspective projection camera.

Those factorizations show that, although the pre-
warping phase is bidimensional, it can be treated as a
unidimensional process, once the coordinates ui and vi are
completely independent. To evaluate ui is not necessary to
know the value of vs, and vice-versa. Thus, it is possible to
produce the horizontal warping independently of the
vertical warping. The warping can be initially applied to
rows and later to columns. This independency allows the
implementation of different versions of the pre-warping
phase, as described in [Oliveira, 00a]. The more efficient
one is then chosen to be part of the proposed framework.
It can also be noticed that when),(ss vu∂ = 0 the pre-
warping phase does not deform the original image and
thus it becomes a standard texturing process (second
phase of the relief texture mapping).

3 Visual coherence in impostors swapping
Problems related to pixel conflicts appear during the
warping process, when more than one pixel is moved to
the same position of the warped image. It happens because
a texel can have a displacement greater than its neighbor
during the pre-warping process (it can be seen in
McMillan equation through the),(ss vu∂ parameter). This

texel conflict can be solved by an adaptation of the painter
algorithm, as presented in [Oliveira 00b]

Furthermore, sometimes a texel moves to a new
position and no other texel occupies that position, thus
holes are created. Those regions need to be filled with an
appropriate color. This problem is solved by interpolating
two neighbor texels. [Oliveira 00a] shows different
approaches for this interpolation.

There are many ways to monitor the resultant error
from that interpolation. A possible manner is to count the
number of interpolated texels. It can be simultaneously
done with the sampling. The ratio between the
interpolated texels and the valid texels can give an idea if
an impostor has too many accumulated errors. When the
ratio is greater than a pre-defined value it means that the
impostor is becoming obsolete and that a new impostor
need to be generated to replace the current one. Figure 3
shows a region where the observer can move in order to
keep the number of interpolated texels lower than 20% of
the number of valid texels.

Figure 3 – Each colored area indicates a region where the
observer can move in order to keep the number of
interpolated texels lower than 20% of the valid texels.

This method of impostor monitoring could be called
a brute-force technique, because it verifies the validity of
every texel of the destination image. Since the number of
texels is high, it could considerably reduce a real time
system performance. Therefore, in order to optimize it,
this work makes use of the critical point heuristic.

This heuristic is based on the following proposition:
Let T1 and T2 be two texels which belong to the same

relief impostors, such that T1 and T2 are neighbors and
|),(),(| 2211 vuvu ∂−∂ is maximum for any pair in such

situation. Let ∆ui be the displacement to be applied to the

texel ui from the source image to obtain the destination
image. Then, there is a camera position C’ where

|)()(| 21 21

uuuu ss ∆+−∆+ (4)

is maximum to every texture [Clua, 04]. In those
conditions, Ti1 and Ti2 define the critical point of a relief
impostor for the ith region, as can be seen in the figure 4.

The heuristic test consists in an inference for the
value of equation (4) for the set of critical points, one for
each region of the image. If the average of those errors is
greater than a pre-defined value, then it indicates that the
impostor has to be updated.

Figure 4 – An impostor divided in several regions, each
one has its own critical point.

The horizontal error can be obtained by combining
equations (2) and (4):

Erroru =

),(
))(,(

),(
))(,(

1
22

222

11

11 1

vuh
uuvu

vuh
uuvu

sese

∂+
−∂

−
∂+

−∂
+ (5)

It should be noticed that the horizontal error is only
related to the horizontal warping. Also it is necessary to
evaluate the vertical error:

Errorv =
),(

))(,(
),(

))(,(
1

22

222

11

11 1

vuh
vvvu

vuh
vvvu sese

∂+
−∂

−
∂+

−∂
+ (6)

The real distance is obtained from equation (5) and (6):

22

vu ErrorErrorError += (7)

4 CPU rendering of impostors
The proposed system is basically composed of two

threads. The first thread is called warping thread. Its
function is to process the pre-warping phase of a relief
impostor. This processing needs to be done in the RAM
memory, since it is performed by the CPU. [Popescu 00],
[Popescu 01] and [Clua 04] discuss the drawbacks of
doing the warping by the graphics hardware. As soon as a
pre-warping is done, the resulting image is copied to the
GPU video memory, in order to perform the texturing
phase of the 3D warping equation. It is important to notice
that while the pre-warping is being processed the video
memory has an old impostor image. Thus, if there is short
available time to the warping thread, the system should
abort the strategy of software rendering and perform the
rendering through the standard graphics pipeline. This
process management is performed by a state machine:
when the new impostor is not available yet. It tells the
system that, if the warping is not appropriate for a correct
image, the GPU must re-render the object. Every time the
rendering thread finishes a new relief impostor, the state
machine sets a flag to indicate that a valid impostor is
available. It is also responsible for a synchronization
between the CPU and the GPU: When a camera or object
movement happens, the state machine tells the warping
thread to start a new pre-warping into the impostor. When
it is complete, the GPU copies the result to its video
buffer. Figure 5 illustrates these components.

The second thread is called rendering thread. Its
function is to constantly generate more updated impostors
than the one being used by the warping thread. A better
impostor is obtained with a camera model closer to the
current camera position.

In order to avoid generating similar relief impostors
(what occurs when the observer moves slowly or the
object is far from the camera), the proposed system
applies the critical point heuristic to the image, before
asking for a new warping. If the error is small it is not
necessary to generate a new impostor and hence only a
warping is performed. On the other hand, if the error is
large the rendering thread process can be activated. If
there is more than one object being rendered as relief
impostors, it is necessary to prioritize the ones with larger
errors.

The critical point heuristics may indicate that there
is a large error related to the current impostor and the
generation of more warpings to the image could affect the
object appearance. In that case, it is necessary to change
the current impostor to a new one. Nevertheless,
sometimes the rendering thread has not finished
synthesizing it yet. A solution to that could be to perform
its rendering through the GPU. Another possibility could
be a progressive rendering: an image with a lower

resolution would be sent to the warping thread. As soon as
a higher resolution rendering is finished the memory can
be updated with this impostor.

Empirically, it can be stated that the number of
necessary impostors updates is small, to keep the error
relatively low. In fact, as presented in figure 3, a single
relief impostor is valid to represent a relatively large
region, when compared with a standard impostor [Maciel
et al. 95]. In practice, in a typical graphics application, it
is not usual to stay orbiting around an object. It allows that
later impostors could be stored in a Database, as long as
space is available. Therefore, before a rendered thread is
triggered, a database search is done to check it there is a
stored impostor related to the current camera position.

Either the warping thread or the rendering thread are
processed during the system idle time. However, in a 3D
game or in a interactive virtual environment the idle time
can be useful to other types of non graphics operations
and hence that time can be shorter. Thus, it is convenient
to use a multi-processing system, where processors can be
dedicated to both threads. This solution is economically
feasible with the use of hyper-threading processors
[INTEL 01]. This technology is already available in many
popular computers. New game consoles, such as
PlayStation 3, are also being built to support multi-
threading.

As the evaluation of the second thread is entirely
done by software, there is no limitation regarding the
available shader programs. Therefore, the shader thread
can be considered as a software shader for a specific
object. In the present work, a ray-tracing software shader
has been implemented, as presented in section 6.

Figure 5 – Architecture of the visualization framework.

5 Optimizations
As already mentioned, an objective of this work is to

make use of the CPU idle time to perform operations of
the graphics pipeline. Nevertheless, this time should not
be used to unnecessary tasks, such as to render impostors
that can be obtained by a warping (which is cheaper) or to
perform an impostor pre-warping without need (for
instance, when the camera is not moving). The first
situation is partially solved by the critical point heuristic,
since new impostors are only generated when camera
positions already have a large accumulated warping error.
The second situation is handled in this work through an
adaptation of the Schaufler´s approximation [Schaufler
95]. Before requesting a pre-warping in a new frame, the
observer movement is analyzed to check if it was large
enough to make pixels of the previous image to represent
incorrect points of the new image. In the simplest
situation, if the camera remains still the pre-warping
would generate identical images, unnecessarily. [Clua
04a] discuss in detail how that adaptation is done.

The pre-warping process consists in evaluating, for
each texel, equations (2) and (3). [Oliveira 00b] suggests
using two lookup tables updated to every new camera
position. This can be done because the texel depth is
stored in a single byte. Thus, a texel can only have 255
depth levels. A table is, then, built for each depth level
Depth:

For Depth = 1 to 255 do

d = Depth . MAX_Depth / 255;
Coef1 [Depth] = K1 . d
Coef2 [Depth] = K2 . d
Coef3 [Depth] = (1 + K3 . d) -1

Where MAX_Depth is the maximum displacement of the
relief impostor. The pre-warping is evaluated by
performing the following operations:

unext = (u + Coef1[Depth_Texel]) . Coef3[Depth_Texel]
vnext = (v + Coef2[Depth_Texel]) . Coef3[Depth_Texel]

As shown in the expressions above, this phase consists of
only four elementary operations.

Another important optimization is achieved by
sending data from RAM memory to GPU video memory
when an impostor generation is completely done. It is
important to notice that every time the GPU video
memory is accessed it causes a graphics hardware
processing interruption.

Finally, it is convenient to test if the rendering
thread is coping with the number of impostors requested
by the critical point heuristics. If not, it will be necessary
to send the object rendering to the GPU, and thus losing
the advantages of the software shader.

6 Results
A real time rendering framework has been developed
which is able to fulfill the requirements described in
sections 4 and 5. The implemented software shader is a
ray-tracer for polygonal objects. These objects can be
created by commercial 3D modelers.

A hyper-threading processor has been utilized, so
the rendering thread and the hyper thread not only make
use of the idle time but also get the benefit of a dedicated
processor. There is a priority mechanism which
guarantees that the warping thread is hierarchically
superior to the rendering thread. This is necessary because
the warping updating rate is greater than the creation rate
of new impostors.

Figure 6 shows an object being rendered by the
hardware and by the ray-tracing software shader. As the
illumination of the first is done in a pixel-per-pixel basis,
it is possible to notice an increase in its realism.

Figure 6 – The character at the left side is being rendered
by the software shader and the character at the right is
entirely rendered by GPU.

The time taken to obtain the warping of a 256 x 256
pixels image, in a Pentium IV 2.6GHz is 11 ms, and
therefore has a rate of 91 warpings per second. On the
other hand, the time taken to generate a new relief
impostor is about 228 ms, for a one-level ray-traced object
composed by 1500 poligons. In order to keep negligible
the accumulated warping error, the heuristic value
produces 17 images for a complete walk around the
object.

The scene presented in figure 6 has a frame rate of
124 frames per second when completely rendered by the

GPU. On the other hand, if the software shader is used the
rate is 131 frames per second. Although the difference is
small, it is due to the time taken to transfer the image from
RAM memory to the GPU video memory.

Figure 7 shows the CPU time for both situations.

Figure 7 – CPU time for a system without (a) and with (b)
software shaders.

7 Conclusion and future works
This work presents the concept of a software shader,
which is able to perform rendering operations not suitable
to be implemented in graphics hardware. It has been
shown that shaders can take advantage of the CPU idle
time, without affecting the application performance. The
only additional spent time is the time of data transferring
from RAM memory to GPU video memory.

In the present work, impostors are treated as static
objects. Nevertheless, the described system appropriately
deals with simple impostors transformations, since a
camera translation could be interpreted as an object
movement. However, it is necessary a deeper research in
order to deal with geometric transformations of objects
represented by impostors. A possible approach to tackle
that problem could be the use of the view morphing
algorithm [Seitz 96].

The rendering thread could be improved in the case
that the critical point heuristic does not require the
generation of a new impostor. In that case it should be
wise to predict, and render, an impostor that could be
necessary in the near future. Thus, an inference should be
taken based on the object movement and/or on the
observer trajectory. Also it is possible to create an
efficient storage mechanism to keep impostors already
used, in such a way that they could be reused.

In order to increase the processing power of the
rendering and warping threads, parallel processing could
be used. [Fonseca 04] explores an efficient manner to
increase the performance of relief texture generation, by
using more than one processor.

Finally, to corroborate the efficiency of the proposed
technique, it is interesting to develop other software
shaders, besides the implemented ray-tracer.

8 Acknowledgement
The authors are grateful to the important

contributions given by Manuel Menezes Oliveira Neto,
Waldemar Celes, Edilberto Strauss, Luis Eduardo
Sauerbronn, Hélio Lopes, Cesar Tadeu Pozzer and Fábio
Policarpo. The authors are also grateful to ICAD/IGames -
the Intelligent CAD and Games Laboratory of PUC-Rio,
to CNPq, the Brazilian government research council, and
FINEP (through the VisionLab project), which partially
sponsored this research.

9 References
[Cebenoyan, 04] Cebenoyan, C. Graphics Pipeline
Performance. In GPU Gems – Programming Techiques,
Tips and Tricks for Real-Time Graphics, p. 473-486,
Addison-Wesley, March, 2004.
 [Clua 04a] Clua, Esteban. Relief Impostors. Department
of Computer Science, PUC-Rio, PhD thesis. April, 2004.
Available from: www.icad.puc-rio/esteban/phd_thesis.pdf.
(in Portuguese).
[Damon, 03] Damon, W. Impostors Made Easy. Intel
Technical Report, 2003. Available from:
http://www.intel.com/cd/ids/developer/asmo-
na/eng/segments/20219.htm [accessed 20 May 2004].
[Denny 03] Denny, Markus. Solving Geometric
Optimization Problems using Graphics Hardware.
Proceedings of Eurographics 2003, p. 441-451, 2003.
[Fernando, 03] Fernando, R. and Kilgard, M. The Cg
Tutorial - The definitive guide to programmable Real-
Time Graphics. Addison Wesley and NVidia, Boston.
2003.
 [Fonseca 04] Fonseca, Francisco. Texturas com Relevo
utilizando Iluminação por Pixel e Processamento Paralelo.
Department of Computer Science, Puc-Rio, Master thesis.
January, 2004 (in Portuguese).
[Forsyth, 01] Forsyth, Tom. Impostors: Adding Clutter. In
Mark DeLoura, ed., Game Programming Gems 2, Charles
River Media, p. 488-496. 2001.
[Glassner 89] Glassner, A., S. An Introduction to Ray
Tracing. Academic Press. 1989.
[INTEL 01] INTEL Corporation. Introduction to Hyper-
Threading Technologies. White paper from INTEL Data
Research. Document Number 250008-002. 2001.
[Maciel et al. 95] Maciel, Paulo W. and Peter Shirley,
Visual Navigation of Large Environments Using Textured

Clusters, Symposium on Interactive 3D Graphics pp 95-
102. April 1995.
 [McMillan 97] McMillan, L. An Image-Based Approach
to Three Dimensional Computer Graphics. Department of
Computer Science, University of North Carolina at Chapel
Hill, Ph. D. thesis. 1997.
[Mitchell 02] Mitchell, J.L. RadeonTM 9700 Shading,
SIGGRAPH 2002 – State of the Art in Hardware Shading
Couse Notes, 2002. Available from:
www.ati.com/developer/SIGGRAPH02/ATIHardwareSha
ding_2002_Chapter3-1.pdf [accessed 20 May 2004].
[Oliveira 00a] Oliveira, M. Relief Texture Mapping.
Department of Computer Science , University of North
Carolina, PhD thesis. 2000.
[Oliveira 00b] Oliveira, M., Bishop, G. and McAllister, D.
Relief texture mapping. ACM SIGGRAPH Computer
Graphics Proceedings, p. 359–368, November 2000.
[Popescu 00] Popescu, V., Eyles, J., et al. The
WarpEngine: An Architecture for the Post-Polygonal Age.
ACM SIGGRAPH Computer Graphics Proceedings, p.
433-442, July 2000.

[Popescu 01] Popescu, V. Forward Rasterization: A
Reconstruction Algorithm for Image-based Rendering.
Department of Computer Science, University of North
Carolina, PhD thesis. 2001.
[Schaufler 95] Schaufler, G. Dynamically Generated
Impostors. In: Workshop on Modeling – Virtual Worlds –
Distributed Graphics, D. W. Fellner, ed., Infix Verlag, p.
129-135, November 1995.
[Schaufler 97] Schaufler, G. Nailboards: A Rendering
Primitive for Image Caching in Dynamic Scenes. In:
Proceedings of the 8th Eurographics Workshop on
Rendering. St. Ettiene, France, Springer-Verlag, p. 151-
162, June 1997.
[Schaufler 98] Schaufler, G. Per-Object Image Warping
with layered Impostors. In: Proceedings of the 9th
Eurographics Workshop on Rendering. Vienna, Austria, p.
145-156, June 1998.
[Seitz 96] Seitz, S. and Dyer, C. View Morphing. In:
ACM SIGGRAPH Computer Graphics Proceedings, p.
21-30, August 1996.

