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Abstract. This work presents an architecture for real-time visualization, which is able to render a set of 

3D objects by using the CPU idle time. The objects being rendered are sent to the graphics pipeline as relief 
impostors. Their depth maps are used to apply 3D image-warping operations in order to prolong the life cycle 
of the synthesized images. While an image is within the graphics pipeline the CPU idle time is used to 
generate additional necessary images. With this method, it is possible to render images with special 
illumination models and effects that are impossible or unsuitable to be implemented with the shaders of the 
available graphics cards. 
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1 Introduction 
Graphics hardware is now programmable at the vertex and 
at the pixel level. Several illumination effects that in the 
past could only be implemented in the CPU are now 
possible to be generated in real-time by the new 
generation of graphics cards [Fernando, 03] [Mitchell, 
02]. 

The graphics pipeline is increasingly focused in the 
GPU (Graphics Processing Unit), reducing the CPU 
visualization tasks. Figure 1 shows a comparison between 
the CPU workload taken to run a typical game application 
in computers with and without a graphics card. In figure 
1a, without GPU, the processor is busy 95% of the time 
on average. In figure 1b, with GPU, only 3.5% of the CPU 
time is being used. In many applications, such as 
simulators and 3D games, some idle CPU time is being 
allocated to complex tasks of artificial intelligence or 
physical simulation, but there is still idle time available.  

Nevertheless, the number of illumination models 
that can be integrally implemented in the graphics cards 

shaders is still limited. The shaders are very specialized 
processors, designed to deal with data streams, but limited 
to be modified during processing time. Furthermore, they 
also have some restrictions regarding memory access and 
limitations concerning data input and output.  

Ray-tracing [Glassner 89] is, for instance, a model 
that cannot be implemented in graphics cards shaders, 
since their available programming languages do not 
support recursive calls. Volumetric visualization is 
another technique that cannot be fully implemented in 
GPU’s. It requires access to an enormous amount of 
information during rendering time and these data cannot 
be entirely loaded in the graphics card memory.  

This work presents an approach to take advantage of 
the CPU idle time by using it to render some objects of the 
scene, through illumination models that are inadequate to 
the GPU. With this approach, the result obtained by the 
CPU rendering is stored as an impostor [Maciel et al. 95]. 
 



 

  
(a) 

  
(b) 
Figure 1 – CPU workload of a graphics application in a 
computer with same camera movements, without GPU (a) 
and with GPU (b).  
 

As the frame rate of the objects rendered by the CPU 
is lower than the rest of the scene, rendered by the GPU, it 
is important to prolong, as much as possible, the life time 
of an impostor. In order to achieve this, image-based 
rendering techniques are used, more specifically the 3D 
warping algorithm [McMillan, 97], with the 
improvements described in [Oliveira, 00a]. Moreover, 
relief impostors store the geometry and recompute the 
image and the depth map in real time, when needed, and 
then they are sent as input to the relief texture algorithm. 

Although there are many approaches for mutual 
cooperations in rendering processes between CPU and 
GPU, like [Cebenoyan, 04] and [Denny 03], most of them 
describe methods for GPU assuming processes of the 
CPU. This paper proposes an original manner of the CPU 
running tasks of the GPU. 

2 Relief Impostors 
Impostors are an efficient way to represent objects by the 
use of images. The idea behind it is to represent a 3D 
object by a sprite but, differently from the standard 
approach, those objects are defined as geometric models, 
rendered and finally projected in a plane as a texture with 
transparency.  

Impostors are real-time generated billboards which 
distort the image in a way similar to what happens with 
the real object geometry. It is used the axial billboarding 
for their representation, which consists of a billboard that 
rotates around some fixed world space axis and aligns 
itself so as to face the viewer as much as possible within 
this range. The impostor texture can also be treated in 
real-time to simulate certain effects (e.g. out of focus 
images to simulate depth of field).  

In practice, an impostor should be re-used by some, 
sufficiently close, point of views (exploring frame-by-
frame coherence). Traditional impostors are adequate to 
small static objects (or sufficiently distant), while the 
proposed technique should also be applied to slow, distant 
objects. Tests to determine if a certain impostor is still 
valid to the current point of view are of key importance to 
the proposed approach. 

[Schaufler, 95] and [Schaufler, 97] describe 
impostors as an adequate method to minimize the number 
of times a complex object need to be rendered, as it is 
computationally expensive to be generated [Forsyth, 01]. 
Generally speaking, impostors are a cache to those 
complex objects, since their visualization can be re-used 
while it is still valid to the current observer position.  

The generated image of the objects can be 
proportional to their size on the screen. Thus, if they are 
too distant they can be rendered in low resolution. As they 
come closer to the observer the images should be rendered 
in finer resolutions. In [Damon, 03], it is described an 
approach to implement impostors by using video memory 
rendering techniques. It increases the number of objects 
that can be rendered, as long as enough video memory is 
available.   

Impostors can also store the depth associated to each 
pixel. In that case, some authors name them as nailboards 
[Shaufler, 97]. Nevertheless, in this article no distinction 
is made between those two terms. The stored depth can be 
used in the pipeline z-buffer, so that an object may be 
inter-penetrated by other objects, and the occlusion 
problems are correctly treated. The depth can be stored in 
the alpha channel, leaving one bit to indicate if the texel is 
transparent or not.  

Relief impostors, firstly described in [Clua, 04], 
make use of the 3D image warping equation, defined by 
[McMillan, 97]. It consists of a geometric transformation 
function w:U’  W⊂ R2 capable to map a source image Is 
onto a target image it. The source image should also 
contain, besides the pixel colors, the correspondent pixel 
depth.  Furthermore, camera information of the target 
image has be to known (its position sC& as well as the 
projection plane). 

The above-mentioned equation is obtained by 
applying an equivalence between the two camera systems 
(source and target) and a point in common. [Ps , Ct] 
represents the source camera and [Pt , Ct] represents the 
target camera. The equation is given by:  
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where ),(/1),( ssssss vutvu =∂  is called generalized 
disparity of pixel (us, vs) from the source image.   

Equation 1 can be seen as a composition of two 
bidimensional transformations: the first term represents a 
homographic planar perspective transformation to the 
source image (can be interpreted as a texture projection) 
and the second term is equivalent to a per-pixel 
transformation, proportional to the generalized disparity 
(given by the term ),( sss vu∂  ) into the direction of the 
epipole of the target image.  

The perspective transformation term can be solved 
by standard implementations of hardware texture 
projections. The pixel-per-pixel transformation can be re-
written as a one-dimensional simple structure and hence 
allows an efficient software implementation.  

An important property related to this equation is that 
the pixels depth information of the new image being 
generated are not required when the observer moves to a 
different position. It is sufficient to know the pixels depth 
of the source image only.  

Relief textures [Oliveira et al. 00b] consist of a 
factorization of the 3D image-warping equation into two 
distinct phases. The first, called pre-warping, corresponds 
to a per-pixel transformation proportional to the 
generalized disparity. The second is simply a conventional 
texture mapping, responsible for the perspective 
transformation. 

The pre-warping is applied to images with depth 
information to each texel and is responsible for the 
movement (warping) of those texels. The movement is 
realized in a way to minimize or to correct the parallax 
effect, due to the observer change of position. During the 
pre-warping problems related to holes and texel conflicts 
are resolved. The second phase, texturing, performs 
scaling, rotation filtering and perspective deformations, 
which are necessary for the correct relief texture mapping  

As already presented, the 3D warping equation, 
which describes the movement of a pixel in relation to the 
observer position, depends only on his final position. 
Therefore, by choosing an adequate orthogonal camera 
model, [Oliveira et al. 00b] demonstrates that several 
simplifications can be done to the McMillan equation. The 
pre-warping equation can be simplified to:    
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are constants that determine the amount of change in the 
coordinates of corresponding pixels in the images of the 
orthogonal and perspective projection cameras (figure 2). 
Formulas (2) and (3) are called pre-warping relief texture 
equations.  

 
Figure 2 – Orthogonal camera model used to generate a 
relief impostor. The reference point C&  is coincident with 
the origin of the image plane and the unit vector f

r
 is 

orthogonal to that plane. cr is the vector from the Center 
of Projection of the perspective projection camera. 
 

Those factorizations show that, although the pre-
warping phase is bidimensional, it can be treated as a 
unidimensional process, once the coordinates ui and vi are 
completely independent. To evaluate ui is not necessary to 
know the value of vs, and vice-versa. Thus, it is possible to 
produce the horizontal warping independently of the 
vertical warping. The warping can be initially applied to 
rows and later to columns. This independency allows the 
implementation of different versions of the pre-warping 
phase, as described in [Oliveira, 00a]. The more efficient 
one is then chosen to be part of the proposed framework. 
It can also be noticed that when ),( ss vu∂  = 0 the pre-
warping phase does not deform the original image and 
thus it becomes a standard texturing process (second 
phase of the relief texture mapping). 

3 Visual coherence in impostors swapping  
Problems related to pixel conflicts appear during the 
warping process, when more than one pixel is moved to 
the same position of the warped image. It happens because 
a texel can have a displacement greater than its neighbor 
during the pre-warping process (it can be seen in 
McMillan equation through the ),( ss vu∂  parameter). This 



 

texel conflict can be solved by an adaptation of the painter 
algorithm, as presented in [Oliveira 00b] 

Furthermore, sometimes a texel moves to a new 
position and no other texel occupies that position, thus  
holes are created. Those regions need to be filled with an 
appropriate color. This problem is solved by interpolating 
two neighbor texels. [Oliveira 00a] shows different 
approaches for this interpolation.  

There are many ways to monitor the resultant error 
from that interpolation. A possible manner is to count the 
number of interpolated texels. It can be simultaneously 
done with the sampling. The ratio between the 
interpolated texels and the valid texels can give an idea if 
an impostor has too many accumulated errors. When the 
ratio is greater than a pre-defined value it means that the 
impostor is becoming obsolete and that a new impostor 
need to be generated to replace the current one. Figure 3 
shows a region where the observer can move in order to 
keep the number of interpolated texels lower than 20% of 
the number of valid texels. 

 

 
Figure 3 – Each colored area indicates a region where the 
observer can move in order to keep the number of 
interpolated texels lower than 20% of the valid texels.  
 

This method of impostor monitoring could be called 
a brute-force technique, because it verifies the validity of 
every texel of the destination image. Since the number of 
texels is high, it could considerably reduce a real time 
system performance. Therefore, in order to optimize it, 
this work makes use of the critical point heuristic. 

This heuristic is based on the following proposition: 
Let T1 and T2 be two texels which belong to the same 

relief impostors, such that T1 and T2 are neighbors and 
|),(),(| 2211 vuvu ∂−∂  is maximum for any pair in such 

situation. Let ∆ui be the displacement to be applied to the 

texel ui from the source image to obtain the destination 
image. Then, there is a camera position C’ where  
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is maximum to every texture [Clua, 04]. In those 
conditions, Ti1 and Ti2 define the critical point of a relief 
impostor for the ith region, as can be seen in the figure 4. 

The heuristic test consists in an inference for the 
value of equation (4) for the set of critical points, one for 
each region of the image. If the average of those errors is 
greater than a pre-defined value, then it indicates that the 
impostor has to be updated. 

 

 
Figure 4 – An impostor divided in several regions, each 
one has its own critical point. 
 
The horizontal error can be obtained by combining 
equations (2) and (4): 
 
Erroru = 

),(
))(,(

),(
))(,(

1
22

222

11

11 1

vuh
uuvu

vuh
uuvu

sese

∂+
−∂

−
∂+

−∂
+              (5) 

It should be noticed that the horizontal error is only 
related to the horizontal warping. Also it is necessary to 
evaluate the vertical error: 
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The real distance is obtained from equation (5) and (6): 
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4 CPU rendering of impostors 
The proposed system is basically composed of two 

threads. The first thread is called warping thread. Its 
function is to process the pre-warping phase of a relief 
impostor. This processing needs to be done in the RAM 
memory, since it is performed by the CPU. [Popescu 00], 
[Popescu 01] and [Clua 04] discuss the drawbacks of 
doing the warping by the graphics hardware. As soon as a 
pre-warping is done, the resulting image is copied to the 
GPU video memory, in order to perform the texturing 
phase of the 3D warping equation. It is important to notice 
that while the pre-warping is being processed the video 
memory has an old impostor image. Thus, if there is short 
available time to the warping thread, the system should 
abort the strategy of software rendering and perform the 
rendering through the standard graphics pipeline. This 
process management is performed by a state machine: 
when the new impostor is not available yet. It tells the 
system that, if the warping is not appropriate for a correct 
image, the GPU must re-render the object. Every time the 
rendering thread finishes a new relief impostor, the state 
machine sets a flag to indicate that a valid impostor is 
available. It is also responsible for a synchronization 
between the CPU and the GPU: When a camera or object 
movement happens, the state machine tells the warping 
thread to start a new pre-warping into the impostor. When 
it is complete, the GPU copies the result to its video 
buffer. Figure 5 illustrates these components. 

The second thread is called rendering thread. Its 
function is to constantly generate more updated impostors 
than the one being used by the warping thread. A better 
impostor is obtained with a camera model closer to the 
current camera position. 

In order to avoid generating similar relief impostors 
(what occurs when the observer moves slowly or the 
object is far from the camera), the proposed system 
applies the critical point heuristic to the image, before 
asking for a new warping. If the error is small it is not 
necessary to generate a new impostor and hence only a 
warping is performed. On the other hand, if the error is 
large the rendering thread process can be activated. If 
there is more than one object being rendered as relief 
impostors, it is necessary to prioritize the ones with larger 
errors. 

The critical point heuristics may indicate that there 
is a large error related to the current impostor and the 
generation of more warpings to the image could affect the 
object appearance. In that case, it is necessary to change 
the current impostor to a new one. Nevertheless, 
sometimes the rendering thread has not finished 
synthesizing it yet. A solution to that could be to perform 
its rendering through the GPU. Another possibility could 
be a progressive rendering: an image with a lower 

resolution would be sent to the warping thread. As soon as 
a higher resolution rendering is finished the memory can 
be updated with this impostor. 

Empirically, it can be stated that the number of 
necessary impostors updates is small, to keep the error 
relatively low. In fact, as presented in figure 3, a single 
relief impostor is valid to represent a relatively large 
region, when compared with a standard impostor [Maciel 
et al. 95]. In practice, in a typical graphics application, it 
is not usual to stay orbiting around an object. It allows that 
later impostors could be stored in a Database, as long as 
space is available. Therefore, before a rendered thread is 
triggered, a database search is done to check it there is a 
stored impostor related to the current camera position.  

Either the warping thread or the rendering thread are 
processed during the system idle time. However, in a 3D 
game or in a interactive virtual environment the idle time 
can be useful to other types of non graphics operations 
and hence that time can be shorter. Thus, it is convenient 
to use a multi-processing system, where processors can be 
dedicated to both threads. This solution is economically 
feasible with the use of hyper-threading processors 
[INTEL 01]. This technology is already available in many 
popular computers. New game consoles, such as 
PlayStation 3, are also being built to support multi-
threading. 

As the evaluation of the second thread is entirely 
done by software, there is no limitation regarding the 
available shader programs. Therefore, the shader thread 
can be considered as a software shader for a specific 
object. In the present work, a ray-tracing software shader 
has been implemented, as presented in section 6. 

 

 
Figure 5 – Architecture of the visualization framework. 



 

5 Optimizations 
As already mentioned, an objective of this work is to 

make use of the CPU idle time to perform operations of 
the graphics pipeline. Nevertheless, this time should not 
be used to unnecessary tasks, such as to render impostors 
that can be obtained by a warping (which is cheaper) or to 
perform an impostor pre-warping without need (for 
instance, when the camera is not moving). The first 
situation is partially solved by the critical point heuristic, 
since new impostors are only generated when camera 
positions already have a large accumulated warping error. 
The second situation is handled in this work through an 
adaptation of the Schaufler´s approximation [Schaufler 
95]. Before requesting a pre-warping in a new frame, the 
observer movement is analyzed to check if it was large 
enough to make pixels of the previous image to represent 
incorrect points of the new image. In the simplest 
situation, if the camera remains still the pre-warping 
would generate identical images, unnecessarily. [Clua 
04a] discuss in detail how that adaptation is done. 

The pre-warping process consists in evaluating, for 
each texel, equations (2) and (3). [Oliveira 00b] suggests 
using two lookup tables updated to every new camera 
position. This can be done because the texel depth is 
stored in a single byte. Thus, a texel can only have 255 
depth levels. A table is, then, built for each depth level 
Depth: 

 
For Depth = 1 to 255 do 

d = Depth . MAX_Depth / 255; 
Coef1 [Depth] = K1 . d 
Coef2 [Depth] = K2 . d  
Coef3 [Depth] = (1 + K3 . d) -1 

 
Where MAX_Depth is the maximum displacement of the 
relief impostor. The pre-warping is evaluated by 
performing the following operations: 

 
unext = (u + Coef1[Depth_Texel]) . Coef3[Depth_Texel] 
vnext = (v + Coef2[Depth_Texel]) . Coef3[Depth_Texel] 

 
As shown in the expressions above, this phase consists of 
only four elementary operations. 

Another important optimization is achieved by 
sending data from RAM memory to GPU video memory 
when an impostor generation is completely done. It is 
important to notice that every time the GPU video 
memory is accessed it causes a graphics hardware 
processing interruption.  

Finally, it is convenient to test if the rendering 
thread is coping with the number of impostors requested 
by the critical point heuristics. If not, it will be necessary 
to send the object rendering to the GPU, and thus losing 
the advantages of the software shader. 

6 Results 
A real time rendering framework has been developed 
which is able to fulfill the requirements described in 
sections 4 and 5. The implemented software shader is a 
ray-tracer for polygonal objects. These objects can be 
created by commercial 3D modelers.  

A hyper-threading processor has been utilized, so 
the rendering thread and the hyper thread not only make 
use of the idle time but also get the benefit of a dedicated 
processor. There is a priority mechanism which 
guarantees that the warping thread is hierarchically 
superior to the rendering thread. This is necessary because 
the warping updating rate is greater than the creation rate 
of new impostors. 

Figure 6 shows an object being rendered by the 
hardware and by the ray-tracing software shader. As the 
illumination of the first is done in a pixel-per-pixel basis, 
it is possible to notice an increase in its realism. 

 
Figure 6 – The character at the left side is being rendered 
by the software shader and the character at the right is  
entirely rendered by GPU. 
 

The time taken to obtain the warping of a 256 x 256 
pixels image, in a Pentium IV 2.6GHz is 11 ms, and 
therefore has a rate of 91 warpings per second. On the 
other hand, the time taken to generate a new relief 
impostor is about 228 ms, for a one-level ray-traced object 
composed by 1500 poligons. In order to keep negligible 
the accumulated warping error, the heuristic value 
produces 17 images for a complete walk around the 
object. 

The scene presented in figure 6 has a frame rate of 
124 frames per second when completely rendered by the 



  

GPU. On the other hand, if the software shader is used the 
rate is 131 frames per second. Although the difference is 
small, it is due to the time taken to transfer the image from 
RAM memory to the GPU video memory. 

Figure 7 shows the CPU time for both situations.  
 

 

 
Figure 7 – CPU time for a system without (a) and with (b) 
software shaders. 

7 Conclusion and future works 
This work presents the concept of a software shader, 
which is able to perform rendering operations not suitable 
to be implemented in graphics hardware. It has been 
shown that shaders can take advantage of the CPU idle 
time, without affecting the application performance. The 
only additional spent time is the time of data transferring 
from RAM memory to GPU video memory. 

In the present work, impostors are treated as static 
objects. Nevertheless, the described system appropriately 
deals with simple impostors transformations, since a 
camera translation could be interpreted as an object 
movement. However, it is necessary a deeper research in 
order to deal with geometric transformations of objects 
represented by impostors. A possible approach to tackle 
that problem could be the use of the view morphing 
algorithm [Seitz 96]. 

The rendering thread could be improved in the case 
that the critical point heuristic does not require the 
generation of a new impostor. In that case it should be 
wise to predict, and render, an impostor that could be 
necessary in the near future. Thus, an inference should be 
taken based on the object movement and/or on the 
observer trajectory. Also it is possible to create an 
efficient storage mechanism to keep impostors already 
used, in such a way that they could be reused. 

In order to increase the processing power of the 
rendering and warping threads, parallel processing could 
be used. [Fonseca 04] explores an efficient manner to 
increase the performance of relief texture generation, by 
using more than one processor. 

Finally, to corroborate the efficiency of the proposed 
technique, it is interesting to develop other software 
shaders, besides the implemented ray-tracer.  
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